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High-level expression of Bcl-2 associated athanogene (BAG-1) protects cancer cells from stress-induced cell death and growth
inhibition. These protective effects of BAG-1 are dependent on interactions with the HSC70 and HSP70 chaperones. However, the
key stress-response molecules that are regulated by a BAG-1/chaperone mechanism have not been identified. In this study, we
investigated the effects of BAG-1 overexpression on the function of p53 family proteins, p53, p63 and p73. Overexpression of
BAG-1 isoforms interfered with the transactivating activity of p73 and p63, but had modest and variable effects on p53-dependent
transcription. p73 and BAG-1 interacted in intact cells and overexpression of BAG-1 decreased the expression of p73. siRNA-
mediated ablation of endogenous BAG-1 increased the activity of a p73-responsive promoter and this was reversed by knock-down
of p73. The ability of BAG-1 to modulate p73 activity and expression, and to interact with p73 were dependent on amino acid
residues required for the interaction of BAG-1 with HSC70 and HSP70. These results show that BAG-1 inhibits the transactivating
functions of p73 and provide new insight into the mechanisms that control the expression of p73. Inhibition of p73 function may be
one mechanism that contributes to the pro-survival activity of BAG-1.
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Bcl-2 associated athanogene (BAG-1) is a multifunctional protein
that interacts with multiple cellular targets and modulates a wide
range of cellular processes (Alberti et al, 2003; Townsend et al,
2003a, 2005; Gehring, 2004). Overexpression of BAG-1 protects
cells from various apoptotic stimuli, enhances proliferation and
metastasis, and modulates the transcriptional activity of a variety
of nuclear hormone receptors. BAG-1 is essential for the survival
and differentiation of haemopoietic and neuronal cells in mice
(Gotz et al, 2005). Functional and expression studies suggest that
overexpression of BAG-1 may play an important role in diverse
cancer types (Cutress et al, 2002; Tang, 2002; Sharp et al, 2004).
For example, BAG-1 is frequently overexpressed in breast cancer
and can correlate with important clinical parameters (Tang et al,
1999, 2004; Turner et al, 2001; Townsend et al, 2002; Cutress et al,
2003; Pusztai et al, 2004; Sirvent et al, 2004).

In human cells BAG-1 exists as three major isoforms (BAG-1S,
BAG-1M and BAG-1L) derived by alternate translation initiation
from a single mRNA (Figure 1). All BAG-1 isoforms contain a
C-terminal, evolutionary conserved BAG domain (Takayama and
Reed, 2001) and a central ubiquitin-like domain (ULD), but the
larger isoforms have unique N-terminal extensions. In general, the
functional significance of these variable N-terminal regions is
poorly understood. However, BAG-1L possesses a nuclear locali-

sation sequence and is a predominantly nuclear protein, whereas
the other isoforms partition between the cytoplasm and nucleus
(Packham et al, 1997; Takayama et al, 1998; Yang et al, 1998;
Brimmell et al, 1999).

The C-terminal BAG domain is comprised of a bundle of three
a-helices of which helices 2 and 3 mediate electrostatic interactions
with the ATPase domain of the 70 kDa heat shock proteins, HSC70
and HSP70 (Briknarova et al, 2001; Sondermann et al, 2001).
BAG-1 acts as a cochaperone and stimulates nucleotide exchange
of HSC70/HSP70 (Hohfeld and Jentsch, 1997; Takayama et al,
1997; Luders et al, 2000b; Brehmer et al, 2001; Nollen et al, 2001).
HSC70 and HSP70 play important roles in multiple cell processes,
for example, by effects on protein (re)folding and degradation, and
on the expression and activity of nuclear hormone receptors
(Mayer and Bukau, 2005; Daugaard et al, 2007; Grad and
Picard, 2007). Binding to these multifunctional proteins may
explain, at least in part, the multiple effects associated with
BAG-1 overexpression. The BAG-1 ULD is required for the
interaction of BAG-1 with the proteasome (Luders et al, 2000a),
and substantial evidence shows that BAG-1 can act to coordinate
the function of chaperones and the proteasome in the degradation
of specific proteins (Arndt et al, 2007). BAG-1 can interact
simultaneously with HSC70 and the proteasome (Luders et al,
2000a; Alberti et al, 2002), and its ability to influence chaperone
function may facilitate the unloading of chaperone clients in the
vicinity of the proteasome to enhance degradation. BAG-1 also
interacts with CHIP, an E3 ubiquitin ligase, which plays a key role
in protein triage (i.e., degradation versus refolding) decisions
(McDonough and Patterson, 2003). BAG-1 and CHIP cooperate to
target the glucocorticoid receptor for proteasomal degradation
(Demand et al, 2001).
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Functional studies show that BAG-1 isoforms promote the
survival, proliferation and metastasis of cancer cells. For example,
overexpression of BAG-1S or BAG-1L increases breast cancer cell
survival in vitro and tumour growth in vivo (Kudoh et al, 2002).
Our own studies (Townsend et al, 2003b) showed that over-
expression of BAG-1 isoforms provided robust protection from cell
death and long-term growth inhibition induced by heat shock, and
other cellular stress, including hypoxia, radiation and certain
cytotoxic agents. RNAi-mediated knock-down of BAG-1 is also
sufficient to promote apoptosis (Sawitzki et al, 2002; Clemo et al,
2008). The survival-promoting function of BAG-1 was dependent
on the BAG domain as a BAG-1 mutant lacking this region failed to
promote cell survival in breast cancer cells (Kudoh et al, 2002;
Townsend et al, 2003b). In addition to HSC70/HSP70, the BAG
domain also acts as a docking site for c-Raf; BAG-1 activates c-Raf
independent of Ras (Wang et al, 1996; Song et al, 2001). However,
the critical functional requirement for the BAG domain seemed to
be chaperone binding as the introduction of mutations that
specifically ablated HSC70/HSP70 interaction interfered with BAG-
1-mediated survival in breast cancer cells (Townsend et al, 2003b)
and other cell systems (Townsend et al, 2004). Thus, the survival
function of BAG-1 is dependent on HSC70/HSP70. However, the
specific molecular regulators of stress-induced apoptosis that are
targeted by BAG-1 remain to be identified.

Members of the p53 family of transcription factors (p53, p63
and p73 and their splice variants) are critical regulators of
stress-induced apoptosis (Murray-Zmijewski et al, 2006; McKeon
and Melino, 2007; Stiewe, 2007). These proteins accumulate or
are activated following cellular stress (including DNA damaging
treatments and oncogenic stress) and transactivate target genes
to induce cell cycle arrest (e.g., GADD45, p21cip1), apoptosis (e.g.,
Bax, Puma, IGFBP3, PIG3) or activate negative-feedback control
loops (e.g., Mdm2). The function of p53 family proteins is required
for normal stress-induced apoptosis (Agami et al, 1999; Gong et al,
1999; Yuan et al, 1999; Flores et al, 2002; Gressner et al, 2005;
Stiewe, 2007) and they are frequently inactivated in cancer cells by
mutations (p53 in particular) or alternate mechanisms. A number
of proteins that have been shown to be overexpressed in cancer
cells act, at least in part, by inhibiting the function of p53 family
proteins. These proteins may be attractive therapeutic targets, as
interfering with their function can lead to a reactivation of tumour
suppressor function. For example, Mdm2 is overexpressed in many
cancers with wild type p53 and inhibits p53 function by inhibition
of transcriptional activity and targeting for degradation (Toledo
and Wahl, 2006). Inhibitors of the p53:Mdm2 interaction induce
p53-dependent apoptosis and are being developed as anti-cancer
drugs (Dudkina and Lindsley, 2007).

Our earlier study showed that BAG-1 overexpression suppressed
stress-induced apoptosis in MCF7 breast cancer cells (Townsend
et al, 2003b), despite the presence of wild type p53, p63 and p73 in
these cells (Gudas et al, 1995; Toh et al, 2005). This suggested that
BAG-1 could interfere with the normal function of these proteins.

As transcriptional regulation plays a major role in the function
of p53, p63 and p73, we investigated the effects of BAG-1 on
transactivation by p53 family proteins.

MATERIALS AND METHODS

Cell lines and culture

SaOs2 (human osteosarcoma), HEK293 (human embryonic
kidney) and NIH3T3 (mouse fibroblast) cell lines were obtained
from American Type Culture Collection (ATCC; Manassas, VA,
USA) and maintained in Dulbecco’s Modified Eagle’s medium
(Gibco, Paisley, UK) supplemented with 10% (v/v) foetal calf
serum (FCS) (PAA Laboratories, Yeovil, UK), 1 mM L-glutamine
and penicillin/streptomycin (Gibco). H1299 (human non-small
lung carcinoma) cells were obtained from ATCC and maintained in
RPMI 1640 medium (Gibco) supplemented with 10% (v/v) FCS,
1 mM L-glutamine and penicillin/streptomycin.

Plasmids

The reporter plasmids Bax-lux, GADD45-luc, Mdm2-luc, Pig3-luc,
IGFBP3B-luc and the p53 expression plasmid (Rowan et al, 1996;
Hsieh et al, 1999) were kindly provided by Prof. Xin Lu, (Ludwig
Institute for Cancer Research, Oxford, UK). The p63, p73a and
p73b expression plasmids (De Laurenzi et al, 1998, 2000) were a
kind gift of Prof. Gerry Melino (Medical Research Council,
Toxicology Unit, Leicester, UK). Human BAG-1S, BAG-1M and
BAG-1L isoform specific expression constructs and point muta-
tions have been described earlier (Townsend et al, 2003b, 2004).
pcDNA3 plasmid was from Invitrogen Life Technologies (Paisley,
UK). pGL2-Basic (Promega, Southampton, UK) and the human
Bcl-X IB promoter construct pBcl-XIB (MacCarthy-Morrogh et al,
2000) were used as control reporter plasmids.

Transfections and reporter gene assays

For luciferase assays, SaOs2 cells (5� 104) were plated in 24-well
tissue culture plate one day before transfection. Cells were transfected
using FuGene 6 transfection reagents (Roche Applied Science,
Burgess Hill, UK) according to the manufacturer’s instructions.
Empty vector pcDNA3 was used to maintain equal quantity of total
DNA per transfection. At 48 h after transfection, cells were washed
with cold phosphate-buffered saline (PBS), collected by centrifugation
and resuspended in 100ml cell lysis buffer (0.65% (v/v) IGEPAL
CA-630, 10 mM Tris(hydroxymethyl)methylamine (Tris)-HCl, 1 mM

ethylenediaminetetraacetic acid (EDTA) disodium salt, 150 mM NaCl,
pH 8.0) and incubated on ice for 5 min. The cell lysate was clarified by
centrifugation and luciferase activity was measured using the
Luciferase Assay System reagents (Promega) and a Sirius lumin-
ometer (Berthold Detection System, Oak Ridge, TN, USA). In the
experiments to determine the effect of BAG-1 on p73a expression
levels, H1299 cells were plated in 10-cm tissue culture dishes and co-
transfected with 1mg of p73a expression construct in the presence or
absence of 7mg of BAG-1S expression construct or pcDNA3. After
24 h, expression of p73a, BAG-1 and PCNA (loading control) were
analysed by immunoblotting.

Immunoblotting

Immunoblots were carried out as described earlier (Brimmell et al,
1999) using the following primary antibodies: rabbit polyclonal
anti-BAG-1 (TB3, (Brimmell et al, 1999)), mouse monoclonal anti-
BAG-1 (3.10 G3E2; (Brimmell et al, 1999)), mouse monoclonal
anti-p73 antibody E4 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), rabbit polyclonal anti-p73 antibody R26 (generated by
immunisation of rabbits with purified GST-p73a1�131 fusion
protein), rabbit polyclonal anti-b-actin antibody (Sigma, Poole,

CUG

AUG

AUG

BAG-1L (345)

BAG-1M (274)

BAG-1S (230)

NLS Repeats

ULD
BAG domain 

Figure 1 Human Bcl-2 associated athanogene (BAG-1) isoforms. The
structures of the three major human BAG-1 isoforms are shown, along
with their size (amino acid residues). Translation of BAG-1L initiates at an
upstream CUG codon, whereas BAG-1M and BAG-1S are AUG-derived.
The position of the nuclear localisation sequence (NLS), acidic repeats,
ubiquitin-like domain (ULD) and BAG domain are shown.

BAG-1 and p73

X-H Wang et al

1348

British Journal of Cancer (2009) 100(8), 1347 – 1357 & 2009 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s



UK) and mouse monoclonal anti-PCNA antibody (Santa Cruz
Biotechnology). Horseradish peroxidase-conjugated secondary
antibodies were from Amersham (GE Healthcare UK, Amersham,
UK) and bound immunocomplexes were detected using Super-
Signal West Pico Chemiluminescent reagents (Perbioscience UK
Ltd, Pierce, Northumberland, UK). To quantify the effects of
overexpression of BAG-1 on p73a expression, immunoblots were
analysed using Quantity One program (BioRad, Hemel Hempstead,
UK). The expression of p73a was normalised to the expression of
PCNA and the relative expression of p73a in the absence of BAG-1
overexpression was set at 1.0.

RNA interference

Control siRNA (control 1), siRNA against Bcl-w (control 2), siRNA
against human BAG-1 and siRNA against human p73 were
obtained from Ambion Ltd (Huntingdon, UK) as annealed
double-stranded RNA-DNA hybrids. Their sequences are: Bcl-w
sense 50-r(GCUGGAGAUGAGUUCGAGA)d(tt)-30 and antisense
50-r(UCUCGAACUCAUCUCCAGC)d(tg), BAG-1 sense 50-r(GGUU
GUUGAAGAGGUCAUA)d(tt)-30 and antisense 50-r(UAUGACCU
CUUCAACAACC)d(tg)-30, hp73 sense 50-r(CGGAUUCCAGCAUG
GACGU)d(TT)-30 and antisense 50-r(ACGUCCAUGCUGGAAU
CCG)d(TT)-30. H1299 cells were co-transfected with siRNA
oligonucleotides at a final concentration of 75 nM, together with a
reporter plasmid (pig3-luc at 400 ng) using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s instructions. After
72 h, cells were harvested and lysed for western blotting and
luciferase assay.

Quantitative-reverse transcription-polymerase chain
reaction (Q– RT–PCR)

Total RNA was isolated using Trizol (Invitrogen) and the quantity
and quality of RNA was analysed using a Agilent 2100 Bioanalyser
(Agilent Technologies Inc., South Queensferry, UK). cDNA was
synthesised using oligo(dT) and MMLV reverse transcriptase
(Promega) according to the manufacturer’s instructions. Q–RT–
PCR was carried out in 20-ml reactions containing 5 ml cDNA,
10 ml Universal Taqman PCR master mix (Applied Biosystems,
Warrington, UK) and 1 ml of the Taqman Gene Expression Assay of
interest (Applied Biosystems). Expression assays used for this
study were p73 (Hs00232088_m1) and b-actin (Hs99999903_m1).
All reactions were carried out in duplicate using the ABI PRISM
7500 Sequence Detection System (Applied Biosystems) according
to the following thermal cycle protocol: 941C for 10 min, followed
by 40 cycles at 941C for 15 s and 601C for 1 min. Control reactions
with no cDNA were run on each plate for each Taqman gene
Expression Assay used and no amplification was detected in any
control reaction. All expression values were normalised using
expression of b-actin as a control.

Co-Immunoprecipitations

H1299 cells were transfected (FuGene 6) in 4� 100 mm tissue
culture plates, each with 5 mg of p73a expression plasmid together
with 5 mg of BAG-1S expression plasmids, or 5 mg of pcDNA3
empty vector. Cells were washed and harvested in cold PBS and
resuspended in 1.5 ml of HMKEN buffer (10 mM n-2-hydroxyethyl-
piperazine-N0-2-ethanesulfonic acid (pH 7.2), 5 mM MgCl2, 142 mM

KCl, 2 mM ethylene glycol-bis(b-aminoethylether)N,N,N0,N0-tetra-
acetic acid, 0.2% (v/v) IGEPAL, and Protease Inhibitor Cocktail
(Sigma)) by passing repeatedly through 21-gauge and 25-gauge
needles, followed by incubation on ice for 30 min. The lysate was
clarified by centrifugation. A portion (50ml) of the resultant cell
lysate was retained as a whole cell lysate. The remaining sample
was pre-cleared using protein G-Sepharose beads (pre-blocked
with 5% (w/v) skimmed milk overnight) for 30 min at 41C on a

Spiramixer. Protein G-Sepharose beads were removed by
centrifugation. To immunoprecipitate BAG-1, the lysate was
divided into two parts and incubated with the BAG-1-specific
rabbit polyclonal antibody TB3 or with pre-immune control serum
(both at 4 ml/500 ml lysate), respectively. After overnight incubation
at 41C, the lysate was incubated with protein G-Sepharose beads at
41C for 4 h, and immunocomplexes were removed by centrifuga-
tion. The beads were washed four times using HMKEN buffer,
re-suspended in 50 ml SDS-PAGE sample buffer and heated at 951C
for 5 min before immunoblot analysis.

RESULTS

BAG-1 isoforms interfere with the transactivating function
of p73a

We carried out transient transfection assays to determine whether
the major BAG-1 isoform, BAG-1S, modulates the transcriptional
activities of p53 family proteins. p53-null SaOs2 cells were selected
for this study as they have been widely used for investigations of
p53 family protein function (Jost et al, 1997; Mantovani et al, 2004;
Melino et al, 2004). SaOs2 cells were transfected with a Bax
promoter–reporter construct and p53, p63 or p73a expression
plasmids, in the presence or absence of a human BAG-1S expres-
sion plasmid (Figure 2A). BAG-1S overexpression did not have a
significant effect on the basal expression of the Bax promoter but
did interfere with the ability of p53, p63 and p73a to increase
promoter expression. Whereas the ability of BAG-1S to modulate
p53 function was modest and variable between experiments (mean
inhibition from two separate experiments each carried out in
duplicate (±s.d.) was 22±33%), p63 and p73a functions were
strongly inhibited by BAG-1S (mean inhibition 76±7% and
91±1%, respectively). Co-expression of p53, p63 or p73a did not
significantly alter the levels of BAG-1S (Figure 2A).

As the effects of BAG-1S on p73a function were most dramatic,
we focused our analysis on this interaction. Plasmid-titration
experiments showed that the effects of BAG-1S overexpression
were concentration dependent (Figure 2B) and were specific,
because BAG-1S overexpression did not interfere with the activity
of control promoters not regulated by p73a (Figure 2C). The
inhibitory effects of BAG-1S were also observed in all the cell lines
tested (HEK293, NIH3T3 and H1299; Figure 3A) and using a range
of p73-responsive promoter constructs (IGFBP3, GADD45, Pig3
and MDM-2; Figure 3B). All three BAG-1 isoforms inhibited
p73a-mediated transcription when overexpressed in SaOs2 cells
(Figure 3C). The expression of BAG-1 isoforms was not altered by
co-expression of p73a.

BAG-1S is a more effective inhibitor of p73a compared
with p73b

p73 is expresssed as multiple isoforms (Murray-Zmijewski et al,
2006). p73b is generated by alternative splicing and has a truncated
C-terminus compared with p73a. p73b is transcriptionally active
and we therefore compared the ability of BAG-1S to inhibit
transcriptional activation by p73a and p73b (Figure 4A).
Whereas BAG-1S overexpression substantially reduced p73a-
mediated transcription (mean inhibition 84±5%, mean
derived from three identical experiments, ±s.d.), the activity of
p73b was relatively modestly affected (mean inhibition 32±9%).
The difference between the effects of BAG-1S on p73a and
p73b was statistically significant (Student’s t-test, P¼ 0.003).
p73 isoforms were expressed at approximately equivalent levels
(Figure 4B). In these experiments, we used 100 ng of p73b
expression plasmid (compared with 50 ng of p73a
expression plasmid) to achieve approximately equivalent levels
of activation of the Bax reporter construct. However, BAG-1S also
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failed to effectively repress p73b activity when cells were
co-transfected with 50 ng of p73b expression plasmid (data not
shown).

BAG-1 knockdown reactivates p73 function

As overexpression studies showed that BAG-1 inhibited the
transcription-activating function of p73, we used RNA interference
to determine whether similar functional interactions occur
between endogenous BAG-1 and p73 proteins. H1299 cells were
selected for these studies because of the very high efficiency of
siRNA-mediated knock-down obtained. H1299 cells were trans-
fected with the Pig3 promoter– reporter construct to monitor p73
activity and BAG-1 and p73 were depleted by siRNA. The BAG-1
siRNA has been validated in earlier studies (Clemo et al, 2008), and
immunoblot analysis confirmed the effective knock-down of BAG-
1 expression in H1299 cells (94±6% reduction in BAG-1 siRNA
transfected cells, mean±s.d. derived from four experiments),
which predominantly express BAG-1 L (Figure 5A). Because of the
absence of suitable antibodies to reliably detect endogenous p73,
we were unable to confirm knockdown of p73 at the protein level.
However, this siRNA has been validated in earlier studies (Basu

et al, 2003) and Q-RT-PCR analysis showed a clear knock-down of
p73 RNA (Figure 5B). Depletion of BAG-1 resulted in a 1.9±0.3
fold increase in the activity of the Pig3 promoter (mean±s.d. of
four experiments), compared with cells transfected with control
siRNA (Figure 5C). Knock-down of p73 reversed the activation of
the Pig3 promoter observed in cells transfected with the BAG-1
siRNA, but had no effect on Pig3 promoter activity when tested
alone (Figure 5C).

Inhibition of p73a function by BAG-1S requires helix 2 and
3 of the BAG domain

We showed earlier that suppression of apoptosis by BAG-1S
requires amino acids within helix 2 and 3 of the BAG domain
important for interaction with HSC70/HSP70 (Townsend et al,
2003b, 2004). We therefore analysed the effect of BAG-1 C-terminal
mutations on the ability of BAG-1S to inhibit p73a activity.
Mutations within helix 2 or 3, in BAG-1S-H2 (Q169A, K172A) and
BAG-1S-H3AB (Q201A, D208A, Q212A) significantly reduced
the ability of BAG-1S to inhibit p73a-mediated transcription
(Figure 6A). By contrast, mutations within helix 1 in BAG-1S-H1
(E112A and K116A) did not interfere with p73a-mediated
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transcription. Immunoblot analysis showed that the wild type and
mutant BAG-1S proteins were expressed at approximately
equivalent levels (Figure 6B). As shown earlier (Briknarova et al,
2001; Townsend et al, 2004; Lee et al, 2007), mutation of helix 2
and 3, but not helix 1, prevented interaction of BAG-1S with
HSC70 in co-immunoprecipitation assays (Figure 8A).

BAG-1S interacts with p73a and decreases p73a expression
levels

We carried out immunoprecipitation experiments to determine
whether BAG-1S and p73a associate in intact cells. H1299 cells

were transfected with BAG-1S and p73a expression plasmids,
and BAG-1 complexes immunoprecipitated. In addition to the
expected association with HSC70, there was a clear interaction
between BAG-1S and p73a (Figure 7A). We also determined
whether overexpression of BAG-1S altered the levels of p73a. In
H1299 cells co-overexpressing BAG-1S, the levels of p73a were
significantly reduced (Figure 7B). On an average, co-expression of
BAG-1S reduced p73a expression by B50% (mean of eight
experiments; Student’s t-test, P¼ 6� 10�5) compared with control
cells (Figure 7C). Therefore, when overexpressed in cells, BAG-1S
and p73a interact and BAG-1S expression leads to a reduction in
p73a levels.
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activity (top) and BAG-1S expression (by immunoblotting (IB); bottom) was measured after 48 h. Data shown are the mean luciferase activity (±s.d.) of
duplicate transfections normalised to cells transfected with Bax-luc only (set to 1.0). Experiments shown are representative of at least three similar
experiments. (B) SaOs2 cells were transfected with various promoter–reporter constructs with or without p73a (25 ng for transfections with the Pig3
promoter, 50 ng for transfections with the Bax promoter, IGFBP3 or MDM-2 promoter or 100 ng for transfections with the GADD45b promoter) and in
the presence (closed bars) or absence (open bars) of BAG-1S (1000 ng). The following amounts of reporter constructs were used in each transfection; Bax,
100 ng; GADD45b, 200 ng; IGFBP3, 50 ng; MDM-2, 50 ng; or Pig3, 100 ng. Luciferase activity (top) and BAG-1S expression (by immunoblotting (IB); bottom)
was measured after 48 h. Data shown are the mean luciferase activity (±s.d.) of duplicate transfections normalised to cells transfected with each reporter
construct in the absence of BAG-1S or p73a (set to 1.0). Experiments shown are representative of at least two similar experiments. (C) SaOs2 cells were
transfected with the Bax-luc reporter construct (100 ng) and the p73a expression plasmid (50 ng) and BAG-1S, BAG-1M or BAG-1L expression plasmids
(1000 ng), as indicated. Luciferase activity (top panel) was measured after 48 h. Data shown are the mean luciferase activity (±s.d.) of duplicate transfections
normalised to cells transfected with the Bax reporter construct in the absence of BAG-1 or p73a (set to 1.0). Experiment shown is representative of four
similar experiments. The bottom panel shows BAG-1 protein expression in transfected cells analysed by immunoblotting. Arrows indicate the BAG-1L,
BAG-1M and BAG-1S isoforms. Note that some faster migrating BAG-1 forms are detected, especially in cells transfected with the BAG-1M expression
plasmid. These may derive from internal translation initiation or degradation (Lee et al, 2007).
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Figure 4 Effect of Bcl-2 associated athanogene (BAG-1) S on the activity of p73a and p73b. SaOs2 cells were transfected with Bax-luc reporter construct
(100 ng) and the indicated amounts of p73a, p73b and BAG-1S expression constructs. After 48 h luciferase activity was measured (top) and
BAG-1 expression analysed by immunoblotting (bottom). In (A), data shown are the mean luciferase activity (±s.d.) of duplicate transfections normalised to
cells transfected with the Bax reporter construct in the absence of BAG-1 or p73a (set to 1.0). Experiment shown is representative of three similar
experiments. (B) SaOs2 cells were transfected with BAG-1S (500 ng), p73a (50 ng) or p73b (100 ng) expression constructs and analysed by
immunoblottting using the R26 antibody. BAG-1S and PCNA were analysed as controls.
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p73a binding and regulation of expression is dependent on
helix 2 and 3 of the BAG-1S BAG domain

As regulation of p73a activity is dependent on residues within helix
2 and 3 of the BAG domain, we analysed the effects of these
mutations on the ability of BAG-1S to interact with p73a and to
decrease the levels of p73a. Mutations within helix 2 and 3, but not
helix 1, decreased the interaction between BAG-1S and p73a
(Figure 8A) and reduced the ability of BAG-1S to decrease the
expression of p73a (Figures 8B and C). Therefore the ability of
BAG-1S to inhibit p73a activity, to interact with p73a and to
decrease p73a expression levels are all dependent on the residues
with helix 2 and 3 of the BAG-1S BAG domain. As these residues
are also required for interaction with HSC70/HSP70, chaperones
are likely to be critical mediators of the regulation of p73a by
BAG-1S.

DISCUSSION

Earlier study has shown that BAG-1 contributes to the inappro-
priate survival of malignant cells. However, the specific molecular
targets of BAG-1 that mediate survival remain to be identified.
Although originally identified as a Bcl-2 interacting protein
(Takayama et al, 1995) the significance of this interaction remains
unclear and at present data showing a role for Bcl-2 modulation in
BAG-1-mediated survival are lacking. We have shown earlier that
endogenous BAG-1 enhances the function of NF-kB in colorectal

cancer cells (Clemo et al, 2008). BAG-1 also interacts with and
interferes with the function of the stress-responsive, pro-apoptotic
GADD34 protein (Hung et al, 2003). However, the requirements
for cochaperone binding in these activities are not clear.

Data presented here show that overexpression of BAG-1 inhibits
the transcriptional activating functions of p53 family proteins (p73
in particular) and this may represent one mechanism by which
BAG-1 interferes with stress-induced apoptosis. The absence of
robust reagents to reliably detect endogenous p73 forced us to
focus on overexpression studies, and this is one of the major limi-
tations of our study. However siRNA-mediated ablation showed
similar functional interactions between endogenous BAG-1 and
p73 because BAG-1 knock-down leads to an increase in p73-
dependent transcription. p73 is activated in response to a variety
of chemotherapeutic drugs and g-irradiation, and is an important
determinant of cellular sensitivity to apoptosis (Agami et al, 1999;
Gong et al, 1999; Yuan et al, 1999; Flores et al, 2002; Bergamaschi
et al, 2003). Although p73 is rarely mutated in cancer cells, the
expression of alternate spliced isoforms (e.g., DNp73) might
interfere with p73 function in a dominant negative manner
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Figure 7 Bcl-2 associated athanogene (BAG-1) S interacts with p73a
and decreases the expression levels of co-expressed p73a. (A) H1299 cells
were transfected with p73a and BAG-1S expression constructs. After 24 h,
immunoprecipitations were carried out using the BAG-1-specific TB3
antibody or pre-immune serum as a control. Immunoprecipitates were
analysed by immunoblotting using antibodies specific for p73 (R26), BAG-1
(G3E2) or HSC70 (B6). ‘Input’ is the lysate from transfected cells before
immunoprecipitation. (B) H1299 cells were transfected with a p73a
expression construct in the presence or absence of a BAG-1S expression
construct. After 24 h, expression of p73a, BAG-1S and PCNA (loading
control) were analysed by immunoblotting. (C) Quantitation of p73a
expression in BAG-1S and control (pcDNA3 transfected) cells. The
expression of p73a in control cell lysates was set to 1.0. Data are mean
(±s.d.) expression levels derived from eight similar experiments.
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(Melino et al, 2002; Murray-Zmijewski et al, 2006). p73 activity can
also be regulated by interaction with several cellular partners such
as Mdm-2, Yap, ASPP family proteins and these are often altered
in cancer cells. Our data suggest that overexpression of BAG-1
might be an additional mechanism that limits p73 function in
malignant cells.

The inhibitory function of BAG-1 was more pronounced for
p73a, compared with p73b, a splice variant that is transcriptionally
active and is frequently co-expressed in cancer cells. Compared
with p73a, p73b lacks a C-terminal SAM domain. The molecular
function of the SAM domain is not known, but is considered to act
as a negative control domain (Liu and Chen, 2005). It is interesting
that, p63 also contains an N-terminal SAM domain whereas p53
does not. Thus, the ability of BAG-1 to modulate p53-family
proteins may involve, but not absolutely require, the SAM domain.
Although the function of the SAM domain is likely to be multi-
functional, including effects of co-activator recruitment (Liu and
Chen, 2005) and DNA binding, our data further suggest that the
SAM domain may also act to confer chaperone-dependent negative

regulation. However, it is important to note that under our
experimental conditions we did not detect enhanced transcrip-
tional activation by p73b, compared with p73a, as shown earlier
(De Laurenzi et al, 1998; Ueda et al, 2001; Liu and Chen, 2005).

The ability of BAG-1S to inhibit p73a function seems to be
mediated through physical association. Both the ability of BAG-1S
to modulate p73a-transcriptional activity and to associate with
p73a was dependent on specific residues within the BAG-1 BAG
domain that are also required for binding to HSC70 and for
promotion of cell survival (Townsend et al, 2004; Lee et al, 2007).
The data are consistent with a model in which the binding of
BAG-1 to p73a is mediated by HSC70/HSP70, but studies with
purified components are required to test this. One consequence of
formation of this complex may be a reduction in the steady state
levels of p73a, as co-expression of BAG-1S and p73a reduced p73a
levels by B50%. Decreased expression of p73a is not an artefact of
co-expression (e.g., competition for transcription/translation
machinery), as certain mutants of BAG-1S did not show this
activity although expressed at equivalent levels. Moreover, this
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Figure 8 Effect of Bcl-2 associated athanogene (BAG-1) C-terminal point mutations on p73a interaction and modulation of p73a expression levels.
(A) H1299 cells were transfected with the indicated p73a and wild type/mutant BAG-1S expression constructs. After 24 h, immunoprecipitations were
carried out using the BAG-1-specific TB3 antibody. Immunoprecipitates were analysed by immunoblotting using antibodies specific for p73 (R26), BAG-1
(G3E2) or HSC70 (B6). ‘Input’ is the lysate from transfected cells before immunoprecipitation. (B) H1299 cells were transfected with the p73a expression
construct in the presence or absence of wild type/mutant BAG-1S expression constructs. After 24 h, expression of p73a, BAG-1S and PCNA (loading
control) were analysed by immunoblotting. (C) Quantitation of p73a expression in wild type and mutant BAG-1S transfected cells. The expression of p73a
in control cell lysates was set to 1.0. Data are mean (±s.d.) expression levels derived from two identical experiments.
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function of BAG-1S was dependent on residues required for
binding to HSC70, again strongly implicating chaperones in this
effect. One mechanism by which BAG-1S may decrease p73a
function is by increasing proteolytic degradation. However, the
decrease in p73 levels (50%) did not fully account for the
inhibition of p73a activity observed in transfection studies
(80%). Thus, alternate mechanisms are also likely to contribute,
and chaperone-dependent changes in the conformation of
p73 and its association with co-regulatory molecules may also be
important.

A key question is to what extent the ability of BAG-1S to
decrease p73a levels is dependent on the ability of BAG-1 to
coordinate the activity of the proteasome and chaperones in
protein triage decisions (Arndt et al, 2007). We have not shown
that the reduction in p73a levels are proteasome-mediated, but
there is substantial evidence that p73a levels can be controlled by
ubiquitination and proteasomal degradation. Several E3-ligase
have been shown to modulate p73 turnover, including Itch and
UFD2a (Hosoda et al, 2005; Oberst et al, 2005; Rossi et al, 2005).
Proteasome binding of BAG-1 is dependent on the ULD (Luders
et al, 2000a; Demand et al, 2001). Our analysis of BAG-1 ULD
mutants did not clarify the role of this domain in controlling p73
function because deletion of the entire ULD or mutation of a
conserved lysine (K80 in BAG-1S) required for cell survival
(Townsend et al, 2003b) resulted in significant destabilisation and
stabilisation of BAG-1S, respectively, making interpretation of data
obtained for these proteins unclear.

Although BAG-1 very effectively inhibited p73 function, its
effects on p53 were modest and variable between experiments.
These results are probably consistent with those of Matsuzawa et al
who showed that BAG-1S did not interfere with p53-dependent
transcription in HEK293 cells (Matsuzawa et al, 1998). However, in
addition to the direct effects of BAG-1 on p73-transactivating
function that we have described, it remains possible that BAG-1
inhibits p53 function independent of effects in transcription. BAG-
1 participates in complexes with wild type and mutant p53 (King
et al, 2001), and although the functional implications of BAG-1 are
not known, CHIP targets p53 for proteasomal degradation (Esser
et al, 2005). BAG-1 overexpression interferes with p53-induced
growth arrest and apoptosis, perhaps by interfering with down-
stream effector molecules, such as Siah (Danen-van Oorschot et al,
1997; Matsuzawa et al, 1998). Thus, we believe that the inhibitory
effects of BAG-1 on p53 family proteins as a whole are likely to
involve both direct modulation of transactivating function and
indirect effects. However, further study is required to dissect the
molecular details of these interactions.
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