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We consider multi-response and multi-task regression models, where the parameter

matrix to be estimated is expected to have an unknown grouping structure. The

groupings can be along tasks, or features, or both, the last one indicating a bi-cluster

or “checkerboard” structure. Discovering this grouping structure along with parameter

inference makes sense in several applications, such as multi-response Genome-Wide

Association Studies (GWAS). By inferring this additional structure we can obtain valuable

information on the underlying data mechanisms (e.g., relationships among genotypes

and phenotypes in GWAS). In this paper, we propose two formulations to simultaneously

learn the parameter matrix and its group structures, based on convex regularization

penalties. We present optimization approaches to solve the resulting problems and

provide numerical convergence guarantees. Extensive experiments demonstrate much

better clustering quality compared to other methods, and our approaches are also

validated on real datasets concerning phenotypes and genotypes of plant varieties.

Keywords: high-throughput phenotyping, multitask learning, convex clustering, bi-clustering, sparse linear

regression, genome-wide association studies

1. INTRODUCTION

We consider multi-response and multi-task regression models, which generalize single-response
regression to learn predictive relationships between multiple input and multiple output variables,
also referred to as tasks (Borchani et al., 2015). The parameters to be estimated form a matrix
instead of a vector. In several applications, there exist joint group relationships between inputs
and outputs. A motivating example is that of multi-response Genome-Wide Association Studies
(GWAS) (Schifano et al., 2013), where for instance a group of Single Nucleotide Polymorphisms
or SNPs (input variables or features) might influence a group of phenotypes (output variables or
tasks) in a similar way, while having little or no effect on another group of phenotypes. Similarly, as
another example, stocks values of related companies can affect the future value of a group of stocks
similarly. In such cases, the model parameters belonging to the same input-output group tend to
be close to each other, and it is desirable to uncover and exploit these structures in estimating the
parameter matrix. See Figure 1 for an example.

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2019.00027
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2019.00027&domain=pdf&date_stamp=2019-08-14
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aclozano@us.ibm.com
https://doi.org/10.3389/fdata.2019.00027
https://www.frontiersin.org/articles/10.3389/fdata.2019.00027/full
http://loop.frontiersin.org/people/686742/overview
http://loop.frontiersin.org/people/565845/overview
http://loop.frontiersin.org/people/740396/overview
http://loop.frontiersin.org/people/566287/overview


Yu et al. Simultaneous Parameter Learning and Bi-clustering

1.1. Contributions
In this work, we develop formulations that simultaneously learn:
(a) the parameters of multi-response/task regression models,
and (b) the grouping structure in the parameter matrix (row
or column or both) that reflects the group relationship between
inputs and outputs. We present optimization approaches to
efficiently solve the resulting convex problems, and show
their numerical convergence. We describe and justify several
hyperparameter choices we make during this optimization. Our
methods are validated empirically on synthetic data and on
real-world datasets concerning phenotypes and genotypes of
plant varieties. From the synthetic data experiments, we find
that our methods provide a much better and more stable
(i.e., lesser standard error) recovery of the underlying group
structure. In real-world data experiments, our approaches reveal
natural groupings of phenotypes and checkerboard patterns of
phenotype-SNP groups that inform us of the joint relationship
between them.

We emphasize that the parameters as well as the grouping
structures are fully unknown a-priori, and inferring them
simultaneously is our major contribution. This is in contrast
to the naive way of estimating the parameters first and then
clustering. This naive approach has the danger of propagating the
estimation error into clustering, particularly in high dimensions,
where the estimator is usually inaccurate due to lack of sufficient
samples. Moreover, the clustering step of the naive approach does
not use the full information of the data. The joint estimation-
clustering procedure we propose naturally promotes sharing of
information within groups. Our formulations adopt the convex
bi-clustering cost function (Chi et al., 2014) as the regularizer
to encourage groupings between columns (tasks) and rows
(features) in the parameter matrix. Note that, Chi et al. (2014)
assume that the data matrix to be used for bi-clustering is known
a-priori, which is obviously not the case for our setting. As a
result, Chi et al. (2014) can deal only with fixed data and cannot
estimate unknown model parameters, while our approaches can
simultaneously estimate parameters and discover the clustering
structure in them.

To the best of our knowledge, this is the first method that
can simultaneously cluster and estimate the parameters efficiently
in a unified optimization. We emphasize that our main goal is
to discover the underlying parameter bi-cluster structure without
compromising estimation accuracy. Experiments show that our
clusterings are better than other methods while the estimation
accuracy is no worse or sometimes even better.

1.2. Related Work
The premise in multi-task learning is that appropriate sharing of
information can benefit all the tasks (Caruana, 1998; Obozinski
et al., 2006; Yu et al., 2018). Assuming all tasks to be closely
related can be excessive as it ignores the underlying specificity
of the mappings. There have been several extensions to multi-
task learning that address this problem. The authors in Jalali et al.
(2010) propose a dirty model for feature sharing among tasks,
wherein a linear superposition of two sets of parameters—one
that is common to all tasks, and one that is task-specific—are
used. Kim and Xing (2010) leverages a predefined tree structure

among the output tasks (e.g., using hierarchical agglomerative
clustering) and imposes group regularizations on the task
parameters based on this tree. The approach proposed in Kumar
and Daume (2012) learns to share by defining a set of basis
task parameters and posing the task-specific parameters as a
sparse linear combination of these. Jacob et al. (2009) and Kang
et al. (2011) assume that the tasks are clustered into groups
and proceed to learn the group structure along with the task
parameters using a convex and an integer quadratic program,
respectively. However, these approaches do not consider joint
clustering of the features. In addition, the mixed integer
program of Kang et al. (2011) is computationally intensive
and greatly limits the maximum number of tasks that can be
considered. Another pertinent approach is the Network Lasso
formulation presented in Hallac et al. (2015). This formulation,
however, is limited to settings where only clustering among the
tasks is needed.

As mentioned before, convex bi-clustering method (Chi et al.,
2014) aims at grouping observations and features in a data
matrix; while our approaches aim at discovering groupings in
the parameter matrix of multi-response regression models while
jointly estimating such a matrix, and the discovered groupings
reflect groupings in features and responses.

1.3. Roadmap
In section 2, we will discuss the proposed joint estimation-
clustering formulations; in section 3, we will present the
optimization approaches. The choice of hyperparameters used
and their significance is discussed in section 4. We illustrate the
solution path for one of the formulations in section 4.3. We will
provide results for estimation with synthetic data, and two case
studies using multi-response GWAS with real data in sections 5,
6, respectively. We conclude in section 7. Additional details and
convergence proofs for the optimization approaches are provided
in the Supplementary Material.

2. PROBLEM STATEMENT AND
PROPOSED METHODS

We will motivate and propose two distinct formulations for
simultaneous parameter learning and clustering with general
supervised models involving matrix valued parameters. Our
formulations will be developed around multi-task regression in
this paper. We are interested in accurate parameter estimation as
well as understanding the bi-cluster or checkerboard structure of
the parameter matrix. More formally, denote by Z the observed
data, 2 the model parameters to be estimated, and L(Z;2) a
general loss function, and R(2) to be the regularization.

In multi-task regression, Z = {X,Y} where Xs ∈ R
n×p are the

design matrices and Ys ∈ R
n are the response vectors for each

task s = 1, . . . , k. 2 is a matrix in R
p×k containing the regression

coefficients for each task. A popular choice for L is the squared

loss: L(Z;2) =
∑k

s=1 ‖Ys − Xs2s‖22. For regularization R(2),
the ℓ1 norm, denoted as ‖2‖1, is commonly used. Here we wish
to discover the bi-cluster structure among features and responses,
respectively the rows and columns of 2.
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FIGURE 1 | Multi-response GWAS: the simultaneous grouping relationship between phenotypic traits and SNPs manifest as a block structure (row + column groups)

in the parameter matrix. The row and column groups are special cases of the more general block structure. Our proposed approach infers the parameter matrix as

well as the group structures.

2.1. Formulation 1: “Hard Fusion”
We begin with the simplest formulation, which, as we shall see, is
a special case of the latter one.

min
2

L(Z;2)+ λ1R(2)+ λ2

[
�W (2)+ �W̃ (2T )

]
. (1)

Here L(Z;2) is the loss function, R(2) is a regularizer, and
�W(2) =

∑
i<j wij‖2·i − 2·j‖2 and 2·i is the ith column of

2. �W(2) is inspired by the convex bi-clustering objective (Chi
et al., 2014, Equation 1) and it encourages sparsity in differences
between columns of2. Similarly,�W(2T) encourages sparsity in
the differences between the rows of2. When the overall objective
is optimized, we can expect to see a checkerboard pattern in the
model parameter matrix. Note that W and W̃ are non-negative
weights that reflect our prior belief on the closeness of the rows
and columns of 2.

The degree of sharing of parameters and hence that of bi-
clustering, is controlled using the tuning parameter λ2. When
λ2 is small, each element of 2 will be its own bi-cluster. As
λ2 increases, more elements of 2 fuse together, the number of
rectangles in the checkerboard pattern will reduce. See Figure 2
for the change of the checkerboard structure as λ2 increases.
Further, by varying λ2 we get a solution path instead of just a
point estimate of 2 (see section 4.3). In the rest of the paper, we
will use the same design matrix X across all tasks for simplicity,
without loss of generality.

For sparse multi-task linear regression, we have L(Z;2) =
L(X,Y;2) and formulation 1 can be instantiated as,

min
2

‖Y − X2‖2F + λ1

k∑

i=1

‖2·i‖1 + λ2

[
�W (2)+ �W̃ (2T )

]
. (2)

Here the rows of 2 correspond to the features, i.e., the columns
of X, and the columns of 2 correspond to the tasks, i.e., the
columns of Y . Therefore, the checkerboard pattern in2 provides
us insights on the groups of features that go together with the
groups of tasks.

2.2. Formulation 2: “Soft Fusion”
Formulation 1 is natural and simple, but it forces the parameters
belonging to the same row or column cluster to be equal, and
this may be limiting. To relax this requirement, we introduce a
surrogate parameter matrix Ŵ that will be used for bi-clustering.
This will be mandated to be close to 2. For multitask regression
this yields the objective

min
2,Ŵ

‖Y − X2‖2F + λ1

k∑

i=1

‖2·i‖1 + λ2

k∑

i=1

‖2·i − Ŵ·i‖22

+λ3

[
�W(Ŵ)+ �W̃(ŴT)

]
.

(3)

Remark 1. To interpret this more carefully, let us assume that
2·i = 2·i + Ŵ·i in Equation (3). In other words, 2·i has a global
component 2·i, and the component Ŵ·i that participates in the
clustering. As λ2 → ∞, 2·i → 0, and hence 2·i → Ŵ·i. Now,
formulation 2 reduces to formulation 1. Further, if λ1 and λ2 are
held constant while only λ3 increases, 2·i → 2·i + Ŵ, since
Ŵ·i → Ŵ for all i. The key difference between formulation 2
and 1 is the presence of a task-specific global component 2·i,
which lends additional flexibility in modeling the individual tasks
even when λ3 → 0. Whereas, in Equation (2), when λ2 →
∞, all the components of 2·i take the same value for all i,
and the tasks are forced to share the same coefficients without
any flexibility.
Remark 2. In certain applications, it might make sense to
cluster together features/tasks whose effects have the same
amplitude but different signs. This can be accommodated
by considering �W(2) =

∑
i<j wij‖2·i − cij2·j‖2 where

ci,j ∈ {−1, 1} are predefined constants reflecting whether
the features or tasks are expected to be negatively or
positively correlated.
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FIGURE 2 | Evolution of the bi-clustering structure of model coefficient matrix 2 as regularization parameter λ2 increases.

3. OPTIMIZATION ALGORITHMS FOR THE
PROPOSED FORMULATIONS

We describe the optimization procedures to solve the
two proposed formulations. Note that as long as the
loss function L(X,Y;2) and the regularization R(2)
are convex, our formulations are also convex in 2

and Ŵ, and hence can be solved using modern convex
optimization approaches. Here we adopt two computationally
efficient approaches.

3.1. Optimization for Formulation 1
For our formulation 1 we use the proximal decomposition
method introduced in Combettes and Pesquet (2008).
This is an efficient algorithm for minimizing the sum of
several convex functions. Our general objective function
(1) involves three such functions: f1 being L(X,Y;2),
f2 being R(2), and f3 being the term that multiplies
λ2. At a high level, the algorithm iteratively applies
proximal updates with respect to these functions until
convergence.

We stack the regression matrix 2 into a column vector
(21; . . . ;2k) ∈ R

pk. The proximal operator is given by:
proxf b = argmin

a

(
f (a) + 1

2‖b − a‖22
)
, where a and b are pk-

dimensional vectors. The proximal operator of the regularized
loss can be computed according to the specific L and R functions.
The overall optimization procedure is given in Algorithm 1 and
with the following update rules.

• Update for f1 = ‖Y − X2‖2F : Let (a1; ...; ak) =
proxσ f1

(b1; ...; bk), For each s ∈ {1, . . . , k}, we have

as = (σXT
s Xs +

1

2
Ip)

−1 · (σXT
s ys +

1

2
bs).

This step corresponds to the closed-form formula of a ridge
regression problem. For very large p we can employ efficient
approaches, such as Lu and Foster (2014) and McWilliams
et al. (2014).

• Update for f2 = λ1
∑k

i=1 ‖2·i‖1: Let (a1; ...; ak) =
proxσ f2

(b1; ...; bk), For each s ∈ {1, . . . , k}, j ∈ {1, . . . , p},

[as]j =

[
1−

λ1σ

|[bs]j|

]

+
· [bs]j.

• Updates for f3 = λ2

[
�W(2) + �W̃(2T)

]
: This is

the standard bi-clustering problem on 2 and can be
solved efficiently using the COnvex BiclusteRing Algorithm
(COBRA) introduced in Chi et al. (2014), and described in
Algorithm 3 (Supplementary Material) for completeness.

3.2. Optimization for Formulation 2
For our formulation 2 we use an alternating minimization
method on 2 and Ŵ; i.e., we alternatively minimize over 2 and
Ŵ with the other fixed. The first alternating step is to estimate 2

while fixing Ŵ. This minimization problem is separable for each
column and each sub-problem can be easily written as a standard
Lasso problem:

min
2·i

‖̃yi − X̃2·i‖22 + λ1‖2·i‖1 (4)

by defining ỹi = [yi,
√

λ2Ŵ·i] and X̃ = [X,
√

λ2Ip] and hence can
be solved efficiently and in parallel for each column. In the second
step, we fix 2 and optimize for Ŵ. The optimization is

minimizeŴ

k∑

i=1

‖2·i − Ŵ·i‖22 +
λ3

λ2

[
�W(Ŵ)+ �W̃(ŴT)

]
(5)

which is a standard bi-clustering problem on 2 and can be
solved efficiently using the COnvex BiclusteRing Algorithm
(COBRA) introduced in Chi et al. (2014), and described in
Algorithm 3 (Supplementary Material) for completeness. The
overall procedure is given in Algorithm 2.

3.3. Numerical Convergence
We establish the following convergence result for our algorithms,
when the loss function L(X,Y;2) is convex in 2. The proofs are
given in the Supplementary Material.

Proposition 1. The algorithm described in section 3.1 converges to
the global minimizer.

Proposition 2. The algorithm described in section 3.2 converges to
the global minimizer.

For both formulations 1 and 2, computational complexity
is dominated by the use of the COBRA algorithm. COBRA
solves a sequence of convex clustering problems. The subroutine
used to solve each convex clustering subproblem scales
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in storage and computational operations as O(kpq), where
k is the number of tasks, p is the number of features
and q is the number of non-zero weights. In our case
q is much smaller than p2 and k2. Indeed as we shall
see in section 4.1, our weights are based on κ = 5
nearest neighbors.

4. HYPERPARAMETER CHOICES,
SOLUTION PATH, AND VARIATIONS

We describe and justify the various hyperparameters choices for
formulations 1 and 2.

4.1. Weights and Sparsity Regularization
The choice of the column and row similarity weights W and W̃
can affect the quality of the clustering results and we follow the
suggestion in Chi et al. (2014) to set these. However, in their case
the data matrix to be clustered is fixed and known, but in our
case, the coefficient matrix2wewant to cluster is not known.We
will get a rough estimate 2̂ by just minimizing the regularized
loss function L(Z;2) + λ1R(2). For example, with multi-task
regression in Equations (2) and (3), we can solve

min
2

‖Y − X2‖2F + λ1

k∑

i=1

‖2·i‖1, (6)

where λ1 is tuned by cross-validation (CV) and re-used in the rest
of the algorithm. From our multi-task regression experiment, we
find that the clustering results are robust to the choice of λ1.

With the estimated 2̂ we are ready to compute W and W̃.
The weights for the columns i and j are computed as wij =
1kij · exp

(
− φ‖2̂·i − 2̂·j‖22

)
where 1kij is 1 if j is among i’s

κ-nearest-neighbors or vice versa and 0 otherwise. Here φ is
non-negative and φ = 0 corresponds to uniform weights. In
our synthetic and real data experiments we fix φ = 20. W̃ is
computed analogously. It is important to keep the two penalty
terms �W(2) and �W̃(2T) on the same scale, else the row or
column objective will dominate the solution. We normalize so
that the column weights sum to 1/

√
n and the row weights sum

to 1/
√
p.

4.2. Penalty Multiplier Tuning
We set the penalty multipliers (λ1, λ2, and λ3) for both the
formulations using a CV approach. We randomly split our
samples into a training set and a hold-out validation set, fitting
the models on the training set and then evaluating the root-
mean-squared error (RMSE) on the validation set to choose the
best values. In order to reduce the computational complexity, we
estimate the multipliers greedily, one or two at a time. From our
simulations, we determined that this is a reasonable choice. We
recognize that these can be tuned further on a case-by-case basis.

λ1 is set to the reasonable value as determined in section 4.1
for both formulations, since the clustering results are robust to
this choice. For formulation 1, we estimate the best λ2 by CV

Algorithm 1: Proximal decomposition for formulation 1.

Result: Estimated 2

Initialize 2̃1,0, 2̃2,0, 2̃3,0 ∈ R
pk,m = 0

Calculate 2̂0 = 1
3 (2̃1,0 + 2̃2,0 + 2̃3,0)

while not converged do
for i = 1, 2, 3 do

pi,m = proxγ fi
(2̃i,m)

end

pm = 1
3 (p1,m + p2,m + p3,m)

for i = 1, 2, 3 do

2̃i,m+1 = 2̃i,m + 2pm − 2̂m − pi,m
end

2̂m+1 = pm,m = m+ 1

end

Reshape 2̂m to get estimated 2.

Algorithm 2: Alternating minimization for formulation 2.

Result: Estimated 2 and Ŵ

Initialize 20, Ŵ0, iterationm = 0
while not converged do

Estimate 2m by solving (4) using LASSO
Estimate Ŵm by solving (5) using COBRA (Chi et al.,
2014)
m = m+ 1

end

using Equation (1). For formulation 2, the tuning process is
similar, but we pick a sequence of λ2 and λ3. We estimate both
2̂λ2 ,λ3 and Ŵ̂λ2 ,λ3 , but calculate RMSE with Ŵ̂λ2 ,λ3 , since it is used
in the clustering objective. When the path of bi-clusterings is
computed, we fix λ2 to the CV estimate and vary only λ3.

4.3. Solution Paths
One can obtain the entire solution paths for the estimated
coefficients2 by varying the penaltymultipliers. Here we provide
an example using a synthetic dataset generated as follows. We
consider the multi-task regression model: Y = X2∗ + E with
eij ∼ N(0, σ 2). All the entries of design matrix X are generated
as iid from N(0, 1). The true regression parameter 2∗ has a bi-
cluster (checkerboard) structure. To simulate sparsity, we set
the coefficients within many of the blocks in the checkerboard
to 0. For the non-zero blocks, we follow the generative model
recommended in Chi et al. (2014): the coefficients within each
cluster are generated as θij = µrc + ǫij with ǫij ∼ N(0, σ 2

ǫ ) to
make them close but not identical, where µrc is the mean of the
cluster defined by the rth row partition and cth column partition.
We set n = 50, p = 20, and k = 15. For the non-zero blocks,
we set µrc ∼ Uniform{−2,−1, 1, 2} and set σǫ = 0.25. We set
σ = 1.5. We use relatively small values for p and k since there
will be a total of pk solution paths to visualize.

We begin with the solution paths for formulation 1. We first
fix a reasonable λ1 and vary λ2 to get solution paths for all the
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FIGURE 3 | Solution paths for formulation 1, fixing λ1 and varying λ2. Each

line indicates a distinct coefficient.

coefficients. In our experiment, we chose λ1 based on cross-
validation as described in section 4.1. These paths are shown in
Figure 3. We can see that as λ2 increases, the coefficients begin
to merge and eventually for large enough λ2 they are all equal.
The solution paths are smooth in λ2. Similarly, we fix λ2 based
on the cross-validation scheme described in section 4.2 and vary
λ1 to get solution paths for all the coefficients. This is shown
in Figure 4. It is well-known that the solution paths for LASSO
are piecewise linear (Rosset and Zhu, 2007), when L is least
squares loss. Here, we see that the solution paths are not piecewise
linear, but rather a smoothed version of it. This smoothness is
imparted by the convex clustering regularization, the third term
in Equation (2).

We can obtain the solution path for formulation 2 as functions
of two variables. We first fix a reasonable λ1 and vary λ2, λ3 to get
solution paths for all the coefficients. These paths are shown in
Figure 5. The solution paths are smooth in λ2 and λ3. Similarly,
we fix a reasonable λ2 and vary λ1, λ3 to get solution paths
for all the coefficients. These paths are shown in Figure 6. The
solution paths are smooth in λ1 and λ3. The reasonable values
are obtained using cross-validation.

4.4. Bi-clustering Thresholds
It is well-known that LASSO tends to select too many variables
(Meinshausen and Yu, 2009). Hence ‖2·i − 2·j‖2 may not be
exactly zero in most cases, and we may end up identifying too
many clusters as well. In Chi et al. (2014) the authors defined the
measure vij = ‖2·i − 2·j‖2 and placed the ith and jth columns
in the same group if vij ≤ τ for some threshold τ , inspired by
Meinshausen and Yu (2009). In our formulation 1, after selecting
the best tuning parameters and estimating2, we place the ith and
jth rows in the same group if ‖2i· − 2j·‖2 ≤ τr . Similarly, if
‖2·i − 2·j‖2 ≤ τc we place the ith and jth columns in the same
group. For formulation 2, we repeat the same approach using Ŵ

instead of 2.

FIGURE 4 | Solution paths for formulation 1, fixing λ2 and varying λ1. Each

line indicates a distinct coefficient.

FIGURE 5 | Solution paths for formulation 2, fixing λ1 and varying λ2, λ3.

To compute the thresholds τr and τc, we first calculate
[vcol]ij = ‖2·i − 2·j‖2 and stack this matrix to vector vcol;
similarly we calculate [vrow]ij = ‖2i· − 2j·‖2 and stack to vector
vrow. In the case of sparse linear regression, τ should be on the
order of the noise (Meinshausen and Yu, 2009): τ ∝ σ

√
log(p)/n,

where σ is typically estimated using the standard deviation of
residuals. In general we could set τ proportional to the standard
deviation of vrow or vcol.

However in our case, we have an additional regression loss
term for estimating the parameters and hence there are two
sources of randomness, the regression residual and the error in v.

Taking these into account, we set τc = 1
2

[
σ
√
log(p)/n+std(vcol)

]
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FIGURE 6 | Solution paths for formulation 2, fixing λ2 and varying λ1, λ3.

and τr = 1
2

[
σ
√
log(p)/n+ std(vrow)

]
. We set the multiplier to 1

2 ,

following the usual conservative heuristics.

4.5. Specializing to Column- or Row-Only
Clustering (a.k.a. Uni-clustering)
Although formulations 1 and 2 have been developed for row-
column bi-clustering, they can be easily specialized to clustering
columns or rows alone, by respectively using only �W(2) or
�W̃(2T) in Equation (2), or using only �W(Ŵ) or �W̃(ŴT) in
Equation (3).

5. SYNTHETIC DATA EXPERIMENTS

We demonstrate our approach using experiments with synthetic
data on the problem of multi-task learning.As emphasized before,
our main focus is on bi-clustering result instead of parameter
estimation. We begin by describing the performance measures
used to evaluate the clustering and estimation performance.

5.1. Performance Measures
Assessing the clustering quality can be hard. In this paper, we use
the following three measures to evaluate the quality of clustering:
the adjusted Rand index (Hubert and Arabie, 1985) (ARI), the
F-1 score (F-1), and the Jaccard index (JI).

Assume B is the true clustering, define TP to be the number
of pairs of elements in S that are in the same subset in A and
in the same subset in B. This is the true positive and similarly
we can define TN, FN, FP as true negative, false negative, and
false positive, respectively. Define precision = TP

TP+FP and recall =
TP

TP+FN , the F-1 score is defined as:

F-1 =
2 · precision · recall
precision+ recall

(7)

Using the same notation as F-1 score, the Jaccard Index is
defined as:

JI =
TP

TP + FP + FN
(8)

For all these three measures, a value of 1 implies the best possible
performance, and a value of 0 means that we are doing poorly.
In order to compute ARI, F-1, and JI, we choose the value of
the multiplier λ2 in formulation 1, and {λ2, λ3} in formulation
2 using the approach described in section 4.2, and obtain the
estimated clusterings.

The estimation accuracy is measured by calculating the RMSE
on an independent test set, and also the parameter recovery
accuracy, ‖2̂est−2∗‖/‖2∗‖where 2̂est and2∗ are the estimated
and true coefficient matrices.

5.2. Simulation Setup and Results
We focus on multi-task regression: Y = X2∗ + E with eij ∼
N(0, σ 2). All the entries of design matrix X are generated as
iid from N(0, 1). The true regression parameter 2∗ has a bi-
cluster (checkerboard) structure. To simulate sparsity, we set
the coefficients within many of the blocks in the checkerboard
to 0. For the non-zero blocks, we follow the generative model
recommended in Chi et al. (2014): the coefficients within each
cluster are generated as θij = µrc + ǫij with ǫij ∼ N(0, σ 2

ǫ ) to
make them close but not identical, where µrc is the mean of the
cluster defined by the rth row partition and cth column partition.
We set n = 200, p = 500, and k = 250 in our experiment. For
the non-zero blocks, we set µrc ∼ Uniform{−2,−1, 1, 2} and set
σǫ = 0.25. We try the low-noise setting (σ = 1.5), where it is
relatively easy to estimate the clusters, and the high-noise setting
(σ = 3), where it is harder to obtain them.

We compare our formulations 1 and 2 with a 2-step estimate-
then-cluster approach: (a) Estimate 2̂ first using LASSO, and
(b) perform convex bi-clustering on 2̂. 2̂ is estimated by
solving (6) while selecting the best λ1 as discussed in section
4.1, and the convex bi-clustering step is implemented using
COBRA algorithm in Chi et al. (2014). Our baseline clustering
performance is the best of: (a) letting each coefficient be its own
group, and (b) imposing a single group for all coefficients.

The average clustering quality results on 50 replicates are
shown in Table 1 for low and high noise settings. Most
performance measures are reported in the formatmean±std.dev.
In both tables, the first, second, and third blocks correspond to
performances of row, column and row-column bi-clusterings,
respectively.We optimize only for bi-clusterings, but the row and
the column clusterings are obtained as by-products.

From Table 1 we see that both our formulation 1 and 2
give better results on row clustering, column clusterings, and
row-column bi-clustering compared to the 2-step procedure.
Moreover, the clustering results given by our formulations are
more stable, with lesser spread in performance.

It is also instructive to note that the performance obtained
for columns is substantially higher compared to those obtained
with rows. This could be because of two reasons: (a) the columns
of 2 have a one-to-one correspondence to the columns of the
task responses Y , and hence any relationship between the tasks
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TABLE 1 | Performance of low and high noise settings.

Noise Metric Baseline 2-step F1 F2

Low ARI 0 0.679 ± 0.157 0.869 ± 0.069 0.900 ± 0.046

Low F-1 0.446 0.757 ± 0.128 0.907 ± 0.052 0.931 ± 0.022

Low JI 0.287 0.625 ± 0.161 0.834 ± 0.081 0.871 ± 0.042

Low ARI 0 0.877 ± 0.043 0.914 ± 0.020 0.915 ± 0.013

Low F-1 0.446 0.908 ± 0.037 0.933 ± 0.023 0.934 ± 0.012

Low JI 0.287 0.847 ± 0.048 0.876 ± 0.031 0.887 ± 0.025

Low ARI 0 0.708 ± 0.118 0.841 ± 0.059 0.863 ± 0.035

Low F-1 0.172 0.734 ± 0.110 0.857 ± 0.052 0.877 ± 0.026

Low JI 0.094 0.591 ± 0.134 0.753 ± 0.077 0.781 ± 0.035

High ARI 0 0.577 ± 0.163 0.803 ± 0.104 0.804 ± 0.096

High F-1 0.446 0.674 ± 0.138 0.874 ± 0.093 0.874 ± 0.075

High JI 0.287 0.525 ± 0.159 0.793 ± 0.097 0.792 ± 0.098

High ARI 0 0.734 ± 0.132 0.905 ± 0.077 0.905 ± 0.046

High F-1 0.446 0.799 ± 0.107 0.924 ± 0.054 0.933 ± 0.039

High JI 0.287 0.689 ± 0.120 0.872 ± 0.078 0.867 ± 0.065

High ARI 0 0.555 ± 0.187 0.801 ± 0.125 0.812 ± 0.105

High F-1 0.172 0.586 ± 0.152 0.824 ± 0.104 0.821 ± 0.086

High JI 0.094 0.437 ± 0.179 0.714 ± 0.118 0.713 ± 0.104

For each noise setting, the first block is for row clustering; the second block is for column

clustering; and the third block is for row-column biclustering.

is easily inherited, (b) the rows of 2 can be noisier than the
columns, since each row contributes to all the tasks.

The performance boost obtained with high noise is much
higher compared to that with low noise. This makes sense
because when noise level is low, the estimation step in the 2-
step approach is more accurate and the error propagated into
the clustering step is relatively small. However, at high noise
levels, the estimation can be inaccurate. This estimation error
propagates into the clustering step and makes the clustering
result of 2-step approach unreliable. Since our formulations
jointly perform estimation and clustering, they obtain more
reliable and stable results.

The RMSEs evaluated on the test set and the parameter
recovery accuracy are provided in Table 2. The oracle RMSE
(with 2 known) is 1.5 for the low noise setting and 3.0 for the
high noise setting in Table 2, and we can see that the proposed
methods provide improvements over the others. We also observe
improvements in the parameter recovery accuracy. Although
the improvement is marginal, it demonstrates that we are not
losing estimation accuracy because of the biclustering structure
we considered.

6. REAL DATA EXPERIMENTS

We demonstrate the proposed approaches using real datasets
obtained from experiments with Sorghum crops (Tuinstra,
2016). We consider two specific problems from this pipeline:

TABLE 2 | RMSE and parameter recovery accuracy of the estimation schemes for

low noise (σ = 1.5) and high noise (σ = 3) settings.

Noise Accuracy

metric

Lasso 2-step Form1 Form2

Low RMSE 1.627 ± 0.02 1.622 ± 0.02 1.613 ± 0.02 1.612 ± 0.02

Low Rec. acc. 0.234 ± 0.03 0.231 ± 0.03 0.223 ± 0.03 0.222 ± 0.03

High RMSE 3.34 ± 0.02 3.30 ± 0.02 3.23 ± 0.02 3.16 ± 0.02

High Rec. acc. 0.364 ± 0.06 0.362 ± 0.06 0.327 ± 0.05 0.325 ± 0.06

FIGURE 7 | Tree structure of tasks (varieties) inferred using our approach for

plant height.

TABLE 3 | RMSE for plant height prediction.

Method RMSE

Single model 44.39 ± 6.55

No group multitask learning 36.94 ± 6.10

Kang et al. 37.55 ± 7.60

Proposed 33.31 ± 5.10

The bold value indicates root mean square error.

(a) predictive modeling of plant traits using features from
remote sensed data (section 6.1), (b) GWAS using the reference
traits (section 6.2).

6.1. Phenotypic Trait Prediction From
Remote Sensed Data
The experimental data was obtained from 18 Sorghum varieties
planted in 6 replicate plot locations, and we considered the
trait of plant height. The 18 variety names are given in
the Supplementary Material.

From the RGB and hyperspectral images of each plot, we
extract features of length 206. Hence n = 6, p = 206, and the
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FIGURE 8 | Smoothed coefficient matrix obtained from formulations 1 (left) and 2 (right), revealing the bi-clustering structure.

FIGURE 9 | Distribution of coefficients for height traits for all SNPs. The x-axis shows the positions of genetic variants on the chromosomes. The y-axis are the values

of the coefficients for the discovered associations with height trait.The red lines are loci of known height genes, namely genes that are known to be associated to

height, and the black and gray dots correspond to coefficients of formulations 1 and 2, respectively. Some correspond to known locations, some correspond to new

locations of associated SNPS.

number of tasks k = 18, for each trait considered. The presence
of multiple varieties with replicates much smaller in number
than predictors poses amajor challenge: building separatemodels
for each variety is unrealistic, while a single model does not
fit all. This is where our proposed simultaneous estimation and
clustering approach provides the flexibility to share information
among tasks that leads to learning at the requisite level of
robustness. Note that here we use the column-only clustering
variant of formulation 1.

The dendrogram for task clusters obtained by sweeping
the penalty multiplier λ2 is given in Figure 7. This provides
some interesting insights from a plant science perspective. As

highlighted in Figure 7, the predictive models (columns of 2)
for thicker medium dark plants are grouped together. Similar
grouping is seen for thinner tall dark plants, and thick tall plants
with many light leaves.

To compute RMSE, we perform 6-folds CV where each fold
consists of at least one example from each variety. As we only
have n = 6 samples per variety (i.e., per task), it is unrealistic
to learn separate models for each variety. For each CV split,
we first learn a grouping using one of the compared methods,
treat all the samples within a group as i.i.d, and estimate their
regression coefficients using Lasso. The methods compared with
our approach include: (a) single model, which learns a single
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predictive model using Lasso, treating all the varieties as i.i.d., (b)
No group multitask learning, which learns a traditional multitask
model using Group Lasso where each variety forms a separate
group, and (c) Kang et al. (2011), which uses a mixed integer
program to learn shared feature representations among tasks,
while simultaneously determining “with whom” each task should
share. Results reported in Table 3, indicate the superior quality of
our groupings in terms of improved predictive accuracy.

6.2. Multi-Response GWAS
We apply our approach in a multi-response Genome-Wide
Association Study (GWAS). While traditional GWAS focuses on
associations to single phenotypes, we would like to automatically
learn the grouping structure between the phenotypes as well
as the features (columns and rows of 2) using our proposed
method.We use the proposed formulations 1 and 2 (bi-clustering
variant) in this experiment.

The design matrix X consisted of SNPs of Sorghum varieties.
We consider n = 911 varieties and over 80,000 SNPs. We remove
duplicate SNPs and also SNPs that do not have significantly high
correlation to at least one response variable. Finally, we end up
considering p =2,937 SNPs. The output data Y contains the
following 6 response variables (columns) for all the n varieties
collected by hand measurements:

1. Height to panicle (h1): The height of the plant up to the panicle
of the Sorghum plant.

2. Height to top collar (h2): The height of the plant up to the top
most leaf collar.

3. Diameter top collar (d1): The diameter of the stem at the top
most leaf collar.

4. Diameter at 5 cm from base (d2): The diameter of the stem at
5 cm from the base of the plant.

5. Leaf collar count (l1): The number of leaf collars in the plant.
6. Green leaf count (l2): The total number of green leaves. This

will be <l1 since some leaves may have senesced and will not
be green anymore.

For each variety, each trait can be an average of measurements
from up to four plants.

The coefficient matrix given by our formulations are
visualized in Figure 8. To make the figure easier to interpret,
we exclude the rows with all zero coefficients and take the
average over the coefficients within each bi-cluster. The light
yellow regions are coefficients close to zero; red and blue areas
are positive and negative coefficients, respectively. The rows and
columns are reordered to best show the checkerboard patterns.
We wish to emphasize again that these checkerboard patterns in
the coefficient matrices are automatically discovered using our
proposed procedures, and are not readily evident, or trivially
discoverable from the data.

The two formulations reveal similar bi-clustering patterns up
to reordering. For column clusters, the plant height tasks (h1 and
h2), the stem diameter tasks (d1 and d2), and the leaf tasks (l1
and l2) group together. Also, the stem diameter and leaf tasks
are more related to each other compared to the height tasks. The
bi-clustering patterns reveal the groups of SNPs that influence
similar phenotypic traits. Coefficients for height features in the

TABLE 4 | Comparison of test RMSE on the multi-response GWAS dataset.

Lasso 2-step Form1 Form2

RMSE 2.181 2.206 2.105 2.119

GWAS (Figure 9) study show SNPs with strong effects coinciding
with locations of Dwarf 3 (Multani et al., 2003) and especially
Dwarf 1 (Hilley et al., 2016) genes known to control plant
height that are segregating and significant in the population.
The lack of any effect at the Dwarf 2 (Hilley et al., 2017) locus
supports previous work indicating that this gene is not a strong
contributing factor in this population. This demonstrates that we
are able to discover existing factors. We also identify potentially
new SNPs for further investigation and biological validation,
since many coefficients align with loci outside of the previously
identified known height genes.

To evaluate predictive accuracy, we split our data set into three
parts: 70% training, 15% validation, and 15% test. We estimate
the coefficient matrices by optimizing our formulations on the
training set, select the tuning parameters based on the validation
set (sections 4.2, 4.4), and then calculate the RMSE on the test set.
Table 4 shows the RMSE on test set.

We also estimate the RMSE of the proposed formulations and
compare it with the RMSE provided by a simple Lasso model
and 2-step procedure. This is shown in Table 4. We see that the
RMSE of our formulations are slightly less than that of the Lasso
and 2-step procedure. Hence, for similar estimation performance,
we are able to discover additional interesting structure in the
input-output relationship using our proposed methods.

7. CONCLUDING REMARKS

In this paper we introduced and studied formulations for
joint estimation and clustering (row or column or both) of
the parameter matrix in multi-response models. By design,
our formulations imply that coefficients belonging to the
same (bi-)cluster are close to one another. By incorporating
different notions of closeness between the coefficients, we
can tremendously increase the scope of applications in
which similar formulations can be used. Some future
applications could include sparse subspace clustering and
community detection.

Recently there has been a lot of research on non-convex
optimization formulations, both from theoretical and empirical
perspectives. It would be of interest to see the performance
of our formulations on non-convex loss functions. Another
extension would be to construct confidence intervals and
perform hypothesis testing for the coefficients in each cluster.
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