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Alka Yadav 2, Gabriela Kratošová 4 and Patrycja Golińska 1,*
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Abstract: Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a
relatively new and exciting area of research with considerable potential for development. Among
the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been
frequently used due to their unique physicochemical properties that result not only from their shape
and size but also from surface coatings of natural origin. These properties determine antibacterial,
antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs.
This review provides the current state of knowledge on the methods and mechanisms of biogenic
synthesis of silver nanoparticles as well as their potential applications in different fields such as
medicine, food, agriculture, and industries.

Keywords: silver nanoparticles; biosynthesis; application; biodistribution; toxicity

1. Introduction

Nanotechnology is emerging as a science of the 21st century that has attracted a great
deal of attention from the global scientific community due to its pathbreaking innovations
and applications in varied sectors [1]. Nanomaterials are considered to be the building
blocks of nanotechnology and are found to possess various unique properties, such as
optical, mechanical, catalytic, and biological properties, etc., that make them the materials
of choice for nanotechnologists. In addition, features such as the extremely small size of
nanomaterials, their high surface area-to-volume ratio, high reactivity, and compatibility,
etc., enhance their suitability for various purposes, including biomedical applications [2].
To date, different physical, chemical, and biological approaches have been proposed for the
synthesis of nanoparticles. Among these approaches, physical and chemical approaches are
reported to have control on the size of synthesized nanoparticles, but they have their own
shortcomings. As far as physical synthesis is concerned, it involves usage of radiation (e.g.,
microwave, UV light, etc.), high temperature, and pressure, which might be hazardous.
Moreover, in the case of chemical synthesis, usage of toxic chemicals is the main drawback.
Considering these issues, the demand for a newer, novel, and ecofriendly synthesis ap-
proach was raised, and that search has been fulfilled with the option of biological synthesis
of nanoparticles [3–6].

Recently, the green synthesis of nanomaterials has garnered the attention of nanotech-
nologists and has given birth to a new branch known as “green nanotechnology” [7]. The
biosynthesis of AgNPs is considered to be a green route as it follows the principles of green
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chemistry and is the basis of sustainable development. It is usually performed by using
various microorganisms such as fungi, bacteria, green algae, and also plants. Biosynthesis
has several advantages over the physical and chemical processes because it is eco-friendly,
cost-effective, and can be executed at ambient temperature and pressure, with enhanced
bioactivity, and less toxicity. It was demonstrated that the proteins and enzymes secreted
by the above-mentioned bio-systems act as reducing agents that reduce the bulk metal
salt into respective nanoparticles and also act as capping agents that provide stability
to nanoparticles and make them bio-compatible for various biological applications [8,9].
Among the metal nanoparticles, silver nanoparticles (AgNPs) have been revealed to have
an enormous number of applications, particularly in biomedicine due to their broad range
of antimicrobial potential, including antibacterial, antifungal, antiviral, and antiprotozoal
properties [10,11]. Therefore, special focus has been given to biogenic AgNPs.

In this review, we discuss different methods of synthesis of AgNPs, with special
reference to bio-inspired synthesis and purification of nanoparticles. The different views on
the mechanism involved in biosynthesis provide insights into how AgNPs are synthesized
by biological systems. We also elaborate the applications of AgNPs in medicine, agriculture,
textiles, sensors, etc. The biodistribution and toxicity of biogenically synthesized AgNPs
are also discussed.

2. Biosynthesis Is a Solely Green and Sustainable Technology for AgNPs Synthesis

Metal nanoparticles are well known for their unique physical, chemical, and biological
properties, which depend on their size, shape, and surface charge [12,13]. The morphology
and dispersity of metal nanoparticles depend on the mode of their synthesis [14]. Mostly the
synthesis of nanoparticles is based on physical and chemical methods; however, the current
studies in this field has raised concerns regarding the possible risks and the related effects
of nanoparticles on the environment and humans [15]. Due to the growing application of
nanoparticles in almost every field of science and technology, researchers have emphasized
the biological synthesis of metal nanoparticles [14]. Among the different nanoparticles
studied to date, AgNPs have achieved a significant place due to their excellent antimicrobial
property against a broad range of pathogenic micro-organisms [16].

The biosynthesis of AgNPs using bacteria, fungi, yeasts, algae, and plants has garnered
much attention in the recent decade [13]. Biosynthesis is the process of utilization of plant
extracts, different microbes, and enzymes for the synthesis of metal nanoparticles (Figure 1).
This process offers cost-efficient, environment-friendly, and scalable fabrication of nanopar-
ticles without the use of any toxic chemicals [12]. Furthermore, the synthesis process can
be sub-divided into two types i.e., a top-down and a bottom-up approach [15,16].

2.1. Strategies for Synthesis

AgNPs are synthesized using physical, chemical, and biological methods. The chemi-
cal synthesis of AgNPs is achieved through chemical reduction, the electrochemical method,
irradiation, and pyrolysis [15]. For the chemical synthesis process, reducing and stabilizing
agents are required. Generally ascorbic acid, ethanol, borohydride, sodium citrate, etc. are
used as a reducing agents [14]. During the chemical and physical synthesis use of hazardous
chemicals, the high temperature and pressure needed to perform the synthesis of nanopar-
ticles are a matter of great environmental concern [16]. Table 1 summarizes important
physical, chemical, and photochemical methods commonly used for the synthesis of Ag-
NPs. Based on the aforementioned problems of chemical and physical synthesis methods,
biological synthesis appears to be the most acceptable method in terms of environmental
impact. Biological synthesis involves the fabrication of AgNPs using micro-organisms or
plant extract, which signifies an environmentally friendly approach towards the synthesis
of metal nanoparticles. It also shows several advantages over the chemical and physical
methods because of its simple, cost-efficient, high-yielding nature [15]. Biological synthesis
can further be sub-divided into extracellular synthesis and intracellular synthesis. In the
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intracellular synthesis method, nanoparticles are synthesized inside the cells while, in
extracellular synthesis, cell-free fungal extract is used (Figure 2).
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Table 1. Important physical, chemical, and photochemical methods used for the synthesis and stabilization of AgNPs [15].

Method Precursor Reducing Agent Stabilizing Agent Size (nm)

Chemical Methods

Chemical reduction AgNO3
N,N′-

dimethylformamide - <25

Chemical reduction AgNO3 Sodium borohydrate Surfactin (a lipopeptide
biosurfactant) 3–28

Chemical reduction AgNO3

Trisodium citrate
(initial) +SFS
(secondary)

Trisodium citrate <50

Chemical reduction AgNO3 Trisodium citrate Trisodium citrate 30–60

Chemical reduction AgNO3 Ascorbic acid - 200–650

Chemical reduction AgNO3 Sodium borohydrate Dodecanoic acid ~7

Chemical reduction AgNO3 Paraffin Oleylamine 10–14

Chemical reduction
(thermal) AgNO3 Dextrose Polyvinyl pyrrolidone 22 ± 4.7

Chemical reduction
(thermal) AgNO3 Hydrazine - 2–10

Chemical reduction
(oxidation of glucose) AgNO3 Glucose Gluconic acid 40–80

Chemical reduction
(polyol process) AgNO3 Ethylene glycol Polyvinyl pyrrolidone 5–25

Chemical reduction
(polyol process) AgNO3 Ethylene glycol Polyvinyl pyrrolidone 50–115

Chemical reduction
(microemulsion) AgNO3 Hydrazine hydrate Aerosol-OT 2–5



Nanomaterials 2021, 11, 2901 4 of 34

Table 1. Cont.

Method Precursor Reducing Agent Stabilizing Agent Size (nm)

Chemical reduction
(microemulsion) AgNO3 Hydrazine hydrate Aerosol-OT <1.6

Electrochemical
(polyol process) AgNO3

Electrolysis cathode:
titanium anode: Pt Polyvinyl pyrrolidone ~11

Chemical reduction (Tollen) AgNO3
m-Hydroxy

benzaldehyde
Sodium formaldehyde

sulphoxylate 15–260

Physical Methods

Physical synthesis Ag wires Electrical arc discharge,
water - 14–27

Physical synthesis AgNO3 Electrical arc discharge Sodium citrate 2–5

Photochemical Methods

Photochemical
reduction (pulse radiolysis) AgClO4 Ethylene glycol - 17–70

Photochemical
reduction (microwave

radiation)
AgNO3 Ethylene glycol Polyvinyl pyrrolidone 5–10

Photochemical
Reduction (photoreduction) AgNO3 UV light - 4–10

Photochemical
reduction (X-ray radiolysis) Ag2SO4 X-Ray - ~28

Photochemical
reduction (X-ray radiolysis) AgNO3

Carboxymethylated
chitosan, UV

Carboxymethylated
chitosan 2–8Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 37 
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2.2. Potential Biological Agents for Eco-Friendly Synthesis of AgNPs

Green synthesis of nanoparticles is accomplished by biological agents including bacte-
ria, fungi, algae, yeasts, and plant extracts. It employs the use of a suitable solvent system
and biological agents to achieve synthesis of nanoparticles [13]. Different microorganisms
such as bacteria, fungi, yeasts, algae, and plants used for biogenic synthesis of AgNPs are
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shown in Table 2. Many bacteria such as Bacillus siamensis [17], Shewanella sp. ARY1 [18],
Citrobacter freundii [19], and cyanobacteria Leptolyngbya sp. WUC 59 [20] have been used
for the synthesis of AgNPs. Similarly, various fungi including Aspergillus flavus [21], Tricho-
derma harzianum [22], Talaromyces purpurogenus [23], and Fusarium scirpi [24] have been used
for the biogenic synthesis of AgNPs. Plant extracts obtained from Protium serratum [25],
Zea mays [26], Eucalyptus corymbia [27], and Lysiloma acapulsensis [28] have been recently
harnessed for biogenic synthesis of AgNPs. Apart from the aforementioned bacteria, fungi,
and plant species, several other biological agents have been exploited for the synthesis of
AgNPs, e.g., food and agricultural wastes [29]. Figure 3 shows the TEM micrographs of
AgNPs synthesized by different biological agents.
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Table 2. List of biological agents used for the synthesis of AgNPs.

Biological Agent Type Mode of
Synthesis Size (nm) Shape References

Urospora sp. Seaweed Extracellular 20–30 Spherical [30]
Aspergillus flavus Fungus Extracellular 33.5 Spherical [21]
Capparis spinosa Plant Extracellular 5–30 Spherical [31]
Protium serratum Plant Extracellular 74.56 ± 0.46 Spherical [25]

Trichoderma
longibrachiatum Fungus Extracellular 10 Spherical [32]

Caesalpinia ferrera (Tul.)
Maritus Plant Extracellular 30–50 Spheroidal [33]

Trichoderma harzianum Fungus Extracellular 50–80 - [22]
Zea mays Plant Extracellular 25 Spherical [26]
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Table 2. Cont.

Biological Agent Type Mode of
Synthesis Size (nm) Shape References

Torreya nucifera Plant Extracellular 10–125 Spherical [34]

Bacillus siamensis Endophytic
Bacteria Extracellular 25–50 Spherical [17]

Aspergillus fumigatus Fungus Extracellular 84.4 Spherical [35]

Talaromyces purpurogenus Fungus Extracellular 4–41

Spherical,
hexagonal,

rod-shaped, and
triangular-

[23]

Eucalyptus corymbia Plant Extracellular 18–20 Spherical [27]
Equisetum arvense Plant Extracellular 18–20 - [36]

Cucumis prophetarum Plant Extracellular 30–50
Irregular

granulated,
ellipsoidal

[37]

Leptolyngbya sp. WUC 59 Cyanobacteria Extracellular 20–35 Spherical [20]

Lysiloma acapulsensis Plant Extracellular 1.2–62 Spherical and
quasi-spherical [28]

Shewanella sp. ARY1 Bacteria Extracellular 38 Spherical [18]
Fusarium scirpi Fungus Extracellular 2–20 Quasi-spherical [24]

Synechocystis sp. Microalgae Extracellular 10–100 - [38]
Citrobacter freundii Bacteria Extracellular 15–30 Spherical [19]
Aspergillus sydowii Fungus Extracellular 1–24 Spherical [39]

2.3. Fungi as Promising Myconanofactories

Mycosynthesis is used for the production of metal nanoparticles using fungi [40].
Interestingly, the fungal extracts show high tolerance to metals, and the biomass is easy
to control. The biomolecules present in the fungal extracts enable easy reduction of metal
ions and also ensure the stability of the nanoparticles [41]. The fungal system provides a
single step biosynthesis of AgNPs and can be used for both intracellular and extracellular
biosynthesis [21]. The mycelial mass of fungi can sustain a higher amount of agitation
and pressure, and hence can be used for large scale biogenic synthesis [35]. The change in
external parameters such as pH, temperature, light, and amount of biomass influences the
size and morphology of the AgNPs [40].

For the intracellular synthesis of AgNPs using fungi, metal salt solution is added to
the fungal culture and subsequently after synthesis of AgNPs, centrifugation and filtration
is accomplished to disrupt mycelial biomass and AgNPs [41], while in the extracellular
synthesis of AgNPs by fungi, silver salt solution is added to the aqueous cell-free fungal
filtrate, which results in simple and fast synthesis of AgNPs due to the presence of fungal
enzymes. Extracellular synthesis of AgNPs using fungi has been widely followed [40].
Further, the AgNPs dispersion is purified to remove fungal contaminants through filtration,
dialysis, and ultracentrifugation [21,41].

Thus, the fungal system has an advantage over the bacterial and plant system owing
to the presence of a large amount of extracellular protein in the filtrate, which enables
large-scale synthesis of AgNPs, and also the downstream processing of fungal biomass is
much simpler compared with the other systems.

2.4. Microfluidic Approach in Nanoparticles Biosynthesis

Microfluidics is the science and technology of manipulating and controlling fluids,
usually in the range of microliters (10−6) to picoliters (10−12), in networks of channels with
the lowest dimensions from tens to hundreds of micrometers [42]. It is a multidisciplinary
field that brings together physics, chemistry, engineering, biochemistry, and also nanotech-
nology. Microfluidic systems are preferably used in the pharmaceutical industry [43], but
there are already a number of publications that demonstrate the advantages of synthesis
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of nanoparticles by microfluidics [44,45]. Generally known benefits of controlled flow
synthesis on a microfluidic chip compared with batch synthesis are precise control of
reaction, high conversion and selectivity, better reaction yields, flexibility, safety, uniform
product quality, contamination prevention, and lower consumption of reactants. Therefore,
it is not surprising that microfluidics coupled with nanotechnology begins to complement
the synthesis of nanoparticles by lab-on-a-chip systems. The use of microfluidic techniques
and the implementation of micro-reactors in production processes in nanotechnologies can
optimize both conventional chemical and biotechnological bottom-up approaches.

Because of some issues of batch biosynthesis—typically process reproducibility and
nanoparticles heterogeneity in terms of their shape and size—the scientific community is
currently focusing on nanoparticles phytosynthesis using microfluidic microreactors with
various channels geometry made from different materials [46,47]. The main advantage
of low-cost biosynthesis, i.e., reduction and simultaneous stabilization of AgNPs, is thus
enhanced by controlling the flow process. Recently, the design of reactors and their pro-
duction using 3D printers has also been preferred. In general, applying microfluidics with
completely different results regarding shape, size, and stability of metallic nanoparticles
may be achieved, as compared to the batch synthesis. However, various process conditions
must be studied to find the one that is optimal for a given plant biomass, metal precursor,
and micro-reactor.

3. Unzipping the Mechanism Involved in Biogenic Synthesis of AgNPs

Plants, fungi, bacteria, cyanobacteria, blue-green algae, and actinomycetes are the
most important biological systems used for the synthesis of AgNPs [39,48,49]. There are
different mechanisms put forward by the researchers to explain the biogenic synthesis of
nanoparticles based on their research outcomes [50–54]. However, the most widely studied
mechanism for biosynthesis of any metal nanoparticle involves the reduction of aqueous
metal ions by the donation of an electron from a particular compound or biomolecule that
is present in the extracellular metabolites of the extract of the biological system. These
compounds play an important role in transferring electrons to aqueous metal ions to fulfill
the deficiency and reduced to their neutral form, which is commonly referred to as a nano
form or nanoparticles (Figure 4). In some cases, the involvement of more than one or group
of biomolecules is reported to be involved in the biosynthesis and stabilization of AgNPs.
Some of the important and widely accepted mechanisms are discussed here.
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3.1. Mechanism Involved in Bacterial Synthesis of AgNPs

Different mechanisms have been suggested for the bacterial synthesis of nanoparticles.
Bacteria also have potential to synthesize metal nanoparticles both intracellularly and ex-
tracellularly. The available reports suggest that extracellular synthesis of AgNPs is typical
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for both Gram-positive bacteria (e.g., Bacillus pumilus, B. persicus, B. licheniformis, B. indicus,
B. cecembensis, Planomicrobium sp., Streptomyces sp., Rhodococcus sp.) and Gram-negative
bacteria (e.g., Klebsiella pneumoniae, Escherichia coli and Acinetobacter calcoaceticus) [56–62].
Similarly, certain Gram-positive (e.g., Corynebacterium sp., members of the genus Strep-
tomyces) [63] and Gram-negative bacteria such as Enterobacter and Pseudomonas stutzeri
have been reported to produce AgNPs intracellularly [64,65]. As far as the mechanism in
intracellular synthesis of AgNPs is concerned, it was proposed that membrane proteins are
mainly responsible for the transport of silver ions into the bacterial cells, where they are
reduced by enzymes and other metabolites [66]. The studies demonstrated that proteins
and sugars of the cell wall (where the actual reduction process can occur) also participate
in the catching of the silver ions [55].

The entrapment and transportation of silver ions in bacterial cells may be facilitated
by electrostatic interaction of the positively charged silver ions and negatively charged cell
wall, particularly the negatively charged carboxylate groups present on the cell wall [67].
On the other hand, different metabolites such as NADH-dependent reductase (Figure 4),
sulfur-containing protein, etc. secreted by the bacteria in the surrounding medium are
mainly responsible for the extracellular reduction of silver ions into AgNPs [68,69]. In
addition, different amino acids viz. arginine, aspartic acid, cysteine, glutamic acid, lysine,
and methionine have the capability to reduce silver ions to AgNPs [70,71]. The possible
role of some peptides containing disulfide bonds was also proposed in the reduction of
silver ions to AgNPs [72].

According to one of the theories, the synthesis of metal nanoparticles by bacteria
is the outcome of detoxification pathways, where a variety of toxic metal ions are taken
up through cationic membrane transport systems that normally transport metabolically
important cations. The specialized mechanism to counteract this kind of uptake prevents
excessive accumulation of toxic metals [73].

3.2. Mechanism of Mycosynthesis of AgNPs

Generally, it is proposed that the extracellular metabolites, including different enzymes
secreted by fungi for their own survival when exposed to different environmental stresses,
are responsible for the reduction of metal ions to metallic solid nanoparticles through the
catalytic effect [32,40]. In one of the mechanisms, it was proposed that NADH-dependent
nitrate reductase enzyme secreted by Fusarium oxysporum is responsible for the reduction of
aqueous silver ions into AgNPs [74]. A similar mechanism was proposed by Ingle et al. [75]
in the case of AgNPs synthesis from Fusarium acuminatum. The authors also pointed out the
involvement of cofactor NADH and nitrate reductase enzyme in the biosynthesis of AgNPs
owing to the presence of nitrate reductase in fungal cell-free extract, which was proved
by using specific substrate-utilizing discs for nitrate purchased from Hi-Media Pvt. Ltd.,
Mumbai, India. Finally, it was proposed that nitrate reductase secreted by the biological
system is responsible for the reduction of silver ions into AgNPs, and NADPH acts as co-
factor and helps in transferring the charge (electron) [74,75]. NADPH is well-known for its
biological role as a coenzyme, mediating charge transfer between enzymes and its natural
substrate (Figure 4). However, it was demonstrated that NADPH can independently act as
a reducing agent in the case of charge transfer to an inorganic compound such as metal
salts. In this context, Hietzschold et al. [53] studied the role of both NADPH and nitrate
reductase enzyme in the biogenic synthesis of AgNPs. This study suggests that NADPH
can serve as the sole reducing agent in reducing the silver ions to AgNPs. Moreover, it was
revealed that for the synthesis of AgNPs, nitrate reductase is not required. Further, it was
also found that AgNPs formed in the enzyme-free reaction were smaller, monodispersed,
and more stable than those synthesized with the addition of nitrate reductase. However,
more studies are required to arrive at a definitive conclusion.

In another studies, Durán et al. [76] and Kumar et al. [77] proposed almost similar
mechanisms for the biosynthesis of AgNPs from F. oxysporum. The former study reported
the role of anthraquinones and NADPH-nitrate reductase in the biosynthesis of AgNPs.
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The electron required to fulfill the deficiency of aqueous silver ions (Ag+) and convert it
into Ag neutral (Ag0 i.e., AgNPs) was donated by both quinone and NADPH (Figure 5).
However, in a later study, it was demonstrated that the reduction of NADPH to NADP+ and
hydroxyquinoline possibly act as an electron shuttle by transferring the electron generated
during the reduction of nitrate to Ag+ ions and finally converting them to Ag0. Moreover,
Li et al. [78] also suggested a similar mechanism in the case of the synthesis of AgNPs by
using Aspergillus terreus.
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Apart from these, the role of proteins and amino acids having -SH groups such as
cysteine is also confirmed in the biosynthesis of metal nanoparticles. It is proposed that
such amino acid undergoes a dehydrogenation reaction with metal salts such as silver
nitrate and produces AgNPs [79]. Moreover, various amide groups (I, II, and III) are also
reported to play an important role in the biosynthesis of metal nanoparticles. Sanghi and
Verma [80] reported the involvement of amide I and amide II groups in the synthesis of
AgNPs from Coriolus versicolor. However, in case of xylotrophic fungi, it was demonstrated
that its oxidation and reduction system depends on phenol oxidase enzymes, such as Mn-
peroxidases, laccases, and tyrosinases. Therefore, it can be concluded that such enzymes
may play a pivotal role in the biosynthesis of metal nanoparticles with fungal extracts [81].

As far as the intracellular synthesis of AgNPs is concerned, it was proposed that
metal nanoparticles are usually synthesized below the cell surface [82], and this reduction
process is mainly governed by enzymes present in the cell membrane. In intracellular
mycosynthesis, initially, the entrapment of metal ions occurs due to their electrostatic
interaction with lysine residues on the surface of the fungal cell [83]. Later, these metal ions
are reduced through enzymatic reduction, which leads to the formation of nanoparticles.
The cell-wall sugars also play a major role in the reduction of metal ions [82]. Figure 6
represents a schematic illustration of the possible mechanism involved in the intracellular
mycosynthesis of AgNPs.
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3.3. Mechanism Involved in Phytosynthesis of AgNPs

Several studies have been performed on the elucidation of the mechanism involved in
phytosynthesis of metallic nanoparticles, and various theories have been proposed, but
the actual mechanism behind the phytosynthesis of nanoparticles is still unknown [84].
However, the common hypothetical mechanism for phytosynthesis mainly involves re-
ducing agents, stabilizing agents, and solvent medium. The phytochemicals present in
the plant extract play a dual role as reducing and stabilizing agent in the synthesis of any
metal nanoparticle including AgNPs [49,85]. Due to the complex nature of plant extract
and the huge number of phytochemicals that are present, it is difficult to identify a specific
compound that acts as the reducing and stabilizing agent in the synthesis of nanoparticles.
To date, the role of various phytochemicals such as polyphenols (flavonoids, phenolic acid,
and terpenoids), organic acid, and proteins have been proposed in the phytosynthesis of
metal nanoparticles [86]. Such phytochemicals perform bio-reduction of aqueous metal
ions to form a respective zerovalent metal, which further leads to the agglomeration of
metal atoms to respective metal nanoparticles [87].

There are some studies suggested that similar mechanisms for phytosynthesis of
AgNPs using various plants such as Pelargonium graveolens (geranium) [88] and Azadirachta
indica (neem) [89]. The presence of proteins and other secondary metabolites was reported
in the extract of different plants used for the synthesis of AgNPs. Furthermore, it was
proposed that terpenoid is responsible for the reduction of silver ions. Moreover, it was
also demonstrated that proteins present in the leaf extract of geranium play an important
role in the stabilization of AgNPs by capping them [88]. Ahmad et al. [90] proposed that
free hydrogen released during keto-enol conversion of flavonoids (luteolin and rosmarinic
acid) are mainly responsible for the reduction of metal ions to respective nanoparticles.

In another study, it was suggested that the reducing sugars present in the leaf extract
of Azadirachta indica might be responsible for the reduction of silver ions to AgNPs [89].
Moreover, various other compounds such as aromatic amine, amide (I) group, secondary
alcohols, and phenolic groups have been proposed for phytosynthesis of AgNPs using
Coleus aromaticus leaf extract [91]. In addition, the possible role of other phytochemicals,
such as various phenolic acids (gallic acid, caffeic acid, ellagic acid, etc.), terpenoids,
proteins, and organic acids, etc., in the synthesis of various metal nanoparticles has been
critically reviewed [86]. Additionally, it was also observed that the roots of alfalfa have the
capability of absorbing silver as AgNPs. An electron microscopic analysis demonstrated
the accumulation of silver atoms inside the alfalfa plant tissues, where they underwent
nucleation and subsequently formed nanoparticles [92]. Figure 7 shows a schematic
representation of the general mechanism involved in the phytosynthesis of AgNPs.
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From the above discussion, it can be suggested that different metabolites present in
plant extract are responsible for the reduction of metal ions into respective nanoparticles
and their capping. In fact, all such capping agents have been found to have the capability
of selective binding to different types of facets on nanoparticles, leading to a change in
their properties, such as specific surface free energies and their area proportions [93].
Therefore, it is believed that due to capping, nanoparticles can perform several important
functions, such as prevention of agglomeration, reduction in toxicity, and enhancement of
antimicrobial activity. In addition, there are reports that suggest the enhanced reactivity
and catalytic activity of different nanoparticles. Moreover, it was also reported that capping
molecules can improve the binding ability of AgNPs on the bacterial cells [94,95]. Similarly,
it was reported that the phytochemicals of antimicrobial nature that act as capping agents
in phytosynthesis have been found to enhance the antimicrobial efficacy of AgNPs [55].

4. Purifications of Nanoparticles

As far as the biogenic synthesis of nanoparticles is concerned, it can be achieved both
intracellularly and extracellularly [96]. Some of the biological systems, when exposed
to an aqueous solution of metal ions, form nanoparticles intracellularly. Therefore, in
such cases, extraction and purification of nanoparticles is essentially required. On the
contrary, most biological systems reduce the aqueous metal ions extracellularly, and hence,
there is no requirement for the extraction of nanoparticles, but purification is required
to remove the impurities present in the form of unreacted components and residues. To
date, different techniques have been proposed for the extraction and purification of bio-
genically synthesized nanoparticles. These techniques mainly include simple filtration, gel
filtration, membrane filtration, simple and ultra-centrifugation, electrophoresis, chromato-
graphic methods, chemical or biochemical purification, dialysis, etc. [41,97–100]. Among
these techniques, centrifugation techniques are commonly used for the purification of
biogenic AgNPs.

In this context, John et al. [101] demonstrated the intracellular synthesis of AgNPs
using a Pseudomonas strain. The extraction of the thus synthesized AgNPs was performed
by centrifugation of bacterial biomass at 5000 rpm for 30 min. Furthermore, the pellet
obtained was suspended in deionized H2O followed by ultrasonication at a pulse rate
of 6 V at the intervals of 30 s for ten cycles. After sonication, the solution was again
centrifuged at 5000 rpm for 30 min, and the supernatant was loaded on a Sephadex G-
50 resin equilibrated in 10 mM Tris buffer (pH 7.0). It is required to remove debris and
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proteins. Finally, the AgNPs were extracted from the buffered solution by adding three
volumes of isopropanol because isopropyl alcohol is known to dissolve a wide range of
non-polar compounds and evaporate quickly when compared with ethanol. In the end,
the mixture was kept in an orbital shaker overnight for evaporation of isopropanol to
obtain a pure powder of AgNPs. In another study, Netala et al. [102] demonstrated the
extracellular biosynthesis of AgNPs using aqueous callus extract of Gymnema sylvestre, and
these AgNPs were separated by centrifugation of the solution at 15,000 rpm for 15 min.
Furthermore, AgNPs were dispersed in water and purified by repeated centrifugation
(five times) to remove the unused callus extract. In another study, Datkhile et al. [103]
reported the biogenic synthesis of AgNPs using leaves extract of Nathophodytes foetida. The
AgNPs were further purified by centrifugation at 10,000 rpm for 30 min and washing with
double-distilled water, followed by redispersion of the pellet in deionized water. A similar
method of centrifugation (9000 rpm; 20 min; 10 ◦C) was suggested by Mohanta et al. [25]
for the purification of AgNPs synthesized from the extract of Protium serratum.

Moreover, Gurunathan et al. [104] performed the extracellular synthesis of AgNPs
from Escherichia coli. For the purification, the colloidal solution containing AgNPs was
washed 5–6 times with deionized water, followed by centrifugation at 10,000 rpm for 15 min.
Then the obtained pellet was resuspended in distilled water to remove the remaining
unconverted silver ions. Furthermore, this dispersion containing biogenic AgNPs was
transferred to a dialysis tube with a 12,000 molecular weight cutoff. Later, the obtained
AgNPs were resuspended in 1 mL of HEPES buffer (20 mM, pH 7.4) supplemented with
sucrose to reach a density of 2.5 g/mL, and a gradient was made according to proposed
standard methods. Finally, the AgNPs were purified by density gradient centrifugation
using ultracentrifugation at 200,000 rpm at 4 ◦C for 16 h. From the above reports, it is clear
that centrifugation can be effectively used for the purification of biogenic AgNPs, as it
helps to remove untreated ions and other impurities.

5. Multiple Applications of bio-AgNPs in Different Fields

Recent advances in the field of nanotechnology have led to the development of
different inorganic and organic nanomaterials. Biogenic AgNPs have already demon-
strated multiple applications in many sectors, such as electronics, biomedicine, cosmetics,
textile industries, crop protection and growth promotion, food packaging, and biofuel
industries [105–107]. In recent years, biogenic AgNPs (bio-AgNPs) have attracted the
considerable attention of scientists because of their widespread applications in different
fields of human life due to their unique properties compared with bulk materials (Figure 8).

Bio-AgNPs have a large active surface area, small size, diverse shapes, biocompatibil-
ity, stability, high solubility, and yield without aggregation [50,108–110]. The biocompati-
bility and stability of biogenic nanoparticles may be related to their natural surface coating,
which adds some further functionality to the nanoparticles [111–114]. The widespread
applications of bio-AgNPs should also be considered from the ecological and economical
point of view, as the biosynthesis process is eco-friendly, easy to perform, and inexpen-
sive [115,116].

5.1. Biomedical Applications of Biogenic AgNPs

Nowadays, the applications of various fields of conventional biological sciences,
along with innovative and efficient nanotechnological tools for the production of green-
synthesized AgNPs, have provided a new alternative strategy and perspective for the
prevention and treatment of various diseases [117]. To date, many reports are available
that demonstrate the antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic, and
anticancer efficacy of bio-AgNPs [9,118–125].

5.1.1. Antibacterial and Antifungal Activities

The antimicrobial nature of AgNPs is the most exploited characteristic of nanosilver
in the medical field. Due to the increasing antibiotic resistance of bacteria and the inef-
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fectiveness of conventional therapeutics, there is an urgent need to develop new agents
to combat existing pathogens in general and new and emerging pathogens in particular.
Nanoparticles can be used as alternative and highly effective antimicrobial agents due to
their high surface area, chemical reduction properties, and surface reactivity [9,126–128].
There are a number of reports on bio-AgNPs synthesized by bacteria, fungi, and plants that
have demonstrated antimicrobial potential against pathogenic bacteria and fungi (Table 3).
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Table 3. Selected examples of biogenic AgNPs and their antimicrobial activity Key: MDR; multidrug-resistant.

Organism Activity Target References

Bacteria

Pilimelia columellifera subsp.
pallida (SF23, C9) antifungal Malassezia furfur, Trichophyton rubrum,

Candida albicans, C. tropicalis [129]

Streptomyces sp. OSIP1 and
OSNP14 antibacterial

Staphylococcus aureus Bacillus subtilis,
Proteus mirabilis Escherichia coli,

Pseudomonas aeruginosa
[130]

Bacillus cereus antibacterial Escherichia fergusonii, Streptococcus
mutans [131]

Pseudomonas rhodesiae antibacterial Dickeya dadantii [132]

Alcaligenes sp. antibacterial and antifungal
Bacillus sp., Escherichia coli, Klebsiella
pneumonia, Pseudomonas aeruginosa,

Staphylococcus aureus, Candida albicans
[133]

Bacillus brevis antibacterial MDR Staphylococcus aureus, Salmonella
typhi [134]
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Table 3. Cont.

Organism Activity Target References

Fungi

Nigrospora oryzae antifungal Fusarium spp. [135]

Alternaria sp. antibacterial Bacillus subtilis, Staphylococcus aureus,
Escherichia coli, Serratia marcescens [136]

Phomopsis helianthi antibacterial Escherichia coli, Pseudomonas aeruginosa [137]

Colletotrichum sp. antibacterial
Escherichia coli, Bacillus subtilis,

Staphylococcus aureus, Salmonella
typhimurium

[138]

Aspergillus tubingensis antifungal Candida albicans, Candida glabrata,
Candida parapsilosis [139]

Cladosporium cladosporioides antibacterial and antifungal
Staphylococcus aureus, Staphylococcus
epidermis, Bacillus subtilis, Escherichia

coli, Candida albicans
[140]

Plants

Juglans regia antibacterial Escherichia coli, Pseudomonas aeruginosa,
Staphylococcus aureus [141]

Dimocarpus Longan antibacterial Escherichia coli, Staphylococcus aureus [142]
Eucalyptus camaldulensis antifungal Candida albicans [143]

Overall, bio-AgNPs show a stronger inhibitory effect on Gram-negative than Gram-
positive bacteria. This difference in efficacy may be due to the variance in thickness of
the cell wall present in these bacteria [9,141,144–146]. Bio-AgNPs were also found to
effectively inhibit biofilm formation in Gram-positive (Stapylococcus aureus) and Gram-
negative (Escherichia coli) bacteria [147]. In addition, bio-AgNPs were reported to be active
against various human pathogenic fungi such as Trichophyton mentagrophytes, T. rubrum,
T. tonsurans, T. violaceum, Malassezia furfur, and Candida species [148–154] and also displayed
the antibiofilm activity against C. albicans, C. glabrata, and C. tropicalis [147,153].

The antimicrobial efficacies of bio-AgNPs depend upon their physicochemical prop-
erties and the biological features of the target pathogens. As far as the mechanism of
antimicrobial action of bio-AgNPs is concerned, it can be summarized as follows: (i) electro-
static attraction of bio-AgNPs to cell wall or membrane of microbes, (ii) penetration into the
cells, (iii) interaction with biomolecules and intracellular structures, and (iv) free-radical
and ROS generation [155]. The changes in cell membrane permeability can cause loss or
leakage of intracellular contents, such as ions, proteins, or cellular energy reservoir (ATP),
leading to the death of the cell [156]. Bio-AgNPs also affect the function of membrane-
bound enzymes such as those in the respiratory chain [157,158] and cause loss of DNA
replication and subsequent inactivation of the ribosomal subunit, leading to inhibition
of protein synthesis [159]. There are various reports that demonstrate the mechanism of
action of bio-AgNPs. For example, Juniperus excelsa extract was used for the biosynthesis of
small AgNPs (around 16–24 nm) with an extremely large surface area, which showed an
ability to bind to the membrane, resulting in the lysis of bacterial cells [160]. In another ex-
ample, nanoparticles synthesized from walnut extract exhibited a significant antimicrobial
activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-
positive (Bacillus subtilis) bacteria. These bio-AgNPs induced bacterial cell permeability
by the disruption of cell membrane integrity, either directly or as a consequence of the
antimicrobial activity exhibited by such nanostructures [161,162]. Additionally, bio-AgNPs
synthesized from Bacillus cereus (MT193718) indicated significant antibacterial activity
against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant (MRD)
K. pneumoniae, with a zone of inhibition of 17 and 18 mm at a concentration of 1000 µg/mL
and minimum inhibitory concentration (MIC) of 15.6 and 62.5 µg/mL, respectively. More-
over, these bio-AgNPs were found to be compatible with red blood cells at a concentration
of 31.5 µg/mL, with no clumping of erythrocytes, which is important to their application



Nanomaterials 2021, 11, 2901 15 of 34

as a safe therapeutic agent against multidrug-resistant bacteria [114]. Micro-morphological
changes were observed in C. albicans cells after treatment with bio-AgNPs synthesized
from Citrus limetta peel extract. Bio-AgNPs at 10.7 µg/mL caused the cell blebs and a thick
exudate deposition around the cell, indicating the leakage of intracellular substances. In
another study, although AgNPs produced by F. oxysporum showed no significant inhibitory
effect on biofilm cells of C. albicans, their use in combination with fluconazole caused a
significant FLC dose-dependent decrease in viability of FLC-resistant C. albicans [163].

5.1.2. Antiviral Activity

The bio-AgNPs have been mainly evaluated for their antimicrobial potential against
bacteria and fungi. However, their potential against several types of viruses, including
human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes simplex virus (HSV),
respiratory syncytial virus (RSV), and monkey pox virus has also been realized [164–166].
The antiviral activity of bio-AgNPs synthesized from marine actinomycete Nocardiopsis alba
was evaluated on embryonated chicken eggs infected with Newcastle viral disease (NDV),
which causes acute respiratory disease and depression. These bio-AgNPs coated with
protein derived from the negatively charged carboxylate groups demonstrated promising
antiviral activity [167]. In another study, bio-AgNPs synthesized from Panax ginseng roots
showed antiviral activity against influenza A virus (IAV). The authors reported that the
antiviral activity was not only a consequence of the intrinsic effects of bio-AgNPs but
also due to the anti-influenza activity of secondary metabolite of plant adsorbed onto
the surface of the nanoparticles [168]. Based on these studies, it can be suggested that
bio-AgNPs can also be used for the treatment of various viral diseases, including acute
respiratory syndromes [169]. Although the existing reports showed promising antiviral
activity of bio-AgNPs, more studies are still required to prove the use of bio-AgNPs against
novel and emerging viruses such as SARS-CoV-2 [112,170,171].

5.1.3. Antiprotozoal Activity

Biogenic AgNPs are considered as efficient agents against the protozoan parasites re-
sponsible for causing zoonoses in humans—namely, Leishmania amazonensis and Toxoplasma
gondii [121,172]. Leishmania causes zoonosis called American Cutaneous Leishmaniasis
(ACL) which is known to be difficult to treat with available chemotherapy. Biogenic AgNPs
synthesized from Fusarium oxysporum were found to be a potential agent for the treatment
of L. amazonensis, in both promastigote and amastigote forms. The bio-AgNPs caused
promastigote death, leading to apoptosis-like events due to an increased production of
reactive oxygen species (ROS), loss of mitochondrial integrity, phosphatidylserine expo-
sure, and damage of their membrane. Bio-AgNPs reduced the percentage of infected
macrophages and the amount of amastigotes per macrophage; consequently, the amount of
promastigotes recovered. This biocidal effect of bio-AgNPs was accompanied by a decrease
in the ROS level in infected macrophages; thus, bio-AgNPs act on the immunomodulatory
ability of infected macrophages, reducing infection without inducing the synthesis of in-
flammatory mediators. However, the authors suggested further in vivo investigations for a
possible bio-AgNP treatment for ACL [121]. In another study, Machado et al. [172] claimed
that bio-AgNPs synthesized from F. oxysporum can be used as a therapeutic alternative
for toxoplasmosis caused by T. gondii. They revealed that bio-AgNPs effectively reduced
adherence, infection, and proliferation of tachyzoites in HeLa cells at concentrations of
3 and 6 µM when compared with a conventional drug. Bio-AgNPs at the concentrations
tested were not able to induce ROS production in HeLa cells infected with T. gondii [172].

5.1.4. Anticancer Activity and Theranostics

Biogenic AgNPs may also be an eco-friendly and biocompatible alternative to conven-
tional anticancer drugs [173]. There are various reports concerning the inhibitory effects
of bio-AgNPs on many cancer cell lines (e.g., MCF-7 breast cancer, PC-3 prostate cancer,
A549 lung cancer, KB oral cancer, PA1 ovarian cancer) [9,123,142,174–178]. The proposed
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mechanism for anticancer activity of biogenic AgNPs is apoptosis caused through caspase-
dependent and mitochondria-dependent pathways induced by nanoparticles [179,180]. It
was reported that B16 melanoma cancer cells treated with bio-AgNPs synthesized from
Olax scandens leaf extract had undergone sub-G1 arrest, which might be the reason for
apoptosis induction [181]. Anticancer activity of bio-AgNPs was attributed to the genera-
tion of ROS. An increased cellular ROS (O2•−, H2O2) influences the signal transduction
pathways that play an important role in apoptosis activation [181]. Studies have shown
the upregulation of p53 protein in the lysate of B16 melanoma cancer cells treated with
bio-AgNPs. It is well established that the bio-AgNPs treatment ultimately triggers p53 up-
regulation via apoptosis pathway activation, leading to the cell death. Cancer cells treated
with bio-AgNPs have upregulated expression of cleaved/active caspase-3, and silver ions
released by bio-AgNPs are the main cause of caspase-3 activation and ultimate oxidative
stress [179,181–183]. Moreover, the acidic environment of the tumor was assumed to be
the cause of phyto-constituents being released from bio-AgNPs, enhancing the potential
anticancer activity of bio- AgNPs [181]. Biogenic AgNPs were found to possess antiangio-
genic property with the inhibition of VEGF-induced cell proliferation [179,184,185], which
provides another proof that they can be exploited for the development of potent cancer
therapeutic agents.

An in vitro analysis also showed that the bio-AgNPs synthesized from actinobacte-
rial strain SF23 demonstrated higher cytotoxicity against MCF-7 breast cancer cells than
RAW 264.7 macrophages. In addition, these AgNPs stimulated cancer cells to release a
greater amount of ROS than macrophages, which can be correlated with higher cancer
cell mortality. These studies indicate that the use of bio-AgNPs may be an effective anti-
cancer therapy itself, while activation of macrophages may additionally involve defense
mechanism against tumors [9]. The induced apoptosis, cytotoxicity, and anticancer activity
of bio-AgNPs synthesized from Artemisia turcomanica leaf extract against gastric cancer
cell lines, in a dose- and time-dependent manner, were reported by Mousavi et al. [180].
Bio-AgNPs synthesized using extract of Sesbania grandiflora L. showed cytotoxic effect
against the MCF-7 cancer cell line, causing loss of cell membrane integrity, oxidative stress,
and apoptosis [186]. Some reports also proved that bio-AgNPs possess higher anticancer
properties than those produced by physical and chemical methods [180]. A lower con-
centration of phyto-synthesized AgNPs from Artemisia marschalliana was able to inhibit
growth of human gastric (AGS) cells when compared with the commercial agents [187].
Moreover, bio-AgNPs are believed to increase the efficiency of a particular anticancer drug
by targeting it specifically to particular cancer cells (targeted drug delivery), which will
ultimately decrease the dosage of the drug and minimize the side effects [188]. Bio-AgNPs
combined with cancer drug doxorubicin showed a significantly elevated anticancer activity
on the B16F10 cell line, as compared with the drug attached to chemically synthesized
nanoparticles [189].

It is believed that in the future, bio-AgNPs will be promising entities administered for
the diagnosis of cancer due to their self-fluorescence ability [179], but to date, the evidence
has been insufficient. Researchers reported the self-fluorescence ability of bio-AgNPs syn-
thesized from the methanolic extract of Olax scandens. Cancer cells treated with bio-AgNPs
coated with fluorescent molecules from plant extract emitted bright-red fluorescence, in-
dicating the internalization of these nanoparticles by cells. Such observations were not
recorded in untreated cells or in cells treated with chemically synthesized AgNPs [179,181].

5.1.5. Antidiabetic Activity

Green synthesized AgNPs are also reported as antidiabetic agents; for example, bio-
AgNPs synthesized from Holoptelea integrifolia were found to possess antidiabetic activity.
Although various extracts of H. integrifolia have shown antidiabetic activity by the inhi-
bition of the ATP-sensitive potassium channels in the pancreatic beta cells mechanism,
the AgNPs synthesized from this plant showed an enhanced effect. This activity of bio-
AgNPs increased in a dose dependent manner. A 60.08 ± 3.38% of α-amylase inhibition
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was observed by employing 25 µL of tested AgNPs, while in case of plant extract and
standard (acarbose) a 45.88 ± 3.44 and 72.22 ± 4.3% inhibition was observed. At a higher
concentration of 100 µL, the percentage of enzyme inhibition in the presence of AgNPs,
extract, and acarbose was 86.66 ± 5.03, 71.28 ± 4.33, and 95.01 ± 5.41%, respectively [189].
The studies concerning the antidiabetic properties of bio-AgNPs are scanty, and therefore,
more research concerning efficacy and toxicity are needed to draw conclusions.

5.2. Antioxidant Activity

It is well known that antioxidants protect cells against free radicals. An antioxidant
stops oxidation by neutralization of produced free radicals, as a result of which it undergoes
oxidation [190]. Antioxidant activity of bio-AgNPs refers to the formation of non-reactive
stable radicals through an inhibition of the oxidation of molecules by preventing the
initiation step of the oxidative chain reaction. The antioxidant potential of bio-AgNPs
depends on the properties of various molecules deposited on their surface. The capping
of reduced silver by secondary metabolites may augment the involvement of synthesized
AgNPs towards the antioxidant property [189].

Bio-AgNPs synthesized from the aqueous extract of Holoptelea integrifolia leaves ex-
hibited significant antioxidant activity (51.49 ± 3.33% for 2,2-diphenyl-1- picrylhydrazyl-
hydrate (DPPH), 41.18 ± 2.27 for metal chelating (MC), and 74.59 ± 3.08% for nitric oxide
(NO) assays) at the highest tested concentration of NPs. In DPPH, MC, and NO assays,
a concentration-dependent effect was noticed for these AgNPs. The lower values in the
case of DPPH and MC assays when compared with the NO assay was attributed to the
secondary metabolites that were present in low concentrations of H. integrifolia extract. It
was interpreted that in the case of the MC assay, secondary metabolites had a capping
mechanism with silver metal, so they were not free; hence, low MC properties were accept-
able. Moreover, it was claimed that different biomolecules may affect different antioxidant
properties when estimated using different antioxidant assays but that they can help in
reducing oxidative stress in cells. The authors also claimed that biogenic nanosilver could
serve as a free radical scavenger, possibly acting as a primary antioxidant. Bio-AgNPs
may be a good alternative to synthetic antioxidants having adverse health effects, such as
butylated hydroxyl toluene, butylated hydroxyl anisole, and propyl gallate [189]. Similarly,
Ibrahim et al. [190] reported effective antioxidant properties of bio-AgNPs synthesized
by Bacillus cereus using DPPH and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid
(ABTS) assays.

5.3. Application of Biogenic AgNPs in Agriculture

Crop pathogens reduce the yield and quality of agricultural production [191]. Various
strategies are used in the management of plant diseases, but some of them impose a serious
negative impact on the environment [192]. By providing new agrochemicals and tools
for delivering active compounds, nanotechnology offers the possibility of reducing and
optimizing the use of conventional products, such as toxic pesticides [193].

5.3.1. Plant Protection

The antifungal activity of biogenic AgNPs against important phytopathogens (e.g.,
Fusarium oxysporum, F. tricinctum, Botrytis cinerea, Penicillium expansum, Aspergillus niger,
Alternaria sp., and Rhizopus sp.) has been reported by many authors [119,194–196], but
mainly in vitro. The bio-AgNPs synthesized by Serratia sp. BHU-S4 were examined
under in vitro conditions for antifungal activity against Bipolaris sorokiniana, the spot blotch
pathogen of wheat. Bio-AgNPs accounted for total inhibition of conidial germination.
The biocontrol potential of AgNPs against B. sorokiniana was also confirmed by in vivo
assay. B. sorokiniana after nanoparticle treatment did not develop spot blotch on wheat
leaves [197]. In another study, bio-AgNPs fabricated using Nigrospora oryzae, the corn
grain contaminant, exhibited dose-dependent antifungal activity against Fusarium spp.,
an important plant pathogenic fungus [135]. Bio-AgNPs synthesized from leaves extract
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of Acalypha indica at a concentration of 15 mg/10 µl showed strong antifungal activity
against all tested fungi (Alternaria alternata, Botrytis cinerea, Curvularia lunata, Rhizoctonia
solani, Sclerotinia sclerotiorum, and Macrophomina phaseolina), which was evident from the
inhibition zones of growth in the range of 18–23 mm [198]. In addition, the nematicidal
activity of bio-AgNP was confirmed against plant parasitic nematode Meloidogyne incognita.
Encouragingly, bio-AgNPs significantly reduced the nematode activity, mortality, egg
hatching, and movement of larvae. In another experiment, instead of chemical nematicide
products, bio-AgNPs synthesized using Acalypha wilkesiana aqueous extract could be
recommended to manage the plant-parasitic nematode, as a simple, stable, and cost-
effective way of keeping the environment safe [199]. It is expected that the application of
bio-AgNPs at low concentrations will be eco-friendly and will decrease farm management
costs. Based on the above discussion and the potential role of bio-AgNPs against plant
pathogens, it is evident that these may be used as an alternative solution for controlling
microbial pathogens affecting plant growth instead of using synthetic chemicals. However,
it is necessary to determine the exact mechanism of bio-AgNPs action in the fungal cell
and their impact on the environment and human beings [200].

5.3.2. Plant Growth Promotion

Nanoparticles can increase the vigor of the crops to withstand the impact of pests and
diseases [193]. There are many reports indicating that, in low concentrations, bio-AgNPs
have a positive effect on seed germination and the promotion of plant growth [201]. For
example, AgNPs synthesized by a green method using Berberis lycium Royle extract had the
capacity to improve crop growth and yield [202]. In another study, bio-AgNPs synthesized
by using the aqueous extract of Euphorbia helioscopia leaves, when applied on seeds and
as foliar sprays, had a positive impact on the morphology of seed oil, enzymes, and fatty
acid content of sunflower [203]. Bio-AgNPs synthesized from a marine endophytic fungus,
Fusarium equiseti, displayed positive effects on wet weight, shoot length, root length, chloro-
phyll, and carotenoid content, even at a lower concentration of 5 ppm. These results suggest
that bio-AgNPs could be used as a nanofertilizer after performing further toxicity studies
under field conditions [204]. Zhang et al. [205] compared chemically (chem-AgNPs) and
biologically (bio-AgNPs) synthesized AgNPs. It was found that chem-AgNPs had strong
antibacterial activity against E. coli, while bio-AgNPs exhibited long-term antibacterial
effects. In addition, chem-AgNPs showed toxic effects on cucumber plants by inducing
over-generation of ROS, thus resulting in the upregulation of malondialdehyde (MDA) and
Zn content and the downregulation of antioxidant capacity, carotenoid, globulin, and Mo
content, while biogenic AgNPs significantly promoted photosynthesis in cucumber. More-
over, bio-AgNPs enhanced the protein content and stimulated the upregulation of Mn and
downregulation of Al. Nevertheless, after treatment with bio-AgNPs, the downregulation
of Mo and the upregulation of Al indicated minimal toxicity to cucumber plants. Overall,
bio-AgNPs when compared with chem-AgNPs exhibited limited toxic effects to cucumber
plants. Bio-AgNPs have been proven to be biocompatible, well-dispersed, and because of
their high efficiency and low toxicity, could be used as nanopesticides in agriculture [205].

5.4. Food Packaging

Bacterial and fungal contaminants can spoil food by degrading its quality and causing
an unpleasant taste. In addition, microbial contamination of food poses a threat to human
health [206]. Bio-AgNPs incorporated with biopolymers may find applications as protective
agents in food storage and preservation [207]. Biodegradable nanocomposite films can be
developed by incorporating AgNPs into the gelatin biopolymer matrix for food packaging
applications. Bio-AgNPs were synthesized by using industrial food waste cassava tuber
peels which showed significant antimicrobial activity, depicting their capability of being
used in a wide range of applications in food and pharmaceutical industries. Moreover, the
integration of AgNPs improved the mechanical and barrier properties of gelatin film. The
nanocomposite films increased the shelf life of sapodilla fruits, which indicated the potential
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of the films for the food packaging industry, as a way of extending the shelf life of packaged
food by up to 12–15 days [208]. Antioxidant and antimicrobial AgNPs synthesized by
using Mussaenda frondosa leaves extract were loaded into gelatin/chitosan composite films
that enhanced the shelf life of vegetables and fruits. From an ecological point of view,
the use of biodegradable AgNPs films may reduce synthetic plastics consumption and
environmental harm and may promote healthy foods [209]. In another study, Myxobacteria
virescens synthesized AgNPs were impregnated into fruit wrapping paper, which increased
the shelf life of apples up to 15 days as compared with the non-impregnated wrapper [210].

5.5. Smart Nanotextiles

Nanotechnology is already having a huge impact on the textile industry. Nanocoating
of the surface of textiles or footwear is one approach for the production of highly active sur-
faces with UV blocking, antimicrobial, and self-cleaning properties [211,212]. Biologically
synthesized AgNPs from Azadirachta indica leaf extract were used in sock fabrics (nylon
and cotton), being antimicrobial in nature. These nanosilver-coated socks were found to
have a highly active surface with antimicrobial and self-cleaning properties. The anti-odor,
non-toxic, and durable properties of the textiles were also confirmed. Therefore, bio-AgNPs
can be effective in reducing foot-borne infections and can be used for various applications,
including applications in healthcare and medicine [211]. The inclusion of bio-AgNPs into
cotton fibers improved their thermal stability and elongation properties. Moreover, fibers
embedded with nanoparticles exhibited remarkable antimicrobial activity against E. coli.
Therefore, these fibers have great potential for utilization, e.g., in burn/wound dressings,
as well as in the fabrication of antibacterial finishing of textiles [213]. It was reported, that
AgNPs adhered to or inserted into textile fibers exhibited an effective antibacterial activity
against Bacillus subtilis by release of Ag+ ions [214]. Multifunctional cotton fabric was also
prepared through a simple method based on the coating of the fabric with AgNPs and low
surface energy silane. The prepared fabric simultaneously gained functionalities, such as
water repellency, antibacterial activity, and UV-blocking [215]. The UV-protection abilities
of wool were highly improved with the application of bio-AgNPs. AgNPs were in situ
synthesized by using natural compounds and biomolecules of plant extracts (naphtho-
quinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents and were
simultaneously deposited on wool fabric for coloration, UV protection, and antioxidant
properties. The antioxidant activity of material mainly depends on reducing/stabilizing
compounds of nanoparticles from plant extract [216]. The AgNPs synthesis was carried
out using aqueous extract of lemon leaves (Citrus limon), which acts as a reducing agent
and encapsulating cage for the AgNPs. By incorporating nanoscale silver into textiles, the
manufacturers can make materials that use a small amount of silver for elimination of the
microbes present on the surface of the clothing material. Such AgNPs that have relatively
large surface area available are ideally suited for the effective control of bacteria and molds
and can help to prevent spoilage from microbial growth in damp areas [217]. Multifunc-
tional viscose fibers were successfully prepared by simultaneous dyeing and incorporation
of bio-AgNPs that were fabricated through a green approach using compounds extracted
from peanut red skin. The obtained fabric exhibited UV protection, antimicrobial activity,
and coloration, as well as antioxidant activity [218]. Cotton fabric with multi-protective
properties was achieved by the environmentally friendly in situ synthesis of AgNPs. The
plant material from food waste (e.g., green tea, avocado seed, and pomegranate peel)
and invasive plant material (e.g., Japanese knotweed rhizome, goldenrod flowers, and
staghorn sumac fruit) were used as reducing agents for the formation of AgNPs directly on
cotton fabrics, which provided excellent protection against UV radiation as well as against
Escherichia coli and Staphylococcus aureus bacteria [219].

5.6. Catalytic Activity

Biogenic AgNPs act as catalysts for the degradation of organic dyes (methylene
blue, methyl orange, congo red tartrazine, carmoisine, and brilliant blue FCF) and other
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toxic compounds such as 4-nitrophenol to non-toxic compounds [220–222], which reduces
environmental pollution [221]. Bio-AgNPs synthesized from aqueous Prosopis juliflora
leaves extract were evaluated for catalytic activity against azo dyes such a methylene blue
(MB) and congo red (CR) that resulted in its effective degradation of toxic compounds in
a short span of time. The reduction of dyes became faster in the presence of bio-AgNPs
than NaBH4. In addition, MB was reduced faster in the presence of bio-AgNPs when
compared with CR. Moreover, the reduction of 4-nitrophenol to non-toxic 4-aminophenol
was investigated with aqueous NaBH4 along with AgNPs that acted as a catalyst for the
reaction. Although the reduction of 4-NP into 4-AP with NaBH4 can be possible, it is limited
by kinetic barriers due to the difference in the thermodynamic potential of an electron donor
(NaBH4) and acceptor (4-NP) that decreases the feasibility of the reaction. In this case, the
use of AgNPs as nanocatalysts facilitated the electron relay from donor to acceptor [190,220].
Similarly, bio-AgNPs synthesized from the fruit extract of Viburnum opulus L. were found
to have catalytic ability in the degradation of tartrazine, carmoisine, and brilliant blue FCF
dyes by NaBH4 as reducing agent. The results demonstrated remarkable activity against
all the investigated dyes, being an outstanding catalyst for the degradation of brilliant blue
FCF. The authors concluded that bio-AgNPs can be used as powerful tools for reducing
environmental pollution from organic dyes [221]. The reduction of 4-NP to 4-AP and the
degradation of methyl orange (MO) and MB in the presence of sodium borohydride and
catalyzed by bio-AgNPs synthesized using aqueous extract of fruit peel (Citrus macroptera)
and bacteria (Bacillus cereus) were also reported recently [190,222]. Considering the above
facts, it can be inferred that bio-AgNPs can be used as catalysts for the degradation of dyes.

5.7. AgNPs in Sensor Development

In addition to various biological and catalytic properties, the unique opto-electronic
properties possessed by silver nanoparticles have opened the door for their use in sensing
applications. Although this field is not fully explored, there are a few reports available on
the application of biogenic AgNPs in the development of nanosensors. Nanosensors are
used for different purposes, including the detection of heavy metal ions and the degrada-
tion of complex compounds, dyes, pollutants, and other contaminants that have extremely
low detection limits [223]. Actually, heavy metals and other contaminants are generated
in the environment as a result of both human and industrial activities, and these are
found to be toxic to almost all living forms in higher concentrations. Therefore, detection
and degradation of such compounds are necessary. Certain conventional methods are
already available for this purpose, but considering their limitations, newer, highly effective
approaches need to be developed. However, in view of the noteworthy applications of nan-
otechnology in general and biogenic nanoparticles in particular, it is believed that biogenic
AgNPs can be effectively used in the development of sensors that can be promisingly used
in the detection of various contaminants and also in helping with the degradation of toxic
compounds in the environment. Some available reports on biogenic AgNPs-based sensors
are discussed briefly here.

As mentioned above, the presence of heavy metal ions in the environment is a global
health concern. Therefore, their removal is required to minimize environmental pollu-
tion. In this context, Hoyos et al. [224] developed a nanosensor using AgNPs synthesized
from an aqueous extract of Camellia sinensis (green tea) having a mean diameter of 7 nm.
Furthermore, these green synthesized AgNPs were found to exhibit good sensing prop-
erties towards Cu2+ and Pb2+ ions in aqueous solutions. This metal ions-sensing ability
of the biogenic AgNPs was recorded with help of UV-Vis spectrophotometry (SPR anal-
yses) and fluorescence spectroscopy. Recently, Al-Thabaiti and Khan [225] synthesized
biogenic AgNPs by anthocyanin obtained from red rose petals. Furthermore, the thus
synthesized AgNPs were used as a sensor for the detection of bromothymol blue and also
as a catalyst for the oxidative degradation of bromothymol blue in the presence of sodium
borohydride, hydrogen peroxide, and sunlight. In another study, Hussain et al. [226]
developed nano-based sensors using biogenic AgNPs synthesized from an aqueous extract
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of clove (Syzygium aromaticum). These AgNPs were used as a colorimetric sensor for the
detection of trace amounts of vinclozolin (fungicide) by UV-Vis spectroscopy for the first
time. The authors claimed that these biogenic AgNP-based sensors were found to be very
sensitive, simple, green, economically viable, and highly selective in colorimetric detection
of vinclozolin.

In another study, Tagad et al. [227] used biogenically synthesized AgNPs from locust
bean gum (LBG) polysaccharides in the development of optical fiber-based hydrogen
peroxide (H2O2) sensors. H2O2 is commonly used in water treatment plants and other
various industries for disinfection and cleaning microcircuits. The access concentration
of H2O2 induces many kinds of cellular damage; therefore, the determination of H2O2
level is of great importance. In addition, the concentration of H2O2 needs to be monitored
in food and pharmaceutical industries and clinical laboratories. Therefore, the above
discussed H2O2 sensor can be effectively used for this purpose. Similarly, Wani et al. [223]
reviewed the role of biogenically synthesized AgNPs in the development of colorimetric
and electrochemical sensors, which can be promisingly used for the detection of various
pollutants, such as heavy metal ions, H2O2, NH3, nitrite ions, sulfide ions, kanamycin,
nitrobenzene, and biomolecules such as nucleic acids, aminoamides, etc. Furthermore, the
authors concluded that biogenic AgNPs can be used as a promising material for the optical
and electrochemical sensing of various types of pollutants in water and soil. Moreover,
these nano-based sensors could be very effective for the detection of various biomolecules.

6. Biodistribution of AgNPs

The biogenic AgNPs not only helps in the design of safer nanomaterials but also assists
in providing a better understanding of health and safety concerns. The biomaterial-based
methods do not require the use of hazardous chemicals; therefore, useful products can be
generated quickly at a reasonable scale and in an eco-friendly manner [228]. There is a
lack of appropriate and standard characterization methodologies that might be used for
research evaluating the toxicity of AgNPs to compare the results of different investigations
employing similar NPs. Biogenic nanoparticles are harmless, environmentally benign, and
contribute to a greener approach. As discussed before, bio-AgNPs can also be used in a
variety of research and technology sectors. However, there are some concerns that must be
addressed, such as choice of synthesis method, biodistribution, and toxicity issues [228,229].
Biosynthesis utilizing plant extracts for antimicrobial applications, biocidal characteristics,
and cytotoxicity depends on physiochemical parameters such as size, concentration, and
coating—all of which have been discussed in recent studies [229,230]. AgNPs can cause
inflammation and oxidative stress at the site of exposure. Furthermore, they have the ability
to penetrate a variety of biological barriers and reach systemic circulation. AgNPs that
have been administered intravenously are immediately accessible in circulation. AgNPs
are subsequently transported to numerous organs, where they produce organ-specific
pathogenic consequences. It is unclear whether the effects found in distant organs are
due to the direct impact of translocated AgNPs or particle-induced inflammatory and
oxidative stress responses at the exposure site. Ferdous et al. [231] demonstrated AgNPs
translocation, accumulation, and toxicity to numerous organs following various modes of
exposure, such as inhalation, instillation, and the oral, cutaneous, and intravenous route.
Particle size, coating, route, and length of exposure, dosages, and endpoint measurement
time all impact the effects on local and distant organs.

Subchronic inhalation or injection of AgNPs demonstrated the uptake of silver ions
and nanoparticles in the blood and subsequent distribution to all major organs and tissues,
including the liver, kidneys, testes, ovaries, olfactory bulb, and brain. However, the level
of accumulation of AgNPs in different organs was found to be different [232] (Figure 9).
Human bodies are vulnerable to AgNPs when such AgNPs are consumed, inhaled, or
absorbed through the skin because of the large surface area-to-volume ratio, and their
penetrating potential is greatly increased, allowing them to penetrate the circulatory system
and even to translocate freely within the human body system [233,234]. Yang et al. [235]
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revealed that the size, surface functionalization, and concentration of AgNPs all have a
role in in vivo dispersion. Furthermore, AgNPs’ inherent chemical composition resulted
in erratic biodistribution and hazardous profiles, which received some attention. The
biodistribution, toxicity kinetics, and genotoxicity variations in murine animals were
studied using AgNPs.
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AgNPs were predominantly deposited in the mononuclear phagocyte system (MPS),
such as the liver and spleen. The AgNPs were accumulated in organs, such as the heart,
lung, kidney, and other organs. AgNPs were also found in greater concentrations in the
circulation and feces. Over the course of two months, measurements of mouse body and
organ mass, hematological and biochemistry evaluations, and histological investigations
revealed a little harmful effect of AgNPs. AgNPs caused higher alterations in gene ex-
pression related to oxidative stress, apoptosis, and ion transport, according to RT qPCR
results. The chemical properties of NPs were demonstrated by their findings. Male Wistar
rats were given AgNPs (20 and 200 nm) intravenously at a dosage of 5 mg/kg of body
weight. Following injection, biological samples were collected after 24 h, 7 days, and
28 days. The concentration of silver in tissue was determined using inductively coupled
plasma-mass spectrometry (ICP-MS) and transmission electron microscopy after AgNPs
were translocated from the blood to the main organs (TEM). The liver contained the highest
amount of silver after 24 h. After 7 days, a considerable quantity of silver was found in the
lungs and spleen. The concentration of silver in the kidneys and brain increased during
the experiment, reaching a peak after 28 days. Furthermore, the highest concentration of
AgNPs was identified in the urine 1 day after the injection, stayed high for 14 days, and
then dropped. The final results showed that the fecal level of silver in rats peaked two days
after AgNPs treatment and subsequently gradually declined [236].

Zande et al. [237] investigated AgNPs biodistribution in rats. They presented the
findings of a 28-day oral exposure trial in rats that were given either 20 nm noncoated
AgNPs or 15 nm PVP-coated AgNPs (90 mg/kg body weight or AgNO3 (Ag) = 9 mg/kg
body weight) or a carrier solution. After dissecting on day 29 and a 1- or 8-week wash-out
period, AgNPs were found in all of the organs tested, with the greatest amounts in the
liver and spleen for all treatments. The quantity of Ag+ in the silver nanoparticle solu-
tion was significantly associated with silver concentrations in the organs, showing that
predominantly Ag+, and to a lesser degree AgNPs, went through the intestines in silver
nanoparticle-exposed rats. After 8 weeks, silver was removed from most organs in all
groups, but not from the brain or testis. Using single particle inductively coupled plasma
mass spectrometry, AgNPs were detected in silver nanoparticle-exposed rats, but remark-
ably also in AgNO3 exposed rats, hereby demonstrating the formation of nanoparticles
from Ag+ in vivo that are probably composed of silver salts. The silver exposure did not
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cause hepatotoxicity or immunotoxicity, according to biochemical indicators and antibody
levels in the blood, lymphocyte proliferation and cytokine production, and NK-cell activity.
Finally, it appears that oral exposure to AgNPs is quite comparable with oral exposure to
silver salts. However, the long-term effects of AgNPs in vivo and long-term preservation
of AgNPs are unknown [238].

7. Toxicity of Biogenic AgNPs

Nowadays, the nanomaterials, especially nanoparticles (NPs), are being widely used;
therefore, their fabrication and application have resulted in public awareness of their
toxicity and impact on the environment [15,238]. In addition to the wide range of ap-
plications of AgNPs, it is very crucial to take account of in vivo-associated toxicity and
immunoreactivity. Worldwide reports on the toxic effects of NPs that were aimed at identi-
fying the targets and mechanisms of their harmful effects were carried out mainly using
different cell culture models, including cancer cell lines [9,239]. However, the effect of
bio-AgNPs on the latter was discussed earlier. In contrast, few studies on the patterns
of NPs transport, accumulation, degradation, and elimination using animal models have
been performed [55]. For this reason, in recent years, the number of nanotoxicology studies
that have investigated the biological pathways affected by nanoparticles and induced toxic
effects has increased substantially [240]. There is no doubt that deeper knowledge of the
mechanisms of bio-AgNPs’ effect on living organisms will discover new areas of their
application in the near future.

Overall, it is claimed that chemically synthesized AgNPs have high in vivo cyto- and
genotoxicity as compared with biogenic AgNPs, proposing the latter to be less toxic and
biocompatible for potential applications [179,241].

Cytotoxicity effects of biogenic AgNPs against eukaryotic cells have been reported by
many authors [9,23,123]. Researchers around the world provided new approaches for a
more comprehensive understanding of the mechanism of NP-induced toxicity [55]. It is
claimed that cytotoxicity of AgNPs is largely mediated by the action of Ag+ ions released
from nanoparticles [242] that interact with cells and intracellular macromolecules such
as proteins and DNA [243]. Moreover, other authors suggested that one of the potential
mechanism of bio-AgNPs cytotoxicity is the generation of ROS and superoxide synthesis
following reduction of oxygen by electron from electron transport chain on the mitochon-
drial surface [9,55,244]. The generated ROS thus lead to oxidative damage of cellular
contents including DNA [242], proteins, and lipids [230,242], and consequently to cell
death [242] or to apoptosis [182,183]. The study by Wypij et al. [9] showed that AgNPs-
stimulated MCF-7 cells released a greater amount of ROS than RAW 264.7 macrophages,
which correlated with higher cancer cell mortality. The authors suggested that AgNPs-
induced cell death can be partially mediated by ROS production. However, their previous
studies are in contradiction to the above-mentioned report. In this case the higher sensitiv-
ity of the macrophages to the AgNPs was explained as a ROS-dependent phenomenon,
which may be related to the scavenger receptor pathway and the scavenger function of
macrophages that increase their sensitivity to the effects of nanoparticles [123]. Moreover,
AgNPs themselves may have a devastating effect on the protective antioxidant enzymes,
resulting in cellular damage by oxidizing vital biomolecules, subsequently leading to cell
death [244].

In addition, ions released from AgNPs may increase the cytotoxic effect of AgNPs by
inducing cascades that lead to intracellular toxicity, defined as the “Trojan horse effect” [55].
Akter et al. [230] underlines that the mechanism generation of free radicals occurs after
interaction of NPs with cellular components, especially with mitochondria. According
to El-Naggar and coauthors [244], apoptosis could be activated through mitochondrial
dysfunction, which potentially inhibits the proliferation of cells. Wypij and coauthors [9]
estimated the reactive oxygen species (ROS) level in the presence of biosynthesized AgNPs
on MCF-7 human breast cancer cell line and murine macrophage cell line RAW 264.7.
However, some eukaryotic cells are more prone to nanomaterials, especially AgNPs, than
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to others due to the presence of both the released Ag ions and AgNPs [15,240]. Hamida
and coauthors [245] showed that AgNPs induced the greatest toxic effects against HepG2
cells when compared with MCF-7 and Caco-2. The authors emphasized that such effect
could have been due to charge and the type of biomolecules surrounding AgNPs.

The toxicity of nanoparticles to the cells also depends on their size, shape, and coat-
ing/capping agent, and their concentration and surface composition. Many of these
conclusions come from the study of the effects of AgNPs on cancer cells [15,122,243].
According to Recordati and coauthors [246], smaller AgNPs due to their larger surface area-
to-volume ratio have a faster rate of releasing of the silver ion (Ag+), hence an increased
bioavailability, enhanced distribution, and toxicity of Ag compared with larger NPs. The
significant impact of AgNPs size on their biological activity has been reported by many
authors [243,247,248]. Ashajyothi and Chandrakanth [240] studied animal toxicity using
11–75 nm biogenic AgNPs (bio-AgNPs) in the male Wistar rat. It was also reported that the
cytotoxicity of bio-AgNPs against normal and cancer cell lines is dose-dependent. In many
cases, nanoparticles at low concentrations do not cause significant toxicity [9,123,247,249].
The shape of the AgNPs might influence the cellular uptake mechanism, which in turn
modulates the cytotoxicity [230]. An important aspect in biogenic nanoparticle toxicity
is their coating. The biogenic nanoparticles can be synthesized by using organisms or by
products of their metabolism. Therefore, these nanoparticles are capped with biomolecules
of natural origin that can improve stability and determine their biological activity and
cytotoxicity [250].

8. Conclusions

Nanotechnology is playing a pivotal role in the day-to-day life of human beings
due to its wide-range of applications. Nanoparticles are the tools of nanotechnology
that can be synthesized by physical, chemical, and biological methods. The latter is
green, sustainable, rapid, and economically viable process of synthesis. These biogenic
nanoparticles have demonstrated multiple applications, such as in the biomedical field,
agriculture, as catalysts, in textiles, as biosensors, and so on. As far as the biomedical
sector is concerned, nanomaterials in general and AgNPs in particular are considered
as magic bullets that can revolutionize this sector by the development of newer nano-
based antimicrobials or by their application in drug delivery. Biogenic AgNPs have been
reported to have better biological efficacies over physically and chemically synthesized
nanoparticles due to their biocompatibility and enhanced biological properties. Moreover,
also in agriculture, biogenically synthesized nanoparticles have been found to enhance
the growth of crop plants and may protect them from the attack of pathogens and pests.
The AgNPs can also be used for gene transfer in plants. Various efforts have been made
to elucidate the exact mechanisms involved in the biogenic synthesis of AgNPs, but
unfortunately, to date no such mechanism is known.
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