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Abstract
Reconstructing brain connectivity at sufficient resolution for computational models designed to study the biophysical
mechanisms underlying cognitive processes is extremely challenging. For such a purpose, a mesoconnectome that includes
laminar and cell-class specificity would be a major step forward. We analyzed the ability of gene expression patterns to
predict cell-class and layer-specific projection patterns and assessed the functional annotations of the most predictive groups
of genes. To achieve our goal we used publicly available volumetric gene expression and connectivity data and we trained
computational models to learn and predict cell-class and layer-specific axonal projections using gene expression data.
Predictions were done in two ways, namely predicting projection strengths using the expression of individual genes and using
the co-expression of genes organized in spatial modules, as well as predicting binary forms of projection. For predicting
the strength of projections, we found that ridge (L2-regularized) regression had the highest cross-validated accuracy with a
median r2 score of 0.54 which corresponded for binarized predictions to a median area under the ROC value of 0.89. Next,
we identified 200 spatial gene modules using a dictionary learning and sparse coding approach. We found that these modules
yielded predictions of comparable accuracy, with a median r2 score of 0.51. Finally, a gene ontology enrichment analysis of
the most predictive gene groups resulted in significant annotations related to postsynaptic function. Taken together, we have
demonstrated a prediction workflow that can be used to perform multimodal data integration to improve the accuracy of the
predicted mesoconnectome and support other neuroscience use cases.

Keywords Spatial gene co-expression · Connectomics · Machine learning · Predictive models · Mouse brain ·
Axonal projection · Gene expression · Gene ontology enrichment analysis · Ridge regression · Dictionary learning ·
Sparse coding · ROC analysis · Cellularly resolved connectome

Introduction

A wiring diagram of the brain (connectome) is a necessary
step for advancing modern neuroscience for two reasons.
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First, it assists computational neuroscience by providing
biologically plausible constraints on brain models and
simulations (Choi and Mihalas 2019). Second, it bridges the
gap between experimental data and computational models
by providing frameworks exposing its graph-theoretical
structure and other properties (Sanz-Leon et al. 2013; Ritter
et al. 2013; Woodman et al. 2014). Examples of connectome
based projects are the Blue Brain project or the Virtual Brain
project that aim to create large-scale models of the rodent
or human brain (Markram 2006; Markram et al. 2011; Sanz
Leon et al. 2013).

The meso-scale description of the connectome (meso-
connectome) is defined at the level of anatomically distinct
sub-areas within each brain region and is typically described
by the use of tract-tracing invasive techniques in animal
studies, or post mortem dissections in human studies (Kötter
2007; Sporns et al. 2005; Highley et al. 1999; Lanciego and
Wouterlood 2011). The whole brain coverage provided by
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these techniques and the ability to delineate layer-specific
sub-areas make the mesoconnectome neither too coarse
grained nor too spatially limited and thus suitable for devel-
oping computational models of structural brain connectivity
(Oh et al. 2014; Knox et al. 2018; Betzel et al. 2015a; Betzel
et al. 2015b).

It is difficult with tract-tracing techniques to get good
whole brain coverage and they are time consuming (Sporns
2011). As an alternative to classical neuroanatomy, gene-
expression-based approaches have been used to describe the
connectome for a number of reasons (Fornito et al. 2019).
First, it is possible to infer connectivity information from
gene expression based on the premise that postsynaptic
structures have specific protein profiles and that neurons
connected through synapses have highly correlated gene
expression patterns (Roy et al. 2018; Sperry 1963; Fornito
et al. 2019). Second, the recent advances in sequencing
have resulted in gene expression data being high throughput,
relatively cheap and easy to obtain (Shendure and Ji 2008).

These advantages have led to various studies linking
genomic information with structural brain connectivity
using computational approaches (Baruch et al. 2008;
Kaufman et al. 2006; French and Pavlidis 2011; French
et al. 2011; Wolf et al. 2011). In recent studies, a link
has been established between gene expression and the
mouse mesoconnectome by building predictive models and
associating gene co-expression with network topology and
structure (Rubinov et al. 2015; Fulcher and Fornito 2014; Ji
et al. 2014), resulting in computational frameworks for the
mouse mesoconnectome.

Despite the aforementioned advances, research in the
field still faces a number of limitations. An example
is the lack of brain-wide descriptions of important
cytoarchitectonic features of the connectome, such as the
number of axonal fibers and the density of axonal arbor
endings, for neuronal populations categorized by their
projection patterns (also referred to as projection cell-
classes) or by their transcriptomic profiles (transcriptomic
cell-types) (Harris and et al. 2018; Tasic et al. 2018;
Tasic 2018). These features could be used for quantifying
long-range connections between neuronal populations
which could then lead to a cell-type-specific mouse
mesoconnectome.

Descriptions with that level of resolution have been
provided at the local microcircuit level of the mouse brain
but are limited to specific brain areas such as the primary
visual cortex (Lee et al. 2016). Moreover, features such as
axonal fiber and arbor endings can not be extracted from
models describing the connectome as a binary network of
present or absent axonal projections between brain areas (Ji
et al. 2014; Fulcher and Fornito 2014).

In this work we measure the amount of information
about axonal projection patterns present in gene expression

patterns of the mouse brain and we associate the findings
with factors related to the functional annotations of genes.
For that purpose we have used publicly available volumetric
gene expression and connectivity data from the Allen
Institute for Brain Science. In order to bridge the gap
between coarse-level mesoscale predictions and cell-type-
specific predictions, we have trained computational models
to learn and predict cell-class and layer-specific axonal
projections using gene expression. Predictions are made in
two ways, namely predicting projection volumes using the
expression patterns of individual genes and using the co-
expression of genes organized in spatial modules, as well
as predicting binary forms of projection. For analyzing the
functional annotations of the most predictive gene groups,
we use gene ontology enrichment analysis.

The primary scientific contribution of this paper is to
advance the level of prediction from binary — is a pair of
areas connected — to continuous — how strongly are the
areas connected, which is more relevant for computational
models and overcomes the limitations of binary network
models mentioned above. While binary predictions are
part of our analysis, binarization of projection volume
is achieved with a data-driven approach that does not
rely on arbitrary thresholding. We further show that these
approaches not only work for the older wild-type data set
(Oh et al. 2014) but also for individual cre-lines (Harris
et al. 2019), which allows for the integration of cell-class-
specific projection patterns in the mesoconnectome for use
in models. Moreover, the use of spatial genes modules for
predicting axonal projections and gene ontology analysis
establishes a relationship between functional gene groups
and the mesoconnectome and is a step towards integrating
transcriptomic cell-types in connectome analysis.

Based on that framework, we have built a predictive
workflow that is focused on integrating gene expression and
structural connectivity data related to the mouse brain which
are available from a number of repositories. In this paper we
describe the predictive workflow (Methods) and we quantify
and compare the performance of various ways of making
predictions (Results). This includes predictions based on the
full gene expression data (continuous and binary mode),
and based on gene expression organized in spatial gene
modules. For the most predictive genes we perform a gene
ontology analysis. An open-source implementation of the
various use-cases is described in the Supplemental Methods
section.

Methods

We developed a predictive workflow to measure the amount
of information about axonal projection patterns present in
gene expression patterns of the mouse brain and to associate

612 Neuroinform (2020) 18:611–626



Fig. 1 Flowchart describing the
various steps of the predictive
workflow

it with factors related to the functional annotations of genes
(Fig. 1). Here we describe what data we used and how
these were pre-processed as well as the various steps of
the analysis. See Section S1.1 for information related to the
software packages used to implement our methods.

Materials

Allen Mouse Brain Atlas

The gene expression data were obtained from the Allen
Mouse Brain Atlas (AMBA) dataset of the Allen Institute
for Brain Science (Table 1), (Lein and et al. 2007). The
in situ hybridization (ISH) technique was used to quantify
the spatial expression patterns of ∼20.000 genes in the
brains of male C57BL/6J (wild-type) mice which were 56-
days-old (P56). ISH constitutes a high throughput approach

for quantifying expression energies of multiple genes in
multiple spatial locations with up to 1 μm resolution (Lein
and et al. 2007; Amann and Fuchs 2008).

In the study that created the AMBA dataset (Lein and
et al. 2007), in situ hybridization was used together with
fluorescence microscopy in order to visualize the gene
expression energy. The result of this analysis was a set
of sagittal and coronal brain slice images containing the
expression energy of ∼20000 and ∼3300 individual genes
respectively (Lein and et al. 2007). The coronal slices were
selected for our analysis because their in plane resolution
was higher.

Allen Mouse Brain Connectivity Atlas

The axonal projection data were obtained from the Allen
Mouse Brain Connectivity Atlas (AMBCA) dataset. These

Table 1 Hyperlinks for websites, tool descriptions and format descriptions related to our analysis. See main text for details

Allen Institute https://alleninstitute.org/

MCC documentation https://allensdk.readthedocs.io/en/latest/connectivity.html

CCF v3.0 http://help.brain-map.org/display/mouseconnectivity/Documentation

MCC use case https://alleninstitute.github.io/AllenSDK/ static/examples/nb/mouse connectivity.html

MCM tool https://mouse-connectivity-models.readthedocs.io/en/latest/

NIfTI files https://nifti.nimh.nih.gov/

JSON files https://en.wikipedia.org/wiki/JSON

SBA Composer https://scalablebrainatlas.incf.org/composer-dev/?template=ABA v3

Bioconductor software http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html

Scikit-learn library https://scikit-learn.org/stable/

Repository of our Code

on the HBP Collaboratory https://collab.humanbrainproject.eu/#/collab/8650/nav/65518

Repository of our Code

on Github https://github.com/ntimonid/Connectomic-Composition-Predictor-CCP-

Neuroexpresso Tool https://github.com/PavlidisLab/markerGeneProfile

Cortical flatmap templates https://download.alleninstitute.org/informatics-archive/current-release/mouse ccf/cortical coordinates/ccf 2017/
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data were based on the anterograde tract-tracing technique
that was used to quantify the strength of axonal projections
within the brains of P56 wild-type and transgenic cre-line
mice using two-photon microscopy and producing brain
slice images reaching up to 1 μm resolution (Oh et al. 2014;
Harris and et al. 2018) (see Supplementary File 1 for more
details on primary brain regions).

In anterograde tract-tracing, viruses are injected to a
source brain area where they produce fluorescent molecules
that reach target brain areas by being transported along
the axons and reaching the axonal terminals. In Oh et al.
(2014) (referred to as the wild-type experiments) they used
a recombinant adeno-associated virus (rAAV) expressing
enhanced green fluorescent protein (EGFP), whereas in
Harris and et al. (2018) (referred to as the cre-line
experiments) they utilized a cre-recombinase-dependent
rAAV virus expressing a synaptophysin-EGFP fusion that
labels presynaptic terminals (sypEGFP) and an EGFP
expressed in the cytoplasm of infected neurons. The main
difference is that in the wild-type experiments, most neurons
at the injection location were labeled, whereas in the cre-line
experiments, only neurons belonging to specific cell-classes
were labeled.

From the 49 major transgenic cre-lines tested in Harris
and et al. (2018), we selected the 14 most frequently used
ones (899 out of 1080 experiments), and thus obtained
axonal projections from cortical areas with different laminar
labeling profiles and emerging from different cell-classes
(Harris et al. 2014, 2018). There were 3 cell-classes, namely
corticothalamic (CT), intratelencephalic (IT) and pyramidal
tract (PT), that were defined based on the long range
projection properties of the excitatory neurons labeled in
the corresponding cre-line. There were 4 laminar profiles
that were defined based on the cortical layers having the
most excitatory neurons labeled in the corresponding cre-
line (L2/3, L4, L5 and L6, see full table in Supplementary
File 2). The cre-lines together with the 498 available wild-
type experiments constituted the 15 tract-tracing categories
processed in this study comprising 1397 experiments in
total.

Allen Pre-Processing Pipeline

The brain slice images were processed using the informatics
processing pipeline of the Allen Institute for Brain Science
(Table 1). Specifically, they were registered and aligned in
the same reference space according to the latest version
of the Allen mouse brain atlas, Common Coordinate
Framework version 3 (CCF v3.0) (Table 1).

The last step in the informatics processing pipeline was
the unionization process during which the volume of both
data modalities was averaged over anatomically distinct
brain areas. With unionized/regionalized we mean that all

voxels of a volumetric data set within the same brain region
are processed together. When obtaining the unionized data
we selected target brain areas of the right hemisphere, since
the tracing experiments have been performed in the right
hemisphere and they mostly target the same hemisphere
(ipsilateral projections).

Proper measures had to be selected for voxel unionization
of both data modalities. The gene expression data were
unionized using the expression energy measure, which for a
given gene is defined as the sum of expression intensity of
pixels divided by the sum of all pixels in a particular brain
area.

The projection data were unionized using the normalized
projection volume, which for a given tracing experiment
is defined as the sum of detected pixels of projection
to a particular brain area divided by the number of
pixels in that area and further normalized by the sum
of all pixels covered by the corresponding injection.
Both measures were estimated over all genes or tracing
experiments respectively and over all target brain areas (see
Supplementary File 1). As a result, 2D arrays were created
whose rows corresponded to target brain areas and columns
corresponded to tracing experiments or genes depending on
the modality (Oh et al. 2014; Ji et al. 2014).

Data Retrieval

In our predictive workflow we used three sources of
neuroanatomical data, namely gene expression, wild-type
tracing experiments and cre-line tracing experiments, and
the latter two were downloaded with the mouse connectivity
cache (MCC) API (Table 1).

We packaged and pre-processed the data as follows
(Fig. S2). First, experiments corresponding to gene expres-
sion or tract tracing were downloaded from the Allen
Institute. Second, the unionized gene expression experi-
ments were packed in a 2-dimensional array where rows
correspond to target anatomically-defined brain areas and
columns correspond to individual genes. Third, for each
wild-type and cre-line tracing experiment, a matrix was
created with rows corresponding to target brain areas and
columns corresponding to individual injections associated
with source brain areas. Finally, all tracing-related matrices
were assembled into one aggregate data structure together
with tracing-related metadata such as the cell-class and
layer specificity of injections, acronyms of source areas and
injection coordinates (see Supplementary Files 1 and 2).

Pre-Processing Pipeline

We searched for not-a-number (NaN) values in the gene
expression and axonal tracing datasets and removed them
based on their frequency of occurrence (Fig. S4). We
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Fig. 2 Brain volume visualizations and prediction performance statis-
tics related to continuous models trained with different methods to
predict tract tracing datasets. a-d Subcortical and cortical visualiza-
tions for a Cux2-IRES-Cre-line tracing experiment which labeled IT
cells in layers 2/3 and was injected to AId (agranular insular area,
dorsal part). a, c: measured values. b, d: predictions from gene expres-
sion patterns. The subcortical projection patterns were visualized using
coronal slices of the normalized projection volume, whereas the corti-
cal projection patterns were projected onto a flatmap and their values
were averaged over all cortical layers. The scale for both axes is in
milimeters, the colormap used ranges from black through red, orange,
and yellow, to white and corresponds to normalized projection vol-
ume ranging from 0 to 1, while the intensity of each plot has been
normalized by its maximum value. Cortical areas such as the retro-
splenial area dorsal part (RSPd), anteromedial visual area (VISam),
trunk of primary somatosensory area (SSP-tr) and posterior auditory

area (AUDpo) exhibit highly similar normalized projection volume
between their measured and predicted versions, while subcortical sim-
ilarities are not as strong as the cortical ones. e Prediction performance
comparison of Ridge Regression (left) with Random Forest (right)
based models over all tract-tracing experiments. y-axis: r2 scores. The
red line is the median, the box encloses the interquartile range and
the green dots are outliers which comprised 0.7 % of the injections
for Ridge Regression and 2% for the Random Forest. f Comparison
of wild-type based models with cre-line based models trained using
Ridge Regression. x-axis: tract-tracing category. y-axis: r2 values. g
Prediction performance scatter plot for the Cux2-IRES-Cre-line expe
riment. The r2 score for this experiment was 0.826, which was the
highest score across all tracing experiments. x-axis: measured data.
y-axis: predicted data. Green points correspond to subcortical projec-
tions, red points to cortical ones and the solid line is the diagonal, for
which predicted values are equal to the measured ones
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removed 610 out of 1038 anatomical brain areas defined
by CCF v3.0 because they had a large fraction (> 80 %)
of NaNs in either the gene expression or the axonal tracing
datasets. The remaining NaN values in the Gene Expression
dataset were imputed by taking the median value of the
corresponding gene for all non-NaN brain areas (Fig. S7).

For the tracing data, a sampling-based imputation
approach was followed (Fig. S7). To ensure that zero values
would also have a chance of being used for imputing
missing values, we stratified projection values per column
(that is per tracing experiment) into zero and non-zero
values. For each missing value present in a column, one of
these groups was chosen with a probability proportional to
its fraction in the non-missing data and from the chosen
group a random value was drawn to be used for the
imputation.

We subsequently rescaled both data modalities, first by
applying a cube root transformation in order to decrease
the skewness of their distributions (Fig. S6), followed by a
z-score transformation in order to ensure that the regression-
based predictive models were trained faster (Friedman
et al. 2009). The z-score was obtained by subtracting the
mean across areas and normalizing with the corresponding
standard deviation (Fig. S7).

Dictionary Decomposition

The gene expression data were decomposed into transcrip-
tional networks represented by spatial gene modules and
coefficients. The Dictionary Learning and Sparse Coding
(DLSC) method was used for decomposition, in which a
data array is being represented by a linear combination
of sparse but non-orthogonal modules or dictionaries and
their coefficients (Mairal et al. 2010; Li et al. 2017). This
technique allows us to visually inspect various gene co-
expression patterns in the mouse brain and reduces redun-
dancy, since genes belonging to the same co-expression
network have a putatively similar function across the brain
(Langfelder and Horvath 2008). In DLSC both the coeffi-
cients and dictionaries are obtained by minimizing the devi-
ation from the data under a l1 constraint on the coefficients
(atoms) and non-negativity constraints on the elements of
both the dictionaries and the coefficients:

(D, a) = argmin
1

2
||X − Da||22,

||a||1 ≤ λ, ||a|| > 0, Dij > 0, ∀i, j ∈ N (1)

In our analysis the data array (X) corresponded to the
gene expression matrix (brain areas × genes), atoms (a)
corresponded to the coefficients of individual genes to
each module (modules × genes) and dictionaries (D)
corresponded to the spatial gene modules of the mouse brain
(brain areas × modules). We set the λ hyperparameter (l1

constraint) to 1.0 and we applied two different DLSC-based
factorizations to the data.

First, we exclusively used the ISH data and chose the
number of dictionaries by training models to predict tract-
tracing experiments with a different number of spatial
modules, and then selecting a model with a high r2 score
(see Fig. 4). We selected a set of 200 modules despite
being second in performance (the median r2 is 0.51 for
200 modules and 0.52 for 300 modules), since the set
of 300 modules was considered to be too large and their
difference was considered to be an effect of variability (both
interquartile ranges are 0.19 as shown by the vertical lines
in Fig. 4, panel C) These modules accounted on average
for 10% of variability across genes and had an average
spatial footprint covering 88% of the brain areas, which
were labeled as unconstrained spatial modules.

Second, in order to formulate cell-type-specific densities
in a similar fashion to previous studies (Grange et al.
2014), we obtained the expression patterns of 74 cell-
types from single-cell RNA sequencing data available at the
neuroexpresso repository (Tasic et al. 2016; Mancarci et al.
2017) (see Table 1) and we selected 2154 common genes
between the single-cell and the ISH data, which resulted
in a 2154 × 74 array of cell-type-specific gene expression.
Consequently, we constrained the DLSC model by setting
the atoms to be equal to the cell-type-specific data, re-used
the ISH data as input to the model and selected 74 modules
in order to match the number of cell-types.

Therefore, the resulting matrices comprised of 428 areas
× 200 unconstrained spatial modules and 428 areas ×
74 constrained spatial modules, respectively, which was a
significant reduction in dimensionality compared to the 428
× 3318 ISH gene expression matrix.

Model Construction Pipeline

A separate prediction model was built for each cre-
line or wild-type category as follows. First, the gene
expression data and the modules of gene co-expression
were trained with either the Random Forest or Ridge
Regression method (Tikhonov and Arsenin 1977; Dietterich
2000; Breiman 2001; Friedman et al. 2009). Subsequently,
model performance was validated with nested 3-fold
cross-validation (Kohavi 1995; Varma and Simon 2006)
and quantified by the r2 score between the measured
and predicted projection patterns. For more information
regarding the implementation of these techniques, see
Sections S1.2–S1.4. The r2 score is defined as the fraction
of total variance of the measured patterns that can be
explained by the predicted ones (Dodge 2008):

r2 = 1 −
∑

i (yi − fi)
2

∑
i (yi − ỹ)2

, (2)
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here the index i represents brain regions, y represents a
ground truth vector, ỹ represents its mean and f represents
the predicted version of the vector. Finally, the predicted
projection patterns with their optimal hyperparameter set
were extracted as model outputs.

As additional post-hoc analyses, the predictions were
converted to binary, using our post-hoc binarization
approach, and a gene ontology enrichment analysis was
applied to the most predictive gene groups for finding
significant annotations related to neuronal and synaptic
functions (Fawcett 2006; Rivals et al. 2007; Rice 2007).
For more information about the post-hoc analysis steps, see
Sections S1.5 and S1.6.

Results

We downloaded gene expression and axonal projection
data from the Allen Brain Atlas and Allen Mouse
Brain Connectivity Atlas repositories, which were spatially
registered and aligned to the latest version of the Allen
mouse brain atlas, Common Coordinate Framework version
3 (CCF v3.0). The axonal projection data were represented
by unionized and normalized projection volumes derived
from anterograde tract tracing experiments that were
comprised of 1397 distinct injection sites, of which the
majority (n = 498) was from wild-type subjects and the
remainder were from 14 different cre-lines of transgenic
animals. The gene expression data were represented by
unionized expression energies across brain areas. Both data
modalities were pre-processed to remove brain areas with
poor quality data, impute missing values and rescale values
to an appropriate range for fitting (see Methods).

Prediction of Continuous Projection Volume Based
on Gene Expression Patterns

We explored various fitting procedures for predicting the
normalized projection volume from the gene expression
data. The two supervised learning methods used for fitting
the data were Random Forest and Ridge Regression, while
the performance was measured using the r2 score which
represents the fraction of total variance accounted for by
the model. Across all injection sites, irrespective of subject
type, Ridge Regression based predictions yielded a median
r2 of 0.54 with an interquartile range (iqr) of 0.178. Random
forest based predictions yielded a median r2 score of 0.42,
which was lower than the one for the Ridge Regression
based predictions (Fig. 2). We show an example in Fig. 2,
which demonstrates the outcome of predictions using nested
3-fold cross-validation with Ridge Regression.

Variation in performance was analyzed across experi-
ments of different tract-tracing categories. When the per-
formance was partitioned according to transgenic cre-line
and wild-type, the performance of wild-type was approx-
imately in the center of the range for transgenic animals.
As the number of injections in each transgenic cre-line was
much lower than available wild-type data (n = 12 to 125 for
transgenic versus n = 498 for wild-type) this variation can
be most likely attributed to experimental variability, rather
than the specific properties of a transgenic line. Our statis-
tical tests, using similarly sized subsets of wild-type data,
indicated that the difference was not statistically significant
(p = 0.004 for 100 random permutations per cre-line, 14000
permutations in total, with the same distribution in set size
as the cre-lines).

Predictions of projection patterns with the Ridge
Regression-based models trained on gene expression data
were significant. The Ridge Regression models trained
with actual gene expression patterns outperformed in every
case surrogate models, which were created by randomly
distributing the expression intensity of each gene across
areas (for three representative cases see Fig. 2). This process
was repeated 25 times for each cre-line and wild-type
tracing experiment. The predictive models that were trained
with the surrogate data, also referred to as surrogate models,
had a median r2 score of -0.005 (iqr = 0.007) over all tracing
experiments.

All of the Ridge Regression models outperformed the
null models, that were incorporated into the analysis as
an additional control (Fig. 2). The null models predicted
unseen projection patterns by averaging values of the seen
ones and thus did not account for variability across brain
areas. A model was considered inaccurate when it was
outperformed by those null models. The null models had
a median r2 score of -0.003 (iqr = 0.005) over all tracing
experiments.

Predictions with low r2 values can be expected when
multiple projection patterns need to be predicted simultane-
ously. Specifically, the models were trained to fit simultane-
ously multiple tracing experiments belonging to a particular
tracing category (i.e. wild-type mice) with the same set of
3318 genes and the same hyperparameter set. In our data, 10
out of 1397 tracing experiments (0.7%) had a value in the
range [0 - 0.2] for Ridge Regression based models, while
the equivalent percentage for Random Forest based models
was 40 out of 1397 (2.8%).

Nevertheless, performance of models with a high r2

score can be appreciated when the predicted projection
patterns are visually compared with the measured ones in
the form of computed brain slices and cortical flatmaps (for
an example see Fig. 2).
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Fig. 3 Brain volume visualizations and prediction performance statis-
tics related to binary models trained with Ridge Regression to predict
tract tracing datasets. a-d Subcortical and cortical visualizations for the
binarized form of a Cux2-IRES-Cre line tracing experiment injected
to the AId area (agranular insular area, dorsal part). a, b: measured
values. b, d: predictions from gene expression patterns. The subcor-
tical projection patterns were visualized using coronal slices of the
normalized projection volume a, b, whereas the cortical projection pat-
terns c, d, were projected onto a flatmap. The scale for both axes is in
milimeters. White denotes the value 1 (connections present), and black
denotes the absence of a projection. e-f Comparison of wild-type based
models with cre-line based models. x-axis: tract-tracing category. y-
axis: auROC (e) and f1-score f values. The red line is the median, the

box encloses the interquartile range and the green dots are outliers.
In both boxplots, two green dots with a value of 0 for both auROC
and f1-score correspond to two Ntsr1-Cre GN220 line tracing experi-
ments injected at the lateral visual area (VISl) and expressed in L6 CT
neurons, for which 100% of their values were thresholded to 0 during
binarization due to the median and standard deviation of their normal-
ized projection volumes being too low (1.46−10 median and 0.01 std
for the first experiment and 8.063−11 median and 0.07 std for the sec-
ond experiment). g Multi-ROC curve between measured and predicted
projection patterns of the Nr5a1-Cre line tracing experiment. The ROC
curves correspond to multiple curves induced by applying multiple
external thresholds to the measured data
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Fig. 4 Statistics of the prediction performance of models trained using
spatial gene modules and correlations between the modules and axonal
projection volumes. a Histogram of Pearson correlation coefficients
(r) between all 1397 tracing experiments and their predicted forms.
The prediction of each experiment was achieved with its 3 best cor-
related modules as determined by Pearson r. The first vertical line
from the left represents the point at which all correlations left to it are
no longer statistically significant (p > 0.05). The second vertical line
from the left corresponds to the Pearson r of 0.64 between a Cux2-
IRES-Cre line tracing experiment injected to the retrosplenial area,
lateral agranular part (RSPagl), and modules 9, 70 and 88, which is
greater than the mean r of 0.54. A dense distribution of correlations
in the range 0.4 - 0.7 indicates that multiple spatial modules correlate
with axonal projection patterns. b Predictive performance of module-
based models with different dictionary set sizes, trained with Ridge
Regression. x-axis: dictionary set size. y-axis: median r2 score over all
tract-tracing experiments. The vertical lines represent the interquartile
range across the dictionary sets. The highest peak is for 300 modules
with an r2 score of 0.52. (c-d) Cortical (c) and subcortical (d) visual-
ization of a spatial footprint related to the Cux2-IRES-Cre line RSPagl

tracing experiment. The spatial footprint represents the overlap that
exists between the RPSagl experiment and modules 9, 70 and 88 with
a Pearson r of 0.51, 0.52 and 0.45 respectively. Each non-zero value
across brain areas is replaced by 1.0 if it was present in all three mod-
ules and the projection pattern, 0.8 if present in two modules and the
pattern, 0.6 if present in one module and the pattern, 0.4 if present in
the pattern and absent in all modules and 0.2 if present in the modules
but absent in the pattern. The subcortical projection pattern was visual-
ized using coronal slices of the normalized projection volume, whereas
the cortical projection was projected onto a flatmap and its values were
averaged over all cortical layers. The scale for both axes is in milime-
ters. There is a strong presence of white (1.0), yellow (0.8) and orange
(0.6) colors, suggesting a strong overlap between the experiment and
the modules and which is also reflected by a r2 score of 0.4 when the
three modules are used for predicting the experiment. e Comparison of
predictive accuracy between models trained using spatial modules and
models trained using full gene expression data. The method used is
Ridge Regression. x-axis: gene expression based models (left), spatial
module-based models (middle) and module-based models constrained
with single-cell RNA sequencing data (right). y-axis: r2 scores

Binary Predictions

Previous studies have used a binarized version of the
mesoconnectome to test the accuracy of their predictive
models. In order to compare our performance to these
models, we developed an approach to make binary
predictions as well (see Section S1.5, Fig. 3). The accuracy
of these predictions was quantified using an ROC analysis
with as outcome the area under the ROC curve (auROC).

The median auROC value over all 1397 tracing
experiments was 0.89 (median iqr = 0.08) (Fig. 3).
Moreover, performance for wild-type data matched that of
the state of the art in binary projection predictions of wild-
type experiments with gene expression data, such as in
Ji et al. (2014), where a 0.93 auROC was obtained. The
auROC values for all wild-type tracing experiments also had
a median of 0.93 (iqr = 0.05). Similar values for cre-lines
were obtained, which had not been subject to this type of
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analysis before (Harris and et al. 2018). For instance, the
auROC values for Tlx3-Cre PL56 line tracing experiments,
labeling IT cells in layers 2-6, had a median of 0.94 (iqr =
0.03) (Fig. 3).

Visualization of measured and predicted results, in the
form of cortical flatmaps and coronal slices, allows for
assessing the quality of predictions in spatial context. An
example is the Cux2-IRES-Cre line tracing experiment
injected to AId area (Fig. 3), which had an auROC value of
0.98 for binary prediction.

The increased performance of the models on binary
predictions compared to continuous ones (Fig. 3) was
due to reduced information about the projection patterns,
which can therefore be more easily captured by the
gene expression data. However, the resulting connectivity
descriptions are on a very coarse-grained level which made
the continuous ones more suitable for analytic purposes.

GeneModule Analysis

We used the Dictionary Learning and Sparse Coding tech-
nique (DLSC) with the intention of identifying functional
gene groups with a similar spatial distribution related to cell-
type-specific densities. To test the DLSC technique under
different constraints, we used the ISH data exclusively and
provided 200 unconstrained spatial modules, followed by
74 constrained spatial modules by cell-type-specific gene
expression data obtained from the neuroexpresso repository
(Tasic et al. 2016; Mancarci et al. 2017).

In order to examine the predictive capabilities of
the spatial modules, the prediction process was repeated
with models trained on the modules instead of genes.
We considered an example tracing experiment for which
the unconstrained-module-based predictive model had
the highest r2 score of 0.79. The tracing experiment

Fig. 5 Subcortical (a) and
cortical (e) visualizations for the
Cux2-IRES-Cre line RSPagl
tracing experiment compared to
visualizations of spatial gene
modules 9 (b,f), 70 (c,g) and 88
(d,h). The subcortical projection
or module patterns were
visualized using coronal slices
of the normalized projection
volume (a) or module expression
(c-d), whereas the cortical
projection or module patterns
(c-h) were projected onto a
flatmap and their values were
averaged over all cortical layers.
The scale for both axes is in
milimeters, the colormap used
ranges from black through red,
orange, and yellow, to white and
corresponds to normalized
projection volume or module
expression ranging from 0 to 1,
while the intensity of each plot
has been normalized by its
maximum value
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was generated by a Cux2-IRES-Cre line injection in
the retrosplenial area, lateral agranular part (RSPagl).
We looked for unconstrained modules with the highest
similarity with the projection pattern, as quantified using
the Pearson correlation coefficient (r). We selected three
modules, labeled as 9, 70 and 88, with a Pearson r of 0.51,
0.52 and 0.45 respectively. Each of these modules were
non-zero in a mostly non-overlapping group of brain areas,
which together cover a part of the experimental projection
pattern (see Figs. 4 and 5). We analyzed the contribution of
their spatial footprint in each area separately, as indicated
in Fig. 4, which highlighted a large overlap between the
experiment and the modules in cortical areas. Subcortical
areas did not have such a strong coverage as cortical ones,
which might be the reason why predictive performance was
not higher in terms of the r2 score.

Subsequently, we calculated the Pearson r between the
RSPagl experiment and its prediction by the three modules.
We found that this prediction yielded an r2 score of 0.4
and a Pearson r value of 0.64, which was higher than the
median Pearson r of 0.54 over all tracing experiments.
Therefore, these modules were important components to
the total prediction, whereas they provided a less accurate
prediction as stand-alone predictors (see Figs. 4 and 5).

This finding suggests that multiple spatial modules might
be needed to reproduce projection density patterns from
the mouse cortex. For the predictive models trained and
tested with unconstrained spatial modules over all tracing
experiments, the median and maximum r2 scores were 0.51
and 0.79 (iqr = 0.19), respectively, while the corresponding
median r2 score of the constrained models was 0.45 (iqr
= 0.19). Therefore the unconstrained module results were
slightly lower on average than the corresponding ones
for the gene predictions but of higher quality than the
constrained ones (Fig. 4), while a biclustering analysis
between the two types of modules did not result in
meaningful biclusters and suggested that there is little
relationship between them (Fig. S9). For testing the
significance of module-based predictions, surrogate models
were built as explained in Section 2 and trained with spatial
modules instead of genes. All models trained for the 1397
tracing experiments had higher r2 values than the respective
surrogate ones, as indicated by a number of examples in
Fig. 4.

A gene ontology analysis was applied to the uncon-
strained spatial modules and the models using different
tract-tracing experiments in order to identify significant
annotations related to synaptic and neuronal function in the
mouse brain (Rivals et al. 2007). For each tracing experi-
ment, we included the most predictive genes whose model
coefficients exceeded the 99th percentile, while for each
spatial module, we included all genes having a non-zero
coefficient.

The percentage of modules and tracing experiments
having at least one significant annotation was 100%
and 98%, respectively, while a tracing experiment was
associated with 12 annotations on average (median) and
a module was associated with 39 annotations on average
(see Fig. 6 for indicative examples). As a generalization
of this observation, the percentage of modules and tracing
experiments having at least one annotation related to
postsynaptic function was 100% and 70%, respectively.
Hence, the presence of postsynaptic function annotations
was another common denominator between a substantial
number of tracing experiments and spatial modules, in
addition to strong correlations and predictive capability.

Discussion

In this study we built a predictive workflow that was focused
on integrating gene expression and structural connectivity
data related to the mouse brain (Fig. 1). We measured
the amount of information about axonal projection patterns
present in gene expression patterns of the mouse brain
and we associated the findings with factors related to the
functional annotations of genes. We predicted projection
volumes using expressions of individual genes (continuous
predictions), and we predicted binary forms of projection
using individual gene expression (binary predictions).
Subsequently we predicted projection volumes using spatial
modules of genes that were defined based on the DLSC
method. For the continuous gene expression predictions,
we obtained a median r2 of 0.54 over 1397 tract-tracing
experiments, which when converted to binary predictions
corresponded to similar performance to previous studies (Ji
et al. 2014). Regarding the spatial gene module predictions,
we obtained median r2 scores of 0.51 and 0.45 for the
unconstrained and constrained approaches respectively. In
gene ontology enrichment analysis, a substantial number of
the groups were found to be associated with annotations
related to postsynaptic function. In the following we will
put the performance of the different methods in the context
of previous studies, interpret our findings, suggest potential
future work and discuss strengths, limitations and other
applications of our workflow.

The results of our study are consistent with the findings
from the (Ji et al. 2014) study, specifically since our binary
approach yielded a similar performance with a median
93% auROC value on wild-type data. In contrast to this
study however, we did not rely on arbitrary thresholds
for binarizing each tracing experiment to attain a 50%
connectivity. Instead, we provided a data-driven estimation
of the most optimal threshold value. In addition, we
extended their analysis by including cre-line data that had
not been subjected to such an analysis before.
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Fig. 6 An enrichment analysis
reveals annotations of neurons
and synapses for a spatial
module and a tracing
experiment. a Significant
annotations for a
Cux2-IRES-Cre line experiment
injected to the RSPagl area. b
Significant annotations for the
constrained spatial gene module
9. The hypergeometric test has
been used for finding significant
associations between genes and
annotations (p ≤ 0.05)

When including both cre-line and wild-type data, we
found a median auROC value of 0.89 across all 1397 tracing
experiments. The increased performance of the models
on binary predictions compared to continuous predictions
is presumably due to the reduction of projection pattern
related information which can therefore be more easily
captured by the gene expression data (Fig. 3). However,
binary connectivity descriptions do not inform the modeler
about the strength of a projection. Hence, the continuous
predictions are more suitable for analytic purposes. For
that reason, we provided richer predictions of the mouse
mesoconnectome by incorporating continuous patterns to

our analysis (Fig. 2 for continuous predictions and Fig. 3 for
binary ones).

Overall, our Ridge Regression models provided signif-
icant predictions, since they outperformed in every case
the surrogate and the null models. This implies that gene
expression contains information related to axonal projec-
tion patterns in the mouse brain. Regarding the variability
of predictions, our statistical tests indicated that the differ-
ence in performance between cre-line and wild-type tracing
experiments, quantified as r2 score, was not statistically
significant (p = 0.004 for 14000 random permutations).
A possible explanation is that both wild-type and cre-line
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projection patterns fall within the range of predictions that
can be covered by the gene expression data. Irrespective of
explanation, the results show that the gene expression data
contain enough information to also account for the more
specific cre-line projection patterns.

The Ridge Regression models trained with spatial gene
co-expression modules rather than expressions of individual
genes, also outperformed corresponding surrogate and null
models (Fig. 4). However, we found that such predictions
were slightly less accurate on average than the gene
expression based ones. Despite that, significant predictions
of such models and strong correlations between axonal
projections and spatial modules suggest that measured
patterns of individual genes contain more variability
unrelated to projection patterns than patterns of a limited
number of modules.

When comparing constrained modules with the uncon-
strained ones, we observed dissimilar patterns and a reduced
performance for the constrained one when predicting trac-
ing experiments. Such results suggest a lack of direct rela-
tion between spatial modules created exclusively by ISH
data and modules that were constrained by single cell RNA
sequencing data. A possible explanation is that distinct
predictive modules were mixed when including all genes
differentially expressed in the 74 cell-types, which suggests
that better performance could be reached when selecting a
subset from amongst them.

Regarding gene ontology enrichment analysis, a substan-
tial number of tracing experiments (70%) and all uncon-
strained spatial modules (100%) were statistically associ-
ated with postsynaptic function. This may suggest that a
potential causal link between axonal projections and gene
expression in the mouse brain could be gene co-expression
modules with a postsynaptic function and specific spatial
footprints. This suggestion is consistent with the findings of
Roy et al. (2018), according to which presynaptic and post-
synaptic locations have a particular protein profile. These
profiles are partially reflected in gene expression data by
locally expressed genes at axonal release sites (Glock et al.
2017; Cajigas et al. 2012; Holt and Schuman 2013). Nev-
ertheless, the putative causal links are far from being clear
and will thus require further work.

A strength of this study was the inclusion of layer and
cell-class-specific patterns by including cre-line data to our
analysis. To the best of our knowledge, this is the first study
that predicts brain-wide and cell-class-specific projection
patterns from gene expression data. Another advantage
of this study was that it went beyond solely providing a
predictive workflow, and it focused on discovering links
between the two data modalities by analyzing the spatial
organizations of genes with the dictionary learning and
sparse coding technique (Li et al. 2017) and with gene
ontology enrichment analysis (Rivals et al. 2007).

We acknowledge some limitations. First, the use of cre-
lines and their predictions does not fully provide cell-type-
specific axonal projections since cre-lines label neuronal
populations at the source and not at the target level.
Furthermore, the labeled cell-classes of IT, PT and CT
neurons do not fully overlap with transcriptomic cell-types
and do not capture cellular diversity in the mouse cortex as
accurately as the latter do (Tasic et al. 2016, 2018; Zeisel
et al. 2015).

Another issue concerning the use of cre-lines is their
layer specificity. In Zeisel et al. (2015), they identified 7
layer-specific subclasses of pyramidal cells located in the
primary somatosensory cortex. Genes serving as markers
for cre-lines such as Cux2 and Rorb were found to be
expressed in multiple of these subclasses. This showed that
these cre-lines can label multiple layers instead of a single
one over all cortical areas and that they have been associated
with their most frequently labeled layer. Despite these
issues, the cre-line inclusion was the first step in providing
mesoscale projection patterns with variability on the level
of cortical areas, layers and cell-classes, which added depth
in modeling and analysis of the mesoconnectome.

Regarding limitations of the predictive models, 0.7% of
Ridge Regression based models had an r2 score close to
zero. This could be attributed to hyperparameters being
optimized over all tracing experiments belonging to one
cre-line or the wild-type category rather than for each
experiment (injection) separately. Furthermore, examples
such as the Ntsr1-Cre GN220 line tracing experiment at the
VISl area (see Fig. 3) indicated the presence of experiments
with sparse brain coverage of projections. Therefore, it can
be expected that performance will be reduced when multiple
projection patterns need to be predicted simultaneously.

Another explanation could be that including the genetic
information of target areas without its relation to source
areas has limited capacity in predicting projection patterns.
Nevertheless, according to Fulcher and Fornito (2014),
correlated gene expression patterns were shown to be
directly linked with the large-scale topology of the mouse
mesoconnectome. Furthermore, in Bleakley et al. (2007)
they used the support vector machine algorithm with kernels
that coupled the feature vectors of nodes for inferring
the edges of metabolic and protein-interaction networks.
As a recommendation for future work, we can adapt this
strategy to couple source and target based gene expression
patterns and infer their corresponding axonal projections.
Another limitation is that unionization of data leads to
information loss, not-a-number values and projection bias
because of diversity in sizes of source brain areas. For
that reason we will focus our future analyses on the
volumetric gene expression and axonal projections data, as
to avoid such issues and provide a finer grained predictive
workflow.
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Furthermore, Ridge Regression and Random Forest
based models provided significant predictions of axonal
projections from gene expression data, but they are not
capable of explicitly modeling the joint distribution between
the two data modalities. Such explicit modeling could be
advantageous in the case of training models to predict
cellularly resolved projections since data that could serve as
training labels, such as single-neuron axonal reconstruction
data, are still limited (Economo et al. 2019; Winnubst
et al. 2019). Future directions might include incorporating
generative probabilistic models, since models such as the
infinite relational model have been successful in capturing
the distributions of various connectomes such as the
C.elegans connectome and the mouse retina microcircuit
(Jonas and Kording 2015; Ambrosen et al. 2013; Hinne et al.
2014; Hinne et al. 2017; Betzel and Bassett 2017).

Whole brain cellularly resolved connections have yet
to be described. The capability of our models to provide
information for a more faithful reconstruction of the
connectome at this resolution will depend on two factors.
The first factor will be the ability to incorporate new
advances in neuroanatomy and translational neuroscience,
such as single-cell RNA sequencing and light sheet
fluorescence microscopy (Tasic 2018; Corsetti et al. 2019;
Rolnick and Dyer 2019).

The second factor will be the ability to mine at a higher
spatial resolution from already tested data modalities such
as in-situ hybridization based gene expression data. For
this factor we will need to adapt additional computational
tools for use in our workflow. One potential tool is
spatial point process analysis, which has successfully been
used to extract spatially distributed counts of cells and
synapses from modalities such as Nissl-stained brain images
(LaGrow et al. 2018; Anton-Sanchez et al. 2014).

Despite their limitations, our predictive models can be
tested in new use-cases and for different resolutions as
long as genetic data are available and registered to the
Allen CCF v3.0 (see Section S2). Taken together, we have
demonstrated a predictive workflow that can further be
used to perform multimodal data integration to improve the
accuracy of the predicted mouse mesoconnectome using
gene expression data and support other neuroscience use
cases.
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A number of workflow-related use-cases have been
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HBP Collaboratory and at Github. See Main Table 1 for
links to the notebooks and to public repositories of the tools
and modules mentioned here.
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