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The emergence of new variants of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) herald a new phase of 
the pandemic. This study used state-of-the-art phylodynamic 
methods to ascertain that the rapid rise of B.1.1.7 “Variant of 
Concern” most likely occurred by global dispersal rather than 
convergent evolution from multiple sources.
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Following phylogenetic and epidemiological investigations, 
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) genetic lineage B.1.1.7 is suspected to be associated 
with an increase in human-to-human viral transmissibility 
[1, 2] and was classified as a “variant of concern” (VOC 
B.1.1.7) on 18 December 2020 [3]. The variant was first dis-
covered in Kent, United Kingdom, on 21 September 2020 
and has since been identified in over 40 countries across 
the world, including the United States [3–6]. We sought to 
evaluate whether the breadth of VOC B.1.1.7 identification 
represents convergent evolution [7] or rapid local and global 
dispersal after this lineage’s genesis.

On 14 January 2021, we downloaded all B.1.1.7 lineage 
SARS-CoV-2 genomic sequences available on the GISAID 
(Global Initiative on Sharing All Influenza Data) public data-
base [8] (17 118 full length genome sequences across 36 coun-
tries, Supplementary Table 1). The vast majority were from 
the United Kingdom (95%, n = 16  263, generated by the na-
tional COVID-19 [coronavirus disease  2019] Genomics UK 
[COG-UK] Consortium) [9], but 855 sequences were from 

other countries, including 80 from North America (74 from the 
US; Supplementary Figure 1).

We combined these B.1.1.7 sequences with a representative 
set of non-B.1.1.7 sequences (n = 4768) based on sequence ho-
mology. All sequences were aligned using MAFFT and highly 
homoplasic sites were masked [10]. To reduce the data set size 
while maintaining an appropriate set of epidemiologically rele-
vant background sequences, we used BLAST [11, 12] to identify 
the 50 closest non-B.1.1.7 variants to each of the 17 118 B.1.1.7 
genomic sequences in the data set [13, 14]. After keeping one 
copy of duplicated entries that ranked among the 50 best hits, a 
total of 4768 sequences out of the 316 075 non-B1.1.7 sequences 
available on GISAID were kept for further analyses and com-
bined with the B.1.1.7 data set. The final set of 21 886 sequences 
was aligned with MAFFT [15], and a maximum likelihood phy-
logeny was inferred using IQ-TREE v2.1.2 [16]. The resulting 
phylogeny showed that all available B.1.1.7 samples clustered 
together with high support (0.99 Shimodaira Hasegawa [SH] 
support [17–19]). Non-UK VOC B.1.1.7 sequences intermix 
within those from the United Kingdom (Figure 1). As conver-
gent evolution can induce incorrect clustering [20], the same 
approach was repeated after excluding variable positions that 
define the B.1.1.7. lineage (Supplementary Table 2), which 
yielded a similar picture. These patterns are in line with the view 
that this variant successfully spread around the world after it 
arose in the United Kingdom.

To estimate the timing of introduction of B.1.1.7 variants 
outside the United Kingdom, we applied a multistep analytic 
approach, as previously described by our group for human 
immunodeficiency virus (HIV) [21, 22] (see Supplementary 
Information). B.1.1.7 clusters of size ≥ 2 including only 
non-UK sequences were identified from the ML phylogeny in 
R [23]. For each non-UK clade, the phylogeny was rescaled 
into units of time with treedater [24], assuming a strict mo-
lecular clock with the rate of SARS-CoV-2 genome evolution 
drawn from an externally estimated distribution, as previously 
described [25], and the rate was a mean of 9.41 × 10–4 nucleo-
tide substitutions per site per year with a standard deviation of 
4.99 × 10–5. To incorporate uncertainty in the estimated clock 
rate, molecular clock estimation was replicated 100 times for 
each non-UK B.1.1.7 clade. We identified a total of 90 clades 
of size ≥ 2 for a total of 513 sequences (ranging from 2 to 
135)  including only B.1.1.7 variants from outside the United 
Kingdom. The largest cluster of 135 sequences was iden-
tified in Denmark across 5 regions. One third (60/90) were 
European exclusive clusters (Supplementary Table 1), whereas 
12 clusters included sequences from the United States (5 sam-
pled in California).
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The earliest estimated seeding of B.1.1.7 from the United 
Kingdom dates to 9 September 2020 in Denmark, and the most 
recent to 8 January 2021 in Spain (see Supplementary Table 3 
and Supplementary Figure 2). The number of weekly introduc-
tions outside the United Kingdom peaked in mid-December 
(Figure 2). In the United States, the first introduction was es-
timated on 14 November in Florida. Five distinct introduc-
tions in California were also identified from 3 December to 

26 December, including one cluster of 19 sequences. Of note, 
6 international non-UK clusters including ≥2 countries were 
identified of whom 2 did not include European sequences 
(Supplementary Table 3).

In response to the rapid increase in viral infections and spread, 
UK officials announced a lockdown on 31 October that came 
into force on 5 November and ended on 5 December. Given time 
to the most recent common ancestor (TMRCA) estimates, we 

Figure 1. SARS-CoV-2 B.1.1.7 phylogenetic tree. Tips outside the UK (“non-UK B.1.1.7 tips”) in the phylogeny are colored according to the continent of origin (red denotes 
taxa from Asia, blue denotes taxa from Europe, green denotes taxa from North America, maroon denotes taxa from Oceania, and yellow denotes taxa from South America; 
B.1.1.7 sequences from the UK are not colored). Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; UK, United Kingdom.
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determined that 19% (17/90) of the exportation events that gave 
rise to detectable non-UK VOC B1.1.7 transmission lineages oc-
curred during this period (the remaining 81% occurred before or 
after these dates). The emergence and rapid dispersal of this new 
VOC led to the implementation of a new national strict lockdown 
in the United Kingdom on 4 January 2021 [26].

As previously described by du Plessis et al[14], we next used 
the TMRCA of each non-UK clade to estimate the genomic 
“detection lag” for each cluster, which represents the duration 
that a transmission lineage went undetected before it was first 
sampled by genome sequencing. The mean detection lag was 
~10.6  days (interquartile range [IQR] = 4–15). This largely 
agrees with detection lag-time estimates from SARS-CoV-2 
importation into the United Kingdom in the first months of 
the pandemic [14], which was on average 8 days (IQR = 3–15, 
~10 days for lineages comprising ≤10 genomes and <1 day for 
lineages of >100 genomes).

Of note, virus genome sequences have been determined 
for only a fraction of infections. Even in the United Kingdom, 
where the by far largest sequencing effort is done, only an esti-
mated 4.3% (129 939 available sequences out of 3 039 797 cases 
reported on 14 January) [27] of infections have been sequenced. 
For this reason, and also because not all sequenced SARS-
CoV-2 genomes are being deposited in the GISAID repository, 

many B.1.1.7 variants that successfully established transmission 
chains outside of the United Kingdom likely remain undetected 
(for now). Our estimated number of B.1.1.7 exportation events 
from the United Kingdom thus represents an underestimate. 
The sparse sampling and sequencing also poses limits to the 
accuracy with which introduction events can be dated (see du 
Plessis and colleagues [25] for a more detailed explanation).

Our results do not suggest that the canonical mutations 
of VOC B.1.1.7 evolved independently in different locations. 
Instead, our analyses point to an origin in and spread of the 
VOC B.1.1.7 from the United Kingdom. As for the virus’ 
initial [28] and subsequent [29, 30] spread, global connect-
edness and high levels of human mobility undoubtedly fa-
cilitated VOC B.1.1.7 dissemination. The swift global spread 
of VOC B.1.1.7 illustrates that current restrictions are insuf-
ficient to prevent the spread of new and emerging variants 
[31–37]. Similar to Ebola [38], hepatitis C virus (HCV) [39, 
40] and HIV [22], countermeasures to SARS-CoV-2 spread 
should be developed with a broader perspective than the 
national level. Otherwise, without population immunity, 
successful local reductions in SARS-CoV-2 burden will be 
counteracted by imported infections that set off new waves 
of viral spread, possibly exacerbated by novel phenotypic 
characteristics of the imported strains.

Figure 2. Number of sequences (A) and number of introductions of B.1.1.7 outside the UK (B). A, Biweekly number of B.1.17 VOC genome collected through time in the UK 
(blue) and in other countries (red) is presented. B, Vertical green bar represents the biweekly number of introductions. Abbreviations: UK, United Kingdom; VOC, variant of 
concern.



BRIEF REPORT • cid 2021:73 (15 december) • 2317

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
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questions or comments should be addressed to the corresponding author.
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