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Abstract
Eye tracking is a useful tool when studying the oscillatory eye movements associated with nystagmus. However, this
oscillatory nature of nystagmus is problematic during calibration since it introduces uncertainty about where the person is
actually looking. This renders comparisons between separate recordings unreliable. Still, the influence of the calibration
protocol on eye movement data from people with nystagmus has not been thoroughly investigated. In this work, we propose
a calibration method using Procrustes analysis in combination with an outlier correction algorithm, which is based on a
model of the calibration data and on the geometry of the experimental setup. The proposed method is compared to previously
used calibration polynomials in terms of accuracy, calibration plane distortion and waveform robustness. Six recordings
of calibration data, validation data and optokinetic nystagmus data from people with nystagmus and seven recordings
from a control group were included in the study. Fixation errors during the recording of calibration data from the healthy
participants were introduced, simulating fixation errors caused by the oscillatory movements found in nystagmus data. The
outlier correction algorithm improved the accuracy for all tested calibration methods. The accuracy and calibration plane
distortion performance of the Procrustes analysis calibration method were similar to the top performing mapping functions
for the simulated fixation errors. The performance in terms of waveform robustness was superior for the Procrustes analysis
calibration compared to the other calibration methods. The overall performance of the Procrustes calibration methods was
best for the datasets containing errors during the calibration.

Keywords Eye tracking · Nystagmus · Calibration

Introduction

Eye tracking is a useful tool to record and study eye
movements. However, the nystagmus eye movements
disturb the calibration procedure for individual recordings,
causing comparisons of waveforms between recordings
unreliable. For example, the calibration protocol assumes
an ability to fixate the gaze, which is limited in people
with nystagmus. Using the default calibration protocol may
lead to unreliable eye tracker data, which in turn may
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misrepresent or even invalidate data analysis. In this paper,
we explore the problems associated with calibration and
propose a method that secures a repeatable and reliable gaze
estimation, referred to as point-of-regard (PoR), which is
crucial for detailed computer based nystagmus diagnostics
and objective evaluation of treatment effects between
recordings.

Description of nystagmus

Nystagmus could be a symptom of an underlying oculo-
motor disorder, which causes involuntary movements of the
eye(s) and the condition may lead to decreased visual acu-
ity (Hertle, 2010; Hussain, 2016). There are two broad types
of nystagmus: early-onset nystagmus and acquired nystag-
mus (Hussain, 2016; McLean, Proudlock, Thomas, Degg,
& Gottlob, 2007), where the former condition is developed
in the months after birth and the latter is developed later in
life (Dunn, 2014). The eye movement pattern, sometimes
referred to as a waveform, can be classified into different
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categories and there are at least 12 different types of nystag-
mus waveforms according to a classification study (Hussain,
2016; Theodorou & Clement, 2016; Dell’Osso & Daroff,
1975).

Different treatments strategies, for instance drug treat-
ment (McLean et al., 2007) and surgery (Kumar, Shetty,
Vijayalakshmi, & Hertle, 2011), have been suggested to
improve the visual acuity in people with nystagmus. In order
to evaluate the different strategies, eye movements before
and after the treatment can be studied. Treatment effects are
difficult to asses in detail without an objective evaluation of
the eye movements, since people with nystagmus are often
considered to be hard to diagnose by clinicians (Hussain,
2016).

Nystagmus can also be found in visually healthy subjects.
Optokinetic nystagmus (OKN) is a reflex found in humans
(Naegele & Held, 1982), which causes oscillatory eye
movements similar to the oscillations found in some forms
of nystagmus such as pure jerk nystagmus. It can easily be
elicited by keeping the head still in a moving environment
(Naegele & Held, 1982).

Calibration of a camera based eye tracker

Nystagmus eye movements can be studied in detail with the
use of an eye tracker. The video-based eye tracker, referred
to as video-oculography (VOG) (Holmqvist et al., 2011),
records eye movements using eye images captured by an
infrared camera. The data from the VOG system are in this
work obtained by finding the pupil center (PC) and the
reflection off the cornea caused by an infrared illuminator,
called the corneal reflection (CR). The vector between the
PC and CR positions is a measure called the pupil-corneal
reflection vector (PCRV). This measure is unique for each
eye orientation and can therefore be used to estimate the
PoR. In order to do this estimation from the PCRV, a
relationship between the PCRV data and the corresponding
PoR data is needed. The process to identify this relationship
is referred to as calibration, which is dependent on the
geometry of the experiment as well as the individual eye
anatomy of each participant (Holmqvist et al., 2011).

The goal of the calibration is to find a mapping function
(MF), e.g. a polynomial, which describes the relationship
between the PCRV data and the PoR data. By presenting
targets at known positions during an experiment, referred
to as calibration targets, and simultaneously recording the
corresponding PCRV data, it is possible to estimate the
mapping function parameters. The number of calibration
targets can vary, but common choices are 2, 5, 9, 13 and 16
targets (Holmqvist et al., 2011).

The structure of the mapping function needs to be
determined before its parameters can be estimated. The
selection of the structure is difficult and the choice may

significantly affect the resulting PoR estimation. This is
illustrated in Fig. 1, where three different polynomial
structures are used to estimate the same eye movement.
The PoR estimations are not the same, which means that
one would have to decide which of these is most likely to
represent the actual eye movement.

Previous work

Several calibration polynomials for video-based eye track-
ing have previously been studied. One study investigated
more than 400,000 polynomials and evaluated their perfor-
mance based on the average error (accuracy), maximum
error, standard deviation of the estimated PoR, number of
polynomial parameters and head movement tolerance (Cer-
rolaza, Villanueva, & Cabeza, 2008). Another study tested
polynomial structures based on accuracy and the number of
calibration targets (Blignaut & Wium, 2013). The two stud-
ies were using simulated data or data from participants with
no visual impairments. In both Cerrolaza et al. (2008) and
Blignaut and Wium (2013), accuracy was used to evalu-
ate the calibration MFs. As is pointed out perfect accuracy,
or goodness of fit, can be achieved by using the same
model order as the number of calibration targets (Blignaut &
Wium, 2013). The calibration polynomial is, however, used
also for other gaze positions and should be tested also for
these (Blignaut & Wium, 2013).

Previous work on nystagmus calibration

Different approaches for calibration data selection for
nystagmus applications have previously been published.

Fig. 1 PoR estimation examples. Illustration of three different PoR
polynomial estimations (see Barot, McLean, Gottlob, & Proudlock,
2013; McLean et al., 2007; Sheena & Borah, 1981 and Eqs. 5, 8 and
7), of the same recorded PCRV data. The data is obtained from a
healthy participant viewing an OKN-stimulus, generating oscillatory
eye movements. When comparing the three PoR estimations, it is
apparent that A4 is different from the other two
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This is an important part of the calibration since the selected
calibration data should represent that the participant looked
at the displayed calibration target. If the selected calibration
data do not represent the “correct” fixation, there is a risk of
misrepresenting eye movement data.

A method to find saccades in eye movement data
based on adaptive acceleration thresholds was presented in
Behrens, Mackeben, and Schröder-preikschat (2010). The
intent of the method was not calibration of nystagmus data,
but it served as the basis for the development of a method
designed for the nystagmus case. The nystagmus specific
version identified the slowest eye movement velocities,
referred to as foveation periods (Dunn, 2014). The method is
based on an algorithm for saccade detection in uncalibrated
data, which is used to divide the waveform into fast and
slow eye movements. The foveations are found in the slow
phase of the data. Another approach to find foveations was
presented in (Dell’Osso, 2005), where manual annotation to
mark the start and end times of the foveations, was used.
While there has been some work on how calibration data are
selected, literature on the suitability of various polynomials
for nystagmus recording purposes is sparse.

Many papers concerning nystagmus and eye tracking do
not report how calibration was performed and evaluated. In
Table 1, nine different studies are summarised. As can be
seen from the table, only three of the nine studies (McLean
et al., 2007; Dunn, 2014; Barot et al., 2013) report any sort
of calibration model structure, although the calibration MF
details are not explicitly presented in any of the papers. Only
three of the studies (Dunn, 2014; Abel, Wang, & Dell’Osso,
2008; Dell’Osso et al., 2011) report any type of data quality
measure or accuracy. In the two first, the reported accuracies
are taken from the manufacturer’s specification sheet and
therefore reveals no information about the accuracy for
participants in these particular studies.

Calibration polynomials

There are various references to calibration polynomials
used in nystagmus eye tracking research. Four of these
polynomials are evaluated in this paper. As described
above, calibration data are used to estimate the polynomial
coefficients where the input to the calibration polynomial is
PCRV, denoted PC in the equations, data and the output is
PoR data. Table 2 summarises the characteristics of the four
selected polynomials previously used in the nystagmus eye
tracking literature.

The PoR estimation, pPoR = [xPoR yPoR]T , is com-
puted using a polynomial, P , and eye tracker data, uPC , as,

pPoR = PuPC . (1)

where uPC = [xPC yPC]T . The selected structure of P

determines the structure of uPC (see Table 2). The purpose

of the calibration is to estimate the coefficients of the
polynomial

P =
[

ph

pv

]
, (2)

where ph and pv are the horizontal and vertical polynomials
respectively. The coefficients are estimated using a least
squares solution according to

pd = (UPCUT
PC)−1UT

PC td , (3)

where d is either the horizontal or the vertical direction,
UPC is a matrix containing the calibration data vectors for
each calibration target,

UPC =
⎡
⎢⎣

uPC(1)
...
uPC(n)

⎤
⎥⎦ , (4)

td is a vector with calibration targets of direction d , and n is
the number of calibration targets. The different polynomials
evaluated in this work are given in the equations below:

A1 =
[

a0,c a0,x 0
a1,c 0 a1,y

]
, (5)

B =
[

b0,c b0,x b0,y b0,xy

b1,c b1,y b1,y b1,xy

]
. (6)

G =
[

g0,c g0,x g0,y g0,x2 g0,y2 g0,xy

g1,c g1,x g1,y g1,x2 g1,y2 g1,xy

]
, (7)

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0,c a1,c

a0,x 0
a0,x2 0
a0,x3 0
a0,x4 0
0 a1,y

0 a1,y2

0 a1,y3

0 a1,y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (8)

Aim of this paper

The aims of this paper are to propose and evaluate a
new calibration MF generating consistent PoR estimations
across recording sessions and participants and compare it
to other calibration mapping functions previously used in
nystagmus research. The main objective is to find an MF
which reliably can be used to evaluate the effects of different
nystagmus treatments, even when the participant fails to
accurately fixate the calibration target.
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Table 2 Summary of the calibration polynomials found in eye tracking and nystagmus related studies

Study Polynomial [P ] Eye tracking data vector [uPC ] Property

**Barot et al. (2013) A1 (5) [1 xPC yPC ]T Linear mapping (Linear)

**Dunn (2014) B (6) [1 xPC yPC xPCyPC ]T Linear mapping + Rota-
tion (non-linear)

* Stampe (1993) G (7) [1 xPC yPC x2
PC y2

PC xPCyPC ]T Quadratic mapping +
Rotation (non-linear)

**McLean et al. (2007) A4 (8) [1 xPC x2
PC x3

PC x4
PC yPC y2

PC y3
PC y4

PC ]T Fourth order (non-linear)

*:The polynomial suggested in Stampe (1993) has been slightly changed compared to the original proposal. The corner correction terms m[q] and
n[q] used in Stampe (1993) are not estimated for each quadrant but rather for the entire plane. There are not any direct references in nystagmus
research to this method in the literature presented in this work. Since it is a common calibration polynomial it was included.

**: Polynomials which were not explicitly stated. Instead they have been interpreted from the context

Proposedmethod

In this section a new calibration method is proposed. It is
developed for video-based eye trackers using a nine-point
calibration and a geometrical setup similar to that of an
EyeLink 1000 Plus in desktop mode. The method consists
of two parts: First, an outlier correction algorithm aimed
at correcting inaccuracies in the recorded calibration data.
Second, a linear mapping function based on Procrustes
analysis is proposed. The method is based on 5 s of data
recorded for each calibration target, as will be presented in
more detail in “Calibration method evaluation”.

The outlier correction algorithm

For the recommended setup of the eye-tracker used in
this work, the horizontal data typically have the following
structure; the horizontal PoR data are dependent only on
the horizontal PCRV data, and not on the vertical PCRV
data. Thus, horizontal PCRV for a horizontal gaze position
is approximately the same, regardless of the vertical gaze
position. This characteristic is used to create an algorithm
to reduce errors in the calibration dataset. The algorithm
is based on nine calibration targets distributed in a 3 × 3
grid where the calibration data for each calibration target
are mapped to one coordinate pair. In this case there are 9
two-dimensional coordinates; one for each two-dimensional
calibration target. The outlier correction algorithm consists
of two stages.

Stage I

1. Divide the data into six groups with three adjacent
data points in each. Half of the groups share a
horizontal calibration target value (see Fig. 2a) and
the other half share the vertical calibration target value
(see Fig. 2b).

2. Fit a line to the three data points in each of the six
groups.

3. Compute the angle between each of the vertically fitted
lines and each of the horizontally fitted lines (3 × 3
computations).

4. If the angle deviates more than 25◦ from the expected
90◦, the vertical line is considered to contain an outlier.
The value of 25◦ was chosen empirically.

If one or more outliers were found during Stage I, Stage
II is initiated.

Stage II

1. An outlier is detected by finding the datapoint with the
largest horizontal deviation from the vertical line.

2. Corrected coordinates of the outlier are computed as
the average of the other data points on each of the
intersecting horizontal and vertical lines, i.e., the new
horizontal data point value is computed as the average
of the corresponding horizontal data points of the
vertical line, and the new vertical data point value
is computed as the average of the corresponding the
vertical data points of the horizontal line.

An example of calibration data points before and after
outlier correction is shown in Fig. 3.

Procrustes calibration

In the calibration process, a set of n (here n = 9) two-
dimensional data points (calibration data) are fitted to
another set of n two-dimensional data points (calibration
targets). Both of these data sets can be viewed as two-
dimensional shapes, and the objective of the calibration
is to identify the best transformation from the calibration
data shape to the calibration target shape. In this work,
Procrustes analysis (Gower, 1975) is used to compare and

Behav Res (2020) 52:36–5040



Fig. 2 Group Division. The data points divided after the horizontal
target values Fig. 2a and vertical target values Fig. 2b. All data points
of the same colour and shape belong to the same horizontal group
Fig. 2a or same vertical group Fig. 2b

align the two datasets. Three steps are involved in the
Procrustes analysis: translation, scaling and rotation. Once
they have been estimated, they can be used to compute the
gaze positions from PCRV data.

The three transformations have been implemented in the
following way:

(a) Construct the calibration data matrix D = [
xd yd

]T
as a 2 × n matrix where n is the number of
calibration targets, and the calibration target matrix

T = [
xt yt

]T
contains the corresponding calibration

targets.

(b) Center both the calibration data and calibration target
datasets by subtracting their respective horizontal and
vertical averages from each data set to create Dμ and
Tμ.

Dμ =
[

xd − x̄d

yd − ȳd

]
=

[
xd,c

yd,c

]
, (9)

T μ =
[

xt − x̄t

yt − ȳt

]
=

[
xt,c

yt,c

]
, (10)

where x̄d is the average of xd , ȳd is the average of yd ,
x̄t is the average of xt and ȳt is the average of yt .

(c) Compute the norms, ND and NT , using

ND =
√√√√ n∑

i=1

x2
d,c(i) +

n∑
i=1

y2
d,c(i) (11)

where xd,c(i) ∈ xd,c and yd,c(i) ∈ yd,c,

NT =
√√√√ n∑

i=1

x2
t,c(i) +

n∑
i=1

y2
t,c(i) (12)

and xt,c(i) ∈ xt,c and yt,c(i) ∈ yt,c. The datasets are
scaled according to:

DN = Dμ

ND

(13)

T N = T μ

NT

(14)

1. The rotation, R, is computed using singular value
decomposition (SVD). In general, the SVD decom-
poses a matrix M into two orthonormal matrices U

and V and a diagonal matrix S that contains the singu-
lar values σl, l ∈ [1, k]. In Procrustes analysis, M =

Fig. 3 Illustration of the outlier correction algorithm where 6 out of
9 calibration data positions have been removed from the data set. The
red squares represent the known calibration data positions, the green
filled circles represent the known data before the algorithm estimation,
and the black circles represent the estimated calibration data positions
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DT
NT N .

DT
NT N = USV H , (15)

where

R = UH V . (16)

and

S = diag(σ1, . . . , σk). (17)

(d) Once the translation, scaling and rotation parameters
have been estimated, the PoR estimation, pPoR , is
computed as follows:

pPoR = κRpPC − L (18)

where

κ = NT

ND

k∑
i=1

σi, (19)

L = κ

[
x̄d

ȳd

]
R −

[
x̄t

ȳt

]
, (20)

and

pPC =
[

xPC

yPC

]
. (21)

This method is denoted as P .

Calibrationmethod evaluation

In this Section the evaluation strategy of the proposed
method is presented. The Section consists of three main
parts; the recording of nystagmus data (“The nystagmus
data experiment (NDE)”), the recording of control data
(“The control data experiment (CDE)”) and the performance
evaluation measures (“Comparing calibration methods”).

Hardware and software

Binocular, raw pupil and CR data were recorded with
an EyeLink 1000 Plus (desktop mode) with a sampling
frequency of 1000 Hz using the host software v. 5.09 and
the DevKit 1.11.571. The center of mass tracking mode was
used. The eye tracker camera was placed in accordance with
the recommendations of the manufacturer (SR-Research,
2010). PsychoPy (version 1.83) (Peirce, 2007) was used to
present all stimuli. The stimulus was presented on an ASUS
VG248QE monitor with a resolution of 1920 × 1080 pixels,
with dimensions 53 cm× 30 cm. The participant to monitor
distance was 80 cm.

A chin and forehead rest was used for all participants.
The analysis software was written in Python (version 2.7).

The nystagmus data experiment (NDE)

Participants

The nystagmus data experiment was performed with
patients diagnosed with nystagmus. The diagnosis was
performed by Björn Hammar (MD), senior consultant at
the neuro-ophthalmology unit at Skåne University Hospital
in Lund, Sweden. This dataset is denoted NDE data. A
total of eight patients with nystagmus were recorded, two of
which were recorded twice totalling ten separate recordings.
Two of the participants were female and six were male.
Out of the ten recordings, four were excluded from the data
set; one due to lack of validation data, two due to loss
of calibration data (too many blinks during the recording
of calibration data) and one due to too small oscillations.
For this participant, only the data from one out of the
nine calibration targets consisted of oscillations with an
amplitude larger than 1◦ and a frequency higher than 2 Hz.
Out of the six remaining recordings, from five different
participants, all were diagnosed with infantile nystagmus (M
= 35.3 [year], SD = 15.9[year]).

Data recording

The experiment included calibration and validation data
recordings. Both calibration and validation data were
recorded monocularly for both eyes by covering one eye
and recording the other eye. Nine calibration targets were
presented to each patient in a randomised order. The
calibration targets were placed in a 3×3 grid. The horizontal
target positions were 0◦ and ±18◦ and the vertical target
positions were 0◦ and ±10◦. The validation targets were
placed in a 2 × 2 grid where the horizontal and vertical
validation target positions were (±5◦, ±5◦) respectively.
The calibration target was a black circle with radius of 0.6◦
with a red circle of radius 0.15◦ in the center. The targets
were presented on a grey background. The presentation
duration of each calibration target and validation target was
decided manually. The goal duration for each target was 5 s
(M = 5.02 [s], SD = 1.24 [s]). The experiment also included
fixation, smooth pursuit, saccade and optokinetic nystagmus
tasks which were not included in this work.

Calibration data selection

The calibration data selection algorithm presented in Dunn
(2014) was implemented. Some adjustments were made to
the original algorithm:

(a) Instead of computing saccade velocity thresholds for
the entire calibration data set, the thresholds were
computed for each calibration target.
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Fig. 4 Various waveform recordings from the NDE data set for
different participants. These are representative of the waveforms found
in the dataset from the six participants. The length of blue scale bar at
the right side of each signal is 4◦. The calibration was preformed using
the Procrustes calibration method

(b) The saccade acceleration threshold was not imple-
mented, due to too heavy saccade rejection.

(c) The adaptive filter to find foveations was not
implemented. Instead, each slow phase longer than
50 ms was considered as a potential foveation. The first
50 ms directly after the onset of the slow phase were
considered to be the most likely foveation candidate.

The observed waveforms in the NDE database are illustrated
in Fig. 4.

The control data experiment (CDE)

Participants

A total of eight participants were included in the dataset, one
female and seven male (M = 37.0 [year], SD = 7.7 [year]).
This data set is denoted CDE data and was divided into two
subsets, see “Two CDE subsets”. Data from one participant
was excluded due to data loss (too many blinks during the
recording of calibration data).

Data recording

The calibration protocol consisted of 81 calibration targets
using a standard 3 × 3 grid with nine possible positions
for each calibration target, one reference position and eight
offset positions. The participants were recorded binocularly.
The distribution of the targets is shown in Fig. 5. The
vertical and horizontal offset amplitudes were ±0.5◦ and
±2.0◦. Each target was shown for 1.5 s. The positions
of the calibration targets were evenly distributed between
−10◦ and 10◦ in the horizontal direction and −5◦ and

Fig. 5 The 81 calibration targets used for the CDE calibration are
shown. The blue diamonds represent calibration targets and the
red triangles represents targets simulating fixation inaccuracies. The
targets were presented in random order. Each target was shown for 1.5
seconds

5◦ in the vertical direction, not counting the offsets. The
calibration target was a white circle with radius of 0.6◦
with a black circle of radius 0.15◦ in the center. The targets
were presented on a grey background. The calibration
targets were presented in a randomised order and the offset
magnitude at each calibration target was also randomised.
Since no nystagmus is present in the CDE data a different
method for calibration data selection was needed, see
“Calibration data selection”.

Two OKN tasks were recorded for this dataset. A black
and white striped pattern, see Fig. 6, was used to elicit OKN.
In the first OKN task, the pattern was moving horizontally.
In the second task, the pattern was rotated 90◦ and moved
vertically. In both cases, the temporal frequency of the

Fig. 6 Illustration of the black and white striped pattern used to elicit
nystagmus eye movement in healthy participants. The participant was
asked to fixate in the center of the stripped screen when the pattern was
in motion. The motion of the stimulus in the configuration illustrated
above was horizontal. If the pattern is rotated 90◦ the stimuli moves
vertically
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pattern was 8 cycles / second (in the moving direction),
the spatial frequency was 0.5 cycles / degree and the
duration was 15 s. Before the pattern was set in motion the
participants were asked to look in the center of the screen
and keep looking there as long as the pattern was moving.
The experiment also included fixation, smooth pursuit and
saccade tasks, which were not included in this work.
The OKN datasets were used to compute the calibration
plane distortion and the waveform robustness, described in
“Calibration plane distortion & waveform robustness”.

TwoCDE subsets

The CDE data datasets were divided into two subsets: one
which contains only calibration targets with no offset, CDE
- NO, and one which contains calibration targets with a
random offset for each calibration target, CDE - O. The
notations NO and O represent datasets with no introduced
offsets and with introduced offsets, respectively. While
the CDE - NO data correspond to data from participants
without any visual impairment, the CDE - O data simulate
potential fixation inaccuracies caused by the nystagmus
oscillations for different angles during the calibration.

The CDE - O dataset was created by repeating the
calibration data selection process 50 times, each time
assigning a horizontal random error (including 0◦) to
each calibration target. Each repetition was independent of
previous repetitions.

Calibration data selection

The rationale for calibration data selection at each
calibration target, is that the PCRV segment with the least
variance best represents a fixation. The calibration data
selection method is described below:

(a) First, in order to avoid influence of the time it takes
to change positions after a new calibration target has
appeared, the first 500 ms of the recorded data for each
calibration target are removed.

(b) Second, the 200 ms window with the smallest variance
of the following PCRV data are computed. The total
variance, s2

tot , is computed according to Eq. 22, where
s2
x and s2

y are the horizontal and vertical variance
respectively.

s2
tot = s2

x + s2
y (22)

(c) Finally, the horizontal and vertical calibration data
position estimates are computed as the averages of the
200 ms window found in step 2.

Comparing calibrationmethods

In this work, three different measures are used to compare
the characteristics of the different mapping functions. These
are accuracy, α, calibration plane distortion, μd , and
waveform robustness, ξ . Accuracy is tested on a limited
number of validation targets, which in this work is equal to
four targets per participant. The calibration plane distortion
is the distance between two PoR estimations from the same
MF. Finally, the waveform robustness is computed as the
difference between two PoR estimations after adjusting
for the linear properties translation, rotation and scaling
between the two PoR estimations.

Accuracy

The accuracy for validation target point k, αk , is computed
according to Eq. 23 where xPoR(k) and yPoR(k) are the
mapping function estimates of the horizontal and vertical
validation target positions, respectively, and xs(k) and ys(k)

are their corresponding known validation target positions.
The accuracy computation in Eq. 23 results in one single
value for each validation target. A small accuracy value
means good performance, while a large value means poor
performance.

αk =
√

(xPoR(k) − xs(k))2 + (yPoR(k) − ys(k))2 (23)

The accuracy is presented in the following way. For each
mapping function, the average accuracy of each eye of all
validation data for one dataset is computed. This means for
example that the CDE O dataset contain: 7 participants × 4
validation targets × 50 iterations = 1400 accuracy samples.

The accuracy is calculated separately for all three
datasets. In order to evaluate the performance of the
outlier correction algorithm (see “The outlier correction
algorithm”), the accuracy results for the NDE dataset
without the outlier correction algorithm are also calculated.

Calibration plane distortion & waveform robustness

The calibration plane distortion computations were imple-

mented in the following way. If P PoR1 = [
vx vy

]T
and

P PoR2 = [
wx wy

]T
are two matrices of dimension L × 2

containing gaze estimations, the calibration plane distortion,
μ, is defined as:

μ(P PoR1, P PoR2) = 1

L

L∑
l=1

√
δ2
x(i) + δ2

y(i). (24)

where

δx(i) = vx(i) − wx(i); vx(i) ∈ vx, wx(i) ∈ wx, (25)
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and

δy(i) = vy(i) − wy(i); vy(i) ∈ vy, wy(i) ∈ wy . (26)

The calibration plane distortion is used to compute how
close two PoR estimations are in absolute terms, i.e., the
distance on the stimuli screen. Even though it includes
changes in the waveform, it is likely that translation effects
are a dominant part of the calibration plane distortion
value. In order to study the effects on the waveform itself,
the waveform robustness measure was computed using the
Procrustes Distance, DP . It is defined as:

DP (P PoR1, P PoR2) = 1 −
(

k∑
l=1

σl

)2

(27)

where S = diag(σ1, . . . , σk), is computed according
to Eq. 15 and DP ∈ [0, 1]. The P PoR1 and P PoR2

matrices correspond to the D and T matrices described in
“Procrustes calibration”.

If P f {k},NO is a gaze estimation from mapping function
f {k} from the CDE - NO dataset and P f {k},O is a gaze
estimation from mapping function f {k} from the CDE -
O dataset, where f = {A1,B,G,A4,P} and k ∈ [0, 4],
the calibration plane distortion, μk , and the waveform
robustness, ξk , for mapping function k are defined in Eqs. 28
and 29 respectively.

μk = μ(P f {k},NO, P f {k},O) (28)

ξk = DP (P f {k},NO, P f {k},O). (29)

In order to reduce the influence of blinks and other artefacts
in the OKN datasets, the blink removal algorithm used for
the calibration data was applied to the OKN data before the
computation of both the calibration plane distortion and the
waveform robustness. The method is described in full detail
in Dunn (2014).

The results for calibration plane distortion and waveform
robustness are presented as empirical cumulative distribu-
tion functions (CDF s), as well as the area under each CDF
curve, ACDF . The area computations for the calibration
plane distortion were bounded to 1◦ as this is considered
a good calibration accuracy (Hansen & Ji, 2010). The area
computation for the waveform robustness was bounded to
0.2 as the results from “Waveform robustness and accuracy
examples” showed that Prob(DP > 0.2) ≈ 0.01 for the G
MF. The ACDF was adjusted such that ACDF ∈ [0, 1] by
dividing the computed area with the maximum CDF-value
for the area computation. Using this definition of the wave-
form robustness, the ACDF for the Procrustes calibration
method will be 1.0 be definition.

Results

Accuracy

The accuracies in all datasets are presented in Table 3.
When comparing the accuracies for the NDE dataset with
and without OA, it can be seen that the OA improves
the accuracy at least for one of the eyes for all mapping
functions. The most prominent improvements are seen for
the mapping functions with a higher degree of freedom,

Table 3 The average and standard deviation of accuracy for all datasets

The format is mean ± standard deviation. The accuracies are divided and color-coded into three categories; : 0◦ − 0.5◦, : 0.51◦ − 1.5◦
and : 1.51◦ − inf◦. The (OA) indicates that the outlier correction algorithm has been used during the calibration
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Fig. 7 The calibration plane distortion plotted for the five mapping
functions as cumulative distribution functions. The calibration plane
distortion of the A1, B and the P are almost the same. The G and
A4 polynomials performs worse compared to the three aforementioned
MFs

i.e., G and A4. As expected, the G MF achieved the best
accuracy for the CDE - NO dataset.

For the NDE data and CDE - O data (both with OA)
where calibration data fixation inaccuracies are present, the
accuracies for the A1, B, G and P mapping functions are
approximately the same while the A4 yields a considerably
worse accuracy. The fact that the accuracies are worse for
the NDE database than for the CDE - O database indicates
that the true Nystagmus calibration errors are more severe
than the simulated ones. If good accuracies are defined
as being smaller than or equal to 0.5◦, it is difficult to
achieve good accuracy with inaccuracies in the calibration-
data.

Table 4 ACDF Results

Dataset calibration plane
distortion (μ)

A1 B G A4 P

Vertical 0.61 0.57 0.29 0.23 0.59

Horizontal 0.59 0.57 0.31 0.18 0.58

Waveform robustness (ξ )

Vertical 0.91 0.82 0.64 0.36 1.00

Horizontal 0.93 0.85 0.80 0.43 1.00

The A1 MF generates the best calibration plane distortion scores
whereas the P MF generates a perfect waveform robustness score
(1.0). The difference in μ-value for the A1, B and P MF are quite
small. The analysis was conducted on OKN data

Calibration plane distortion

The calibration plane distortion CDFs are presented in Fig. 7
and the ACDF results are listed in Table 4. The differences
between the results for the vertical and horizontal OKN data
within each MF are small. The performance of the A1, B
and P MFs are quite similar. The results for the other two
MFs are worse. This is confirmed by Fig. 7.

Waveform robustness

The waveform robustness CDFs are presented in Fig. 8 and
the corresponding ACDF results are presented in Table 4.
The results in Fig. 8 show that the Procrustes calibration
method performs the best and the A4 performs the worst
for both the vertical and the horizontal OKN tasks. This
is quantified in Table 4. The waveform robustness seems
to be linked to the non-linearity of the MF; a higher
degree of non-linearity causes worse waveform robustness
performance and vice versa.

Waveform robustness and accuracy examples

A few examples illustrating the relationship between
accuracy and waveform robustness for the G MF are
presented in Figs. 9 and 10. As can be seen in Fig. 9, it is
possible for an MF to produce small waveform robustness
values, DP = 0.05, with a relatively large accuracy value,
2.12◦. On the other hand, Fig. 10 illustrates that a
accuracy does not guarantee a small waveform robustness
value. A DP value larger than 0.2 is high, since only 1 %
of the waveforms generates a higher value in the CDE - O
dataset. All waveforms estimations were made using the G
MF.
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Fig. 8 Waveform Robustness CDF. The vertical and horizontal OKN
data CDF:s for waveform robustness. The P generates the best results
and the A4 generates the worst results

Discussion

In this paper, we investigated the suitability of commonly
used calibration mapping functions for data from people
with nystagmus and proposed a new approach for cali-
bration of these participants. The new method utilises an
outlier correction algorithm based on the experiment geom-
etry and calibrates the eye tracker using Procrustes analysis.
Our method was compared to different calibration MFs
previously used in nystagmus research. Accuracy and Pro-
crustes distance were used to study the properties of the
various MFs. Procrustes distance was used to study wave-
form robustness, i.e., how well waveform PoR data can be
repeated within the same participants despite fixation inac-
curacies during the calibration, and calibration plane distor-
tion, i.e., how close, in absolute terms, data with simulated

Fig. 9 Small DP . Examples of waveforms where the CDE - O
estimation is similar to the CDE - NO estimation. The probabilities
of the DP -values 0.06 and 0.05 are Prob(DP > 0.06) ≈ 0.62
and Prob(DP > 0.05) ≈ 0.73 for CDE - O dataset, respectively.
As illustrated by the plots, it is possible to achieve good waveform
robustness even if the accuracy is . The G MF was used for all
estimations. The analysis was conducted on OKN data

fixation inaccuracies were to data without simulated fixa-
tion inaccuracies. Data from people with nystagmus (NDE),
visually healthy participants (CDE - NO) and participants
with simulated fixation inaccuracies (CDE - Offset) were
included in the study.

The accuracy data show that there is little difference
between the A1, B, G and P MFs for the NDE and CDE
- O when using the outlier algorithm. However, when
studying the calibration plane distortion presented in Fig. 7
and Table 4 it becomes apparent that the G polynomial
performs worse compared to the A1, B and P MFs. This
observation is likely explained by poor performance on
interpolated data (the OKN dataset) by the G polynomial.

Behav Res (2020) 52:36–50 47



Fig. 10 Large DP . Examples of data generating accuracy 10a
and 10b accuracy, but with poor waveform robustness values.
The probabilities of the DP -values of 0.2 and 0.24 are Prob(DP >

0.2) = 0.01 and Prob(DP > 0.24) < 0.01 for CDE - Offset dataset,
respectively. The G MF was used for all estimations. The analysis was
conducted on OKN data

The calibration plane distortion thought as an accuracy
measure for interpolated data, using the CDE - NO as
reference. Finally, the results from the waveform robustness
in Fig. 8 show that the P MF has the best performance
Since the Procrustes calibration method is based on linear
operations only, the waveform robustness is 1.0 by default.
The performances of the other MFs are ordered by their
non-linearity; the more non-linear, the worse performance.
The overall results show that it is not beneficial to use non-
linear mapping functions when working with difficult to
calibrate participants. Therefore, Procrustes analysis is the
best choice when repeatable calibrations are desirable.

The outlier correction algorithm improved the validation
accuracies in all cases. This suggests that there is a potential

value in modelling the experiment geometry. Even though
our results show that the accuracy alone is not a reliable
measure for evaluation of an MF it is still desirable to
improve the accuracy as long as it does not affect other
properties, such as the waveform. It should be noted that if
the distribution of the calibration targets is different from
the one presented in this paper, the algorithm needs to be
adapted for the specific target constellation. One could try to
find the geometric relationship between data and targets for
calibration target distributions as well, but that would likely
demand a more in-depth analysis of the geometry of the
experimental setup. The threshold for detecting an outlier,
described in Stage I of the outlier correction algorithm
in “The outlier correction algorithm”, is an important
parameter for the correction performance. This parameter
reflects the maximum deviation that is accepted from the
theoretical horizontal distribution of the calibration data.
As can be seen in Fig. 4, the foveation position varies
spontaneously for people with nystagmus. If the threshold
value is set too low, there is a risk to affect the structure
of the calibration data. On the other hand, if the threshold
is set too high, there is a risk to not detect outliers in the
data.

The reason why accuracy is not considered as a
good indicator of calibration performance for people with
nystagmus are the following: 1) It is difficult to know if the
validation data were recorded when the participant looked at
the corresponding validation target. The accuracy analysis
does not make sense if the participant did not look at the
presented target, since the entire point of the validation is
to test how well the mapping function transforms PCRV
data to some known position. Since gaze estimation is
dependent on the calibration, it is not possible to know if
poor validation results originate from the calibration or the
validation. 2) Data distortion effects, as shown in Fig. 10a,
may occur even if the accuracy is considered to be .
This is a problem because one will think that the calibration
went well, when in reality gaze data do not correspond
to the actual eye movements generated by the participant.
However, accuracy is a good measure in the sense that it is a
unit (degree) that can be compared between recordings and
systems.

The distance measure was included to complement the
accuracy and it was used to study how the waveform is
affected by the calibration. A problem with the calibration
plane distortion and waveform robustness measures is that
the value may be difficult to interpret. In this paper, we have
computed them on the same PCRV dataset for each mapping
function, which makes it possible to compare the distance
values between the MFs. The results can only be used to
find that there are differences in the waveform, not the
nature of these differences. For the nystagmus case, more
specific differences such as foveation duration, amplitude,
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frequency and the nystagmus waveform, are of interest but
are not possible to find using DP .

The CDE - O used in this work is likely not represen-
tative of fixation inaccuracies caused by nystagmus, which
the results also indicate; the accuracy of CDE - NO is better
compared to that of the NDE. The idea of making ran-
dom errors of fixed magnitude does have its limitations and
a continuous distribution may possibly be a more realistic
representation of the fixation errors for some participants.
Signal (1) in Fig. 4 shows that it is possible for the position
after the fast phase to vary as much as 4◦ between cycles.
The fixation errors introduced in the CDE - O database are
therefore considered reasonable.

The creation of the CDE - NO and CDE - O databases
serves a useful purpose in the sense that we have created
two identical PCRV datasets, but with different estimates of
the mapping functions. This allowed us to study differences
between the tested calibration mapping functions. It is
not possible to turn off the nystagmus oscillations for the
affected patients, causing this analysis to be impossible to
carry out for nystagmus data, since there is no reference
waveform to compare the estimations with.

In this work, we tested the EyeLink 1000 Plus system,
which is frequently cited in nystagmus research. The
applicability of the proposed method for other eye trackers
has not been studied.

Finally, the calibration data selection has not been central
to the analysis in this paper. It is reasonable to assume
that a poor calibration data selection method does have a
negative impact on the PoR results, especially considering
the results presented in this paper. The adjustments to
Dunn’s method (Dunn, 2014) may have influenced the
results in this paper. But based on the data we recorded, the
method adjustments are considered reasonable. An updated
version of the method has recently been developed (Dunn
et al., 2018). This method may further improve the accuracy
of the algorithm. It should also be noted that the calibration
data selection implemented in this work is designed for
nystagmus with foveation periods or at least waveforms
with a distinct fast phase. As can be seen in Fig. 4, there
were no pendular waveforms present in this dataset. For
pendular nystagmus waveforms, it is, however, still possible
to use the method since the outlier correction algorithm
estimates missing data. It is, however, necessary to have at
least three recorded data points, one in each row and one in
each column, in order for the algorithm to work.

Conclusion

The Procrustes analysis calibration method was shown to be
the best when working with data from participants who have
a decreased ability to fixate their gaze during the calibration.

The principal difference between the Procrustes calibration
method and the other investigated methods was the ability to
generate repeatable waveform estimations regardless of the
calibration recording condition. The choice of calibration
mapping function may have a significant impact on the
resulting eye movement estimations, which in turn may
decrease the reliability of subsequent data analysis.

Acknowledgments This work has been funded by the Swedish
Research Council [grant number VR 2015-05442]. We gratefully
acknowledge the Lund University Humanities Laboratory. We would
also like to thank all the participants.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Abel, L. A., Wang, Z. I., & Dell’Osso, L. F. (2008). Wavelet
analysis in infantile nystagmus syndrome: limitations and abilities.
Investigative Ophthalmology & Visual Science, 49(8), 3413–3423.

Barot, N., McLean, R. J., Gottlob, I., & Proudlock, F. A. (2013).
Reading performance in infantile nystagmus. Ophthalmology,
120(6), 1232–1238.

Behrens, F., Mackeben, M., & Schröder-preikschat, W. (2010). An
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