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Abstract: With the increasing amounts of terminal equipment with higher requirements of commu-
nication quality in the emerging fifth generation mobile communication network (5G), the energy
consumption of 5G base stations (BSs) is increasing significantly, which not only raises the operating
expenses of telecom operators but also imposes a burden on the environment. To solve this problem,
a two-step energy management method that coordinates 5G macro BSs for 5G networks with user
clustering is proposed. The coordination among the communication equipment and the standard
equipment in 5G macro BSs is developed to reduce both the energy consumption and the electricity
costs. A novel user clustering method is proposed together with Benders decomposition to accel-
erate the solving process. Simulation results show that the proposed method is computationally
efficient and can ensure near-optimal performance, effectively reducing the energy consumption and
electricity costs compared with the conventional dispatching scheme.

Keywords: 5G macro base station; energy management; BS sleeping; user clustering;
Benders decomposition

1. Introduction

Fifth generation mobile communications technology (5G) is meant to deliver higher
peak data speeds, ultra-low latency, increased reliability, massive network capacity, in-
creased availability, and a more uniform experience to an increased number of users.
Higher performance and improved efficiency enable new user experiences and connections
to new industries. The upgrading of communication technology and equipment provides
better services to users.

Despite the provision of better communication services to users, the main challenge
faced by telecom operators is the increasing energy consumption of 5G equipment. Accord-
ing to data from China Mobile, the power consumption of a typical 5G macro BS exceeds
4 kW, which is approximately four times that of 4G. Considering the high deployment
density of 5G BSs, the overall power consumption may reach 12 times the consumption of
4G networks [1]. The increase in the power consumption of 5G macro BS networks will
directly lead to an increase in the operating expense (OPEX) of telecom operators. It is
estimated that by 2025, the communications industry will consume 20% of the world’s
electricity, and the electricity expenses will exceed 15% of the operating costs [2]. In ad-
dition, the carbon footprint of the global information and communication industry (ICT)
accounts for 2% of global greenhouse gas emissions, with an annual growth rate of 6% [3].
To respond to the global call for green and low-carbon development, reduce the pressure
on environmental protection, and reduce the OPEX of telecom operators, research on green
communication techniques is necessary. During the past decade, most research on BS
energy saving has been classified into two categories: hardware energy-saving technology
(HEST) and software energy-saving technology (SEST).
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HEST is proposed to improve the energy efficiency of 5G BSs with hardware designs,
power source modification, and network architecture upgrades. At the BS level, research
on the improvement of the energy efficiency of the power amplifiers (PAs) of active antenna
units (AAUs) has been extensively studied [4–6]. Aiming to resolve the problem associated
with the efficiency of the BS antenna changes with traffic load fluctuations, Popovic et al.
summarized the power modulation method to improve the efficiency of PAs and indicated
the future development direction and challenges associated with this technology [4]. A
power amplifier design based on high-voltage GaN HEMT devices has been proposed that
is able to transmit high-power signals and ensure the energy efficiency of the PA [5]. Ali et al.
designed a linear complementary metal-oxide semiconductor (CMOS) power amplifier
based on the use of an amplitude-modulation–phase-modulation (AM–PM) distortion
compensation transformer to compensate for the distortion of high-power amplifiers in
AM–PM. This improved the efficiency of the PA and ensured the equipment’s performance
linearity [6]. In addition, studies on renewable energy for mobile network infrastructure
represent a growing field. The application of PV panels and wind turbines in BSs helps to
save electricity costs and reduce the carbon footprints of 5G networks [7–11]. Furthermore,
some studies have proposed methods to deal with the uncertainties of renewable energy in
economic dispatch, including the traditional cubic set modeling method [12], the extreme
scenarios method [13], and the continuous-time modeling method [14]. At the network
level, the application of cloud technology for the upgrading of the radio access network
(RAN) architecture is another key technology that promotes energy conservation in 5G
networks. With cloud computing techniques, computing tasks such as the baseband signal
processing of BSs are transferred to a centralized data center. Ideally, all BSs are connected
to a central server, which is referred to as a radio access network (cloud-RAN, C-RAN). In
the C-RAN architecture, network deployment is more flexible, and the energy consumption
of the network can be significantly reduced [15]. HEST is the basis for achieving energy
savings in 5G networks and fundamentally improves the energy efficiency level of BSs.
However, the realization of HEST relies on the evolution of the network architecture and
the maturity of 5G key components. Therefore, the application of HESTs requires a certain
period of time.

There is an obvious tidal effect in the wireless network business, presenting the char-
acteristics of uneven traffic loads in time and space. SEST is dedicated to the improvement
of the operation strategy of communication equipment, thus optimizing the resource allo-
cation and shutting down redundant hardware by taking advantage of the distribution
characteristics of traffic loads to realize the energy reduction of the 5G network [2]. SEST
at the BS level includes symbol power off, slot power off, channel power off, and PA
bias-voltage adjustment [16], which improve the energy efficiency of a single BS. A further
reduction of 5G network energy consumption requires the cooperation of multiple BSs in
the network. At the network level, the BS sleeping method was adopted in [17], and the
energy efficiency of the cell networks subject to the average connection ratio (ACR) and
average user rate constraints were optimized. Numerical results show that with the sleep
strategy, the energy consumption of the cell network can be reduced by approximately
21%. Dutta et al. designed a distributed self-adaptive (SAS) algorithm for 5G BSs networks
to improve energy and reduce their carbon footprint. Each BS independently and dynami-
cally determines its operational state. Simulation results show that the proposed algorithm
significantly increases energy savings [18]. Power allocation is another promising SEST
used to reduce the energy consumption of 5G networks by allocating power resources to
different users while meeting the users’ quality of service (QoS) [19]. Commonly used
methods for determining power allocation include equal power allocation [20], the water-
filling algorithm [21], branch and bound [22], and game theory [23]. Fang et al. studied the
joint optimization of the subchannel allocation and power allocation of 5G heterogeneous
networks, and the problem was formulated as a mixed-integer nonconvex optimization
problem. Simulation results showed that the proposed algorithms can attain higher system
energy efficiency [24]. Niu et al. investigated a cell zooming algorithm to adaptively
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adjust the cell size according to traffic load, user requirements, and channel conditions,
greatly reducing the energy consumption and leading to green cellular networks [25–27].
Device-to-device (D2D) communication is an apt technology for proximity-based data
sharing services and allows direct communication between users without a BS to reduce
the transmission power consumption of BSs [28,29]. Moreover, the design expectations
for 5G networks cannot be properly articulated by a single performance objective. Some
research works have proposed multi-objective optimization frameworks for the planning
and optimized operation of wireless communication networks [30,31]. However, there are
two problems with the above SESTs. First, they only focus on the energy-saving problem
of communication equipment in 5G BSs, while ignoring standard equipment [32] such as
air conditioning (AC), backup batteries, and renewable generation units. In conventional
operation strategies, backup batteries only provide an uninterruptible power supply (UPS)
and are not dispatched most of the time [33]. The ACs in the cabinets are responsible for
regulating the indoor temperature so that it does not exceed the upper and lower limits.
However, the scheduling strategy of ACs can be improved to further reduce the energy
consumption and electricity costs by making full use of the thermal inertia of the cabinets,
because the indoor equipment has no comfort requirements. Second, as the number of BSs
and users increases, wireless access networks become more complex, which makes it more
difficult to solve the optimal dispatching scheme for 5G BSs.

To tackle the aforementioned challenges, this study proposes a dispatching scheme
for a 5G macro BS network incorporating the optimal scheduling of standard equipment in
the BSs. The main contributions of this study are as follows.

(1) A two-step energy management model for both communication equipment and
standard equipment in the 5G macro BS network is proposed to reduce further the energy
consumption and electricity costs. The cooperation among all BSs in the network is
achieved through BS sleeping, user allocation, and power transmission methods.

(2) A user clustering method based on users’ geographic distribution is proposed
to reduce the computational burden of the first-step problem. Benders decomposition is
applied to accelerate the solution of the optimal scheduling of standard equipment.

The remainder of this paper is organized as follows. The two-step energy manage-
ment model for both communication equipment and standard equipment is proposed in
Section 2. Section 3 introduces the problem reformulation using the user clustering method
and Benders decomposition algorithm. Section 4 presents and analyzes the simulation
results, and the optimality and efficiency of the proposed model are verified, followed by
the conclusions.

2. Energy Management Model of 5G Macro Base Station Network

The 5G macro BS homogeneous network is shown in Figure 1. The main energy-
consuming equipment in a macro BS include the communications equipment, an AC, a
backup battery, and a renewable generation unit. The communication equipment consists
of an active antenna unit (AAU) and a baseband unit (BBU), which are responsible for
signal transmission and baseband signal processing, respectively. The coverage area of
an active 5G macro BS is called a cell, which is a regular hexagonal area. The architecture
of the 5G macro base station is shown in Figure 2. The AAU and renewable generation
units are installed outside the base station cabinet. The remaining equipment is installed in
the cabinet.

The two-step energy management model for the 5G macro-BS network is illustrated in
Figure 3. First, the energy consumptions of the AAU and BBU are minimized by optimizing
the on/off state of the BSs and user allocation in the cellular network during each time
period. Given the power profile and on/off state of each BS, the injected power of each BS,
the on/off state of ACs, the charge/discharge power of backup batteries, and the power of
renewable generation units during each time period are jointly optimized to achieve the
goal of the economic operation of the 5G macro BS network.
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Figure 1. Schematic of a 5G macro BS network.

Figure 2. Diagram showing the structure of a 5G macro BS.

Figure 3. Framework of the energy management model of the 5G macro BS network.
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2.1. Communication and Power Consumption Model of 5G Macro BS

The extensively used EARTH model was adopted to describe the power consumption
of AAU and BBU [34], as shown in (1). The powers of BBU and AAU in BS m are a constant
and a linear function of the transmitted signal power, respectively, when BS m is in active
mode. The powers of BBU and AAU are two small constants when BS m is in sleep mode.

Pm
com = Pm

BBU + Pm
AAU

=

{
Pm

BBU,Ac + Pm
AAU,Ac , ActiveMode

Pm
BBU,Sl + Pm

AAU,Sl , SleepMode

=

{
Pm,c

BBU,Ac +
1

δm
PA

Pm
tr + Pm,c

AAU,Ac , ActiveMode

Pm,c
BBU,Sl + Pm,c

AAU,Sl , SleepMode

(1)

where Pm
com denotes the power of communication equipment in BS m; Pm

BBU and Pm
AAU

denote the powers of BBU and AAU in BS m, respectively; Pm
BBU,Ac and Pm

AAU,Ac denote
the powers of BBU and AAU in BS m when BS m is in active mode, respectively; Pm

BBU,Sl
and Pm

AAU,Sl denote the powers of BBU and AAU in BS m when BS m is in sleep mode,
respectively; Pm,c

BBU,Ac and Pm,c
AAU,Ac denote the constant part of the powers of BBU and AAU

in BS m when BS m is in active mode, respectively; δPA denotes the PA efficiency of the AAU
in BS m; Pm

tr denotes the total transmit power of AAU in BS m; and Pm,c
BBU,Sl and Pm,c

AAU,Sl
denote the constant part of the powers of BBU and AAU in BS m when BS m is in sleep
mode, respectively.

Pm
tr = ∑

u∈BSm
Pm,u

tr (2)

where Pm,u
tr denotes the transmit power allocated to user u by BS m, and BSm denotes the

set of users connected with BS m.
We now present the downlink transmission model from BS m to user u. The AAU in

BS m transmits electromagnetic waves to user u with power Pm,u
tr , which would attenuate in

the air medium. The power of the electromagnetic waves received by user u is expressed as

Pm,u
re = Pm,u

tr · 10−
APL ·dm,u+BPL

10 (3)

where dm,ut is the distance between BS m and user u; APL and BPL are the path loss
coefficients; and Pm,u

re denotes the power of the electromagnetic waves received by user
u from BS m. The power of the interference signal received by each user was considered
constant in this study. According to Shannon’s equation, the data rate received by user u is
expressed as

Lu
re = B · log2(1 +

Pm,u
re
N0

) (4)

where B is the channel bandwidth; N0 denotes the interference signal power received by
each user; and Lu

re denotes the data rate received by user u. According to (3) and (4), the
transmit power of BS m to user u is given by (5) when the traffic load of user u is Lu

re.

Pm,u
tr = N0(2

Lu
re
B − 1) · 10

APL ·dm,u+BPL
10 (5)

2.2. Optimization Step 1: Energy Management of the 5G Communication Equipment

The proposed model assumes that the distribution of users and their traffic loads are
known. The objective is to minimize the energy consumption of all AAUs and BBUs in the
network during time period t, which is expressed as

minFt
1 = min ∑

m∈M
Pm,t

com∆t (6)
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where Pm,t
com is the power consumption of the communication equipment (i.e., AAU and

BBU); M denotes the set of all 5G macro BSs in the network; and ∆t is the time step of one
time period and is assumed to be equal to 15 min in this study.

BS sleeping and user allocation are adopted to reduce the energy consumption of
5G communication equipment in the network. During the periods of valley traffic load,
some of the BSs could be switched to sleep mode, and the users served by these BSs
could be transferred to adjacent BSs for service. According to Equation (1), although the
transmitting power Pm,t

tr needed by users would increase after transfer, the constant power
parts Pm,c

AAU,Ac and Pm,c
BBU,Ac of these BSs are saved so that the total energy consumption of

the communication equipment can be reduced.
The operation of communications equipment needs to meet the following constraints.

(1) Power consumption constraints of communications equipment:

Pm,t
com = Pm,t

AAU + Pm,t
BBU (7)

Pm,t
AAU =


1

δm
PA

Pm,t
tr + Pm,c

AAU,Ac, Um,t
bs = 1

Pm,c
AAU,Sl , Um,t

bs = 0
(8)

Pm,t
BBU =

 Pm,c
BBU,Ac , Um,t

bs = 1

Pm,c
BBU,Sl , Um,t

bs = 0
(9)

Um,t
bs ∈ {0, 1} (10)

where Pm,t
com denotes the power of communication equipment in BS m; Pm,t

AAU and
Pm,t

BBU are the power consumptions of the AAU and BBU in BS m, respectively; Um,t
bs

represents the working status of BS m; BS m is in sleep mode when Um,t
bs = 0 and active

mode when Um,t
bs = 1; δm

PA is the PA efficiency of the AAU in BS m; Pm,c AAU, Ac and
Pm,c AAU, Sl denote the constant parts of the power of AAU in BS m in the active
and sleep modes, respectively; and Pm,c BBU, Ac and Pm,c

BBU,sl are the constants of the
power of BBU in BS m in the active and sleep modes, respectively.

(2) With the BS in sleep mode and the use of the user allocation method, each user
in the network could be served by local or adjacent BSs. However, each user can
only connect to one BS at a time, and its QoS requirements should be met. The user
allocation constraints are as follows:

am,ut
t ≤ Um,t

bs , m ∈ Nut (11)

∑
m∈Nut

am,ut
t = 1 (12)

where am,ut
t denotes the connection relationship between BS m and user ut; user ut is

not connected with BS m when am,ut
t = 0, while user ut is connected to BS m when

am,ut
t = 1, and Nut represents the set of adjacent BSs of user ut. Equation (11) indicates

that user ut can only connect with BSs that are in active mode. Equation (12) indicates
that user ut can only connect with one BS at a time.

(3) Maximum data transmission rate constraints of BSs:

Lm,t
tr = ∑

ut∈Nm

am,ut
t Lut

re (13)

Lm,t
tr ≤ Lmax,m

tr (14)
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where Nm denotes the set of users in cell m and its adjacent cells; Lm,t
tr denotes the

total data processing rate of BS m; and Lmax,m
tr denotes the maximum data processing

capacity of BBU in BS m.
(4) Maximum transmit power constraints of BSs:

Pm,t
tr = ∑

ut∈Nm

am,ut
t Pm,ut

tr,t (15)

Pm,t
tr ≤ Pmax,m

tr (16)

where Pm,t
tr denotes the total transmit power of AAU in BS m; and Pmax,m

tr denotes the
maximum transmit power of BS m. The maximum data transmission rate constraints
(14) and the maximum transmit power constraints of BSs (16) ensure that all users’
QoS requirement can be satisfied.

Because Equations (8) and (9) are nonlinear constraints, the big-M method is applied
to linearize them, as shown by Equations (17)–(24).

Pm,t
AAU = Pm,t

AAU,Ac + Pm,t
AAU,Sl (17)

Pm,t
AAU,Ac ≥ −M(1−Um,t

bs ) +
1

δm
PA

Pm,t
tr + Pm,c

AAU,Ac (18)

Pm,t
AAU,Sl ≥ −M ·Um,t

bs + Pm,c
AAU,Sl (19)

Pm,t
AAU,Ac, Pm,t

AAU,Sl ≥ 0 (20)

Pm,t
BBU = Pm,t

BBU,Ac + Pm,t
BBU,Sl (21)

Pm,t
BBU,Ac ≥ −M(1−Um,t

bs ) + Pm,c
BBU,Ac (22)

Pm,t
BBU,Sl ≥ −M ·Um,t

bs + Pm,c
BBU,Sl (23)

Pm,t
BBU,Ac, Pm,t

BBU,Sl ≥ 0 (24)

where Pm,t
AAU,Ac and Pm,t

AAU,Sl are the powers of AAU m when BS m is in active and sleep

mode, respectively; Pm,t
BBU,Ac and Pm,t

BBU,Sl are the powers of BBU m when BS m is in active
and sleep mode, respectively; and M is a sufficiently large number.

In summary, the optimization of the energy management of communications equip-
ment in the 5G macro Bs network is shown as (Pt

1).

(Pt
1)minFt

1 = min ∑
m∈M

Pm,t
com∆t

s.t.(2), (5), (7), (11)− (24)

It can be observed that (Pt
1) is a single-step optimization problem. Solving (Pt

1) for

each time step t ∈ T, we obtain the optimal on/off state
{

Ûm,t
bs

}
, user association method{

âm,m′i
t

}
, and power profile

{
Pm,t∗

com

}
of the communications equipment in each 5G BS.

2.3. Optimization Step 2: Energy Management of the Standard Equipment in 5G Macro
BSs Network

The energy management model of communications equipment in the 5G macro BS
network was described in the previous section. BS sleeping and user allocation strategies
were adopted to minimize the energy consumption of the communication equipment.
However, ACs, backup batteries, and renewable generation units can be optimized to
further reduce the electricity costs of 5G networks.

In this section, the operation of ACs, backup batteries, and renewable generation units
are jointly optimized under the given power consumption profile of the communications



Sensors 2021, 21, 5501 8 of 21

equipment. Two-way energy trading between the 5G network and the grid was not
considered in this study. The objective is to minimize the electricity costs of the entire 5G
macro BS network, as shown in Equation (25).

minF2 = min∑
t∈T

ctPt
grid∆t (25)

where ct denotes the electricity price, and Pt
grid represents the input power to the 5G macro

BS network from the grid.
The operation of the above equipment needs to meet the following constraints.

(1) Power balance constraints of 5G macro BSs network:

Pt
grid = ∑

m∈M
Pm,t

in (26)

Pt
grid ≥ 0 (27)

where Pm,t
in represents the input power of BS m, which can be either positive

or negative.
(2) Power balance constraints of a single BS:

Pm,t
in + Pm,t

dis + (1− Curm
t )Pm,t∗

RE = Pm,t
air + Pm,t

ch + Pm,t∗
com (28)

where Pm,t
ch , Pm,t

dis , and Pm,t
air are the charging/discharging power of the backup battery

and power of the AC in BS m; Curm
t denotes the wind/solar curtailment rate of the

renewable generation unit in BS m; and Pm,t∗
RE and Pm,t∗

com are the given power profiles of
the renewable generation unit and communication equipment in BS m, respectively.

(3) AC-related constraints:
Pm,t

air = Pm,N
air Um,t

air (29)

Pm,t
cool = δairPm,t

air − δhot(Pm,c
BBU,AcUm,t∗

bs + Pother) (30)

Tm,t
in = Tm,init

in , t = 1 (31)

Tm,t
in = Tt−1

out − Rm
eqPm,t

cool − (Tt−1
out − Rm

eqPm,t
cool − Tm,t−1

in )e
− ∆t

Rm
eqCm

eq , t = 2, 3, . . . , T + 1 (32)

Tmin
in ≤ Tm,t

in ≤ Tmax
in , t = 1, 2, . . . , T + 1 (33)

Um,t
air ∈ {0, 1} (34)

where Pm,N
air is the rated power of the fixed frequency of AC in BS m; Um,t

air denotes the
on/off state of AC; Pm,t

cool represents the equivalent cooling power inside BS m; δair is
the energy efficiency ratio of AC in BS m; and Pother represents the heating power of
the other equipment in the cabinet of BS m. Tm,t

in represents the indoor temperature;
Tm,init

in denotes the initial indoor temperature in the cabinet of BS m when t = 1, Tmax
in ,

and Tmin
in are the preset upper and lower bounds of the indoor temperature inside the

cabinet, respectively; and Rm
eq and Cm

eq denote the equivalent thermal resistance and
equivalent thermal capacity of the cabinet of BS m, respectively.

(4) Backup battery-related constraints:

Pmin
ch Um,t

ch ≤ Pm,t
ch ≤ Pmax

ch Um,t
ch (35)

Pmin
dis Um,t

dis ≤ Pm,t
dis ≤ Pmax

dis Um,t
dis (36)

Cm,t
bat = Cm,init

bat , t = 1 (37)

Cm,t
bat = ξ leakCm,t−1

bat + δbatPm,t
ch ∆t− 1

δbat Pm,t
dis ∆t, t = 2, 3, . . . , T + 1 (38)
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Cmin
bat ≤ Cm,t

bat ≤ Cmax
bat (39)

0 ≤ Um,t
ch + Um,t

dis ≤ 1 (40)

Um,t
ch , Um,t

dis ∈ {0, 1} (41)

where Um,t
ch and Um,t

dis denote the charge/discharge state of the backup battery in BS
m; Pmin

ch , Pmax
ch , Pmin

dis , and Pmax
dis are the upper/lower limits of the charging power and

discharging power of the backup battery in BS m; Cm,t
bat denotes the energy storage of

the backup battery in BS m; Cm,init
bat denotes the initial energy storage of the backup

battery in BS m; ξ leak denotes the energy leakage coefficient of the battery; δbat is the
charge/discharge efficiency coefficient of the battery; and Cmax

bat and Cmin
bat represent

the upper and lower limits of the energy storage of the backup battery in each
BS, respectively.

(5) Wind/solar curtailment rate constraints:

0 ≤ Curm
t ≤ 1 (42)

In summary, the problem of jointly optimizing the operation of ACs, storage batteries,
and renewable generation units is denoted as

(P2)minF2 = min ∑
t∈T

ctPt
grid∆t

s.t.(26)− (42)

3. Problem Reformulation with User Clustering and Benders Decomposition

Compared with 4G, the number of 5G terminal devices has grown explosively. If we
consider the optimal allocation of each user in (Pt

1), the optimization problem will be too
complex to be solved. In addition, (P2) is a large-scale, mixed-integer linear programming
problem (MILP) and is difficult to solve directly when the number of considered BSs grows.
To solve the above problems, a user clustering method for (Pt

1) and the Benders decomposi-
tion algorithm for (P2) are adopted, respectively, to accelerate the solution process.

3.1. User Clustering Strategy for (Pt
1)

To solve the problem in which the scale of (Pt
1) grows with the number of users, user

clustering is adopted in this work. Each cell m is evenly divided into six sub-cells mi (i = 1,
2, . . . , 6), as shown in Figure 4. All users in the same sub-cell mi belong to user cluster mi
and are deployed as a whole. In this way, the number of binary variables in (Pt

1) is greatly
reduced and does not increase with an increase in the number of users in the network.

Figure 4. Schematic of the user clustering method.

After the user clustering strategy is adopted, all users in cluster mi
′ may be connected

to one of the
∣∣∣Nm′i

∣∣∣ adjacent BSs.

The data rate from BS m to cluster mi
′ is shown in Equation (43) when they

are connected.
Lm,mi ′

tr,t = ∑
ut∈Umi ′

Lut
re (43)
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where Lm,m′i
tr,t denotes the data rate from BS m to cluster mi

′, and Um′i
denotes the set of users

in cluster mi
′.

Meanwhile, BS m needs to allocate transmit power Pm,m′i
tr,t to cluster mi

′ to meet user
needs, as shown in Equation (44).

Pm,mi ′
tr,t = ∑

ut∈Umi ′

Pm,ut
tr (44)

where Pm,m′i
tr,t denotes the transmit power from BS m to cluster mi

′.
The constraints expressed by Equations (11)–(16) are converted to Equations (46)–(51).

am,mi ′
t ∈ {0, 1} (45)

am,mi ′
t ≤ Um,t

bs , m ∈ Nmi ′ (46)

∑
m∈Nmi ′

am,mi ′
t = 1 (47)

Lm,t
tr = ∑

mi ′∈Ncl
m

am,mi ′
t Lm,mi ′

tr,t (48)

Lm,t
tr ≤ Lmax,m

tr (49)

Pm,t
tr = ∑

mi ′∈Ncl
m

am,mi ′
t Pm,mi ′

tr,t (50)

Pm,t
tr ≤ Pmax,m

tr (51)

where am,m′i
t denotes the connection relationship between BS m and cluster mi

′; Nm′i
denotes

the set of adjacent BSs of cluster mi
′; and Ncl

m denotes the set of clusters in cell m and its
adjacent cells.

Thus, (Pt
1) is shown as follows.

(Pt
1)minFt

1 = min ∑
m∈M

Pm,t
com∆t

s.t.(2), (5), (7), (10), (17)− (24), (43)− (51)

The proposed user clustering method according to user locations has obvious practical
value. According to Equation (3), the transmit power needed by user u is positively
correlated with the distance between u and its connected BS m. It is easy to observe that
the set of adjacent BSs Nu of each user u in cluster mi

′ is the same. The size relationship
of the geographic distance between user u and each BS m (m ∈ Nu) is basically uniform.
Therefore, the size relationship of the required transmitting power of each user u in the
same cluster mi

′ is basically uniform when connected to each BS m (m ∈ Nu). This property
ensures that the optimal solution of (Pt

1) with or without the user clustering strategy is
similar, while considerable calculation time is saved.

3.2. Benders Decomposition for (P2)

Because the continuity equations for indoor temperature (Equation (32)) and backup
batteries (Equation (38)) are both coupling constraints between adjacent time steps, (P2) is
a large-scale MILP of a multi-device, multi-step, jointly optimal scheduling, which cannot
be decomposed into |T| single-step optimality problems in the form of (Pt

1) and is difficult
to solve directly.

The Benders decomposition algorithm [35] is extensively applied to decompose large-
scale MILPs. By selecting complex variables from all variables in (P2), the problem is
decomposed to a master problem (MP), a feasibility subproblem (SP1), and an optimality
subproblem (SP2) to decrease the complexity of the original problem. In this study, all
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integer variables (
{

Um,t
air

}
,
{

Um,t
ch

}
, and

{
Um,t

dis

}
), and all AC-related continuous variables

(
{

Pm,t
air

}
,
{

Pm,t
cool

}
, and

{
Tm,t

in

}
) in (P2) are included in the MP, and the other continuous

variables are included in the SPs. The flow chart of the Benders decomposition algorithm
applied to (P2) is shown in Figure 5. The specific application steps are as follows:

(1) Input the model parameters, initialize the lower and upper bounds of (P2) LB = 0 and
UB = ∞, and initialize the number of iterations k = 1;

(2) Check whether the condition pertaining to the number of iterations k ≤ kmax is
established. If it is, then go to step (3); if it is not, then the loop ends, and the
optimal solution of (P2) fails to be found in kmax iterations;

(3) Solve the MP to obtain the optimal function value θ̂ and optimal variable values

(
{

Ûm,t
air

}
,
{

Ûm,t
ch

}
,
{

Ûm,t
dis

}
,
{

P̂m,t
cool

}
, and

{
T̂m,t

in

}
; let LB = θ̂; Input the value of the

complex variables into SP1 and then solve the optimal function value F̂SP1 of SP1 and
check whether F̂SP1 ≥ 0 is established; if it is, then add a Benders feasibility cut into
the MP, let k = k + 1; if it is not, then go to step (5);

(5) Input the value of the complex variables into SP2, and then solve the optimal function
value F̂SP2 of SP2; let UB = F̂SP2 ;

(6) Check whether the convergence criterion |UB− LB|/LB ≤ ε is established. If it is,
then the optimal solution of (P2) is found, and the loop ends; if it is not, add a Benders
optimality cut to MP, let k = k + 1, and go to step (2).

Figure 5. Flow chart of Benders decomposition for application to (P2).

4. Case Study

In this section, numerical results are presented to validate the effectiveness of the
proposed two-step energy management model and the corresponding accelerating solution
method. Two cases are studied: one is a 3 × 3 5G macro BS network, and the other is a
10 × 10 5G macro BS network.

The simulation is based on MATLAB R2018a (MathWorks, Natick, MA, USA) with an
Intel Core i5-10400F at 2.90 GHz and 24 GB random access memory (RAM). A Gurobi 9.1.1
commercial solver was used to solve the model.
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4.1. Simulation on 3 × 3 5G Macro BSs Network
4.1.1. System Description

The simulated 3 × 3 5G macro BS network is shown in Figure 6 with the geographic
distribution of each cell. The dot in each subcell represents the cluster of all users in that
subcell. The traffic load, renewable generation power, and electricity price profiles are
shown in Appendix A.

Figure 6. Diagram of a 3 × 3 distributed 5G macro BS network.

4.1.2. Effectiveness of the Two-Step Energy Management Model for 5G Macro BS Network

First, the performance of the proposed two-step energy management model for the 5G
macro BS network for the improvement of the dispatching scheme of both communication
and standard equipment is evaluated.

The dispatching scheme of the communication equipment and users with the use
of the proposed model is analyzed first. The on/off state and cluster association strat-
egy during the period of peak/valley traffic load (tpeak = 73, tvalley = 18) are shown in
Figure 7a,b, respectively.

Figure 7. On/off states of BSs and cluster association strategy: (a) peak period of traffic load and (b) valley period of
traffic load.
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It can be observed from Figure 7a that during the period of peak traffic load, all of the
BSs are heavily occupied; hence, the users are unable to transfer to adjacent cells. All BSs
in the 5G network are in active mode, and the users in each cell are served by the local BSs.
According to Figure 7b, during the period of valley traffic load, some BSs in the network
are lightly loaded so that the redundant BSs (BS 1, 2, 5, 6, 7, and 9) are switched to the sleep
mode and the users in the corresponding cells are transferred to adjacent BSs to receive
communication services. With the use of the BS sleeping strategy and user transferring
strategy, the 5G macro BSs in the network coordinate with each other to reduce electricity
costs and energy consumption. It can be observed that with the proposed dispatching
scheme, the energy consumption of the communication equipment is reduced by making
full use of the spatial and temporal fluctuations of the traffic load.

The average indoor temperatures are shown in Figure 8. To ensure the normal working
status of the BSs, the AC needs to maintain the temperature inside the cabinets below the
upper bound of the indoor temperature. The thermal inertia of the cabinet can be used to
shift the power consumption of the air conditioner. When the electricity price is relatively
low, such as in periods 9–24, the AC is turned on to reduce the indoor temperature to a low
level, while in instances in which the electricity price is high, such as in periods 25–31, the
AC can be turned off. The indoor temperature would not reach the upper bound of the
indoor temperature owing to the thermal inertia of the cabinets.

Figure 8. Average indoor temperature.

In addition, during periods in which the electricity prices and outdoor temperature
are both high (i.e., periods 45–96), the high-cooling demand and electricity prices will lead
to high-electricity costs produced by the AC. In this regard, with the proposed dispatching
scheme, the AC is first turned on in advance (during periods 32–44, when the electricity
price and outdoor temperature are relatively low) to reduce the indoor temperature to
a low level so that the working time of the AC can be shortened during the following
periods. The power consumption of AC is as conservative as possible during periods with
a high electricity price and outdoor temperature. In detail, the overall trend of indoor
temperature is rising, and the AC is turned on for a short time during periods 52–56 and
70–72 to keep the indoor temperature below the upper bound. After period 85, the indoor
temperature reached its upper limit. In these periods, the AC only turned on when the
indoor temperature almost exceeded the upper bound instead of lowering the indoor
temperature so that the power consumption and electricity costs could be reduced.

The variation in the total energy storage of backup batteries in the 5G network with the
electricity price is shown in Figure 9. As shown, the charging action mainly occurs during
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the low electricity price periods (i.e., periods 10–25), and the discharging action mainly
occurs during the high electricity price periods (i.e., periods 75–85). The low-priced electric
energy is transferred to the high price period, thus reducing the total power electricity costs
of the network.

Figure 9. Energy storage of backup batteries in the 5G macro BS network.

In summary, with the proposed dispatching scheme, the power consumption and
electricity costs of the 5G macro BS network can be reduced by taking advantage of the
spatial and temporal fluctuations of the traffic load, the thermal inertia of the cabinets, and
the storage of the backup batteries.

4.1.3. Computational Efficiency of the User Clustering Method and
Benders Decomposition

To demonstrate the computational efficiency of the proposed user clustering method
and Benders decomposition, the following three cases were tested for comparison.

Case 1: In the original model proposed in Section 2 for the 5G macro BS network,
neither the proposed user clustering methods and Benders decomposition were applied.

Case 2: In the two-step energy management model for the 5G macro BS network, the
proposed user clustering method was applied to reduce the computational burden of the
first-step problem. Benders decomposition was not applied to the second step problem.

Case 3: In the reformulated model proposed in Section 3 for the 5G macro BS network,
both the proposed user clustering method and Benders decomposition were applied to the
first and the second step problems, respectively.

Table 1 lists the comparative results for the three cases.

Table 1. Comparative results for the three tested cases.

Case Objective Value of
(P1) (kWh)

Optimality
Gap

Calculation
Time (s)

Objective Value of
(P2) ($)

Optimality
Gap

Calculation
Time (s)

Case 1 588.3 0 5.3518 48.21 0 582.7
Case 2 590.9 0.442% 1.1317 48.42 0.436% 469.5
Case 3 590.9 0.442% 0.7798 48.42 0.436% 40.3

Based on the comparison between Cases 1 and 2 in Table 1, the objective values of (P1)
and (P2) based on the use of the proposed user clustering method (Case 2) are 0.442% and
0.436% larger than that of Case 1, respectively, validating the achievement of approximately
optimal performance. In addition, the user clustering method (Case 2) outperforms Case 1
in terms of calculation time because it can reduce a large number of integer variables, and
the solving time of (P1) is reduced by approximately 80%. However, the long calculation
time of (P2) remains a problem that needs to be solved.

By comparing Cases 2 and 3 in Table 1, the reformulated model (Case 3) combines the
advantages of the user clustering method and Benders decomposition. The objective values
of (P1) and (P2) of Case 3 are the same as those of Case 2, which is also shown to reach
approximately optimal performance. It can also be observed that the application of Benders
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decomposition does not reduce optimality. In addition, the reformulated model (Case 3)
outperforms the other two cases in terms of the total calculation time because it reduces
the number of integer variables in (P1) and the size of (P2) by the decomposition method.

In summary, with the proposed user clustering method and Benders decomposition,
the proposed dispatching scheme can achieve approximately optimal performance, while
the solution time is reduced considerably.

4.2. Simulation on 10 × 10 5G Macro BS Network
4.2.1. System Description

The simulation was conducted on a 10 × 10 5G macro BS network. The traffic load
profile and renewable generation power of the network are presented in Appendix A.

4.2.2. Comparative Analysis between the Proposed Dispatching Scheme and the
Conventional Dispatching Scheme for 5G Macro BSs Network

To verify the performance of the proposed two-step energy management model in
terms of saving energy consumption and electricity costs, the following two dispatching
schemes were tested for comparison.

Dispatching scheme 1 (DS 1): The dispatching scheme of communication and standard
equipment in the 5G macro BS network is determined by the proposed two-step energy
management model proposed in Section 3.

Dispatching scheme 2 (DS 2): The conventional dispatching scheme. All BSs in the
network are always in active mode, and the users in each cell are served by the 5G macro
BS in the local cell; that is, user allocation is not performed, the transmission of electric
energy among the BSs is not performed, the fixed-frequency commercial AC is temperature-
controlled, and the set temperature is fixed. When the indoor temperature exceeds the
setting upper value, the AC turns on, and it turns off when the indoor temperature exceeds
the setting lower value. The backup batteries are used as a UPS, and they do not charge and
discharge in normal conditions. The power generation of renewable energy is consumed
by the local BS, and excess renewable energy is curtailed.

Table 2 presents the comparative results of the two schemes. It can be observed that
with DS 1, the electricity cost of the network is 20.35% less than that of DS 2. The energy
consumption of the network with DS 1 is 15.90% higher than that of DS 2. The energy
consumptions of the communication equipment and AC are both reduced with DS 1. The
analysis outcomes are summarized in Table 2.

Table 2. Comparison of the simulation results of DS 1 and DS 2.

Operation Strategy Cost/$ Egrid/kWh Ecom/kWh Eair/kWh

DS 1 693.82 9402.29 8431.56 1651.50
DS 2 871.11 11,179.75 9827.16 2305.50

Where Cost represents the total electricity costs of the 5G macro BS network, Egrid represents the total energy
consumption from the grid of the network, and Ecom and Eair are the total energy consumption of communication
equipment and AC in the network, respectively.

First, we compared the dispatching scheme of the communication equipment based
on the use of two strategies. The total power, fixed part of the power, and variable part of
the power of the communication equipment are shown in Figure 10a–c, respectively.

It can be observed from Figure 10a that the power variations of the communication
equipment in the network with DS 1 and 2 are basically consistent with the traffic load
profile. The power of the communication equipment with DS 1 is always lower than that
of DS 2. The power of communication equipment with the above two strategies is close
during high-traffic periods (such as the periods 40–85) and quite different during low-traffic
periods (such as periods 10–30).
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Figure 10. (a) Total power of communication equipment, (b) fixed part of the power of communication equipment, and
(c) variable part of the power of communication equipment.

According to Equation (1), the power of communication equipment in active mode
is composed of a fixed and a variable power, in which the variable power is proportional
to the BSs’ transmission power. As shown in Figure 10b, with DS 2, the communication
equipment is always in active mode, meaning that the fixed power has been maintained at
the maximum value; with DS 1, the redundant BSs can be shut down during the low-traffic
period, and the sleeping BSs are “awakened” in high-traffic periods to serve the users,
thereby reducing the fixed power consumption of communication equipment. According
to Figure 10c, the variable power of the communication equipment with DS 1 is higher than
that of DS 2. This is because, with DS 1, after the redundant BSs switch to sleep mode, the
users in the corresponding cells are transferred to adjacent BSs to receive communication
services. The transfer of users increases the geographic distance between the users and
BSs. According to Equation (5), an increase in distance leads to an increase in variable
power. However, in general, with DS 1, the reduction in fixed power is greater than the
increase in variable power, and thus the purpose of reducing the energy consumption and
the electricity costs can be achieved.

We then compared the dispatching scheme of AC with two strategies, and the average
indoor temperature in the cabinets is shown in Figure 11. The analysis of the dispatching
scheme of AC with DS 1 is consistent with that in Section 4.1.2. With DS 2, the dispatching
scheme of AC only depends on whether the indoor temperature exceeds the preset tem-
perature range. According to Figure 11, during periods in which the outdoor temperature
and electricity prices are both high, the working time of AC with DS 2 is much longer
than that of DS 1. In addition, the AC fails to reduce the indoor temperature in advance
before the outdoor temperature and electricity price increase; in other words, the AC fails
to make full use of the thermal inertia of the cabinets, thus resulting in higher electricity
costs. Furthermore, the indoor temperature with DS 2 can only be maintained within the
preset temperature range, whereas the proposed DS 1 allows the indoor temperature to
approach the upper bound. This is an important reason for the lower energy consumption
and electricity costs with DS 1 compared with DS 2.

Finally, the backup batteries are allowed to charge and discharge with DS 1. The
total energy storage of backup batteries in the 5G macro BS network is shown in Figure 12.
The analysis of the dispatching scheme of batteries is consistent with that described in
Section 4.1.2. By storing and releasing power from the grid over time, the power during
the low electricity price period is transferred to the period with a high electricity price.
Compared with DS 2, where the batteries are not allowed to be dispatched, the proposed
DS 1 effectively reduces the electricity costs of the network.

In summary, with the proposed dispatching scheme in this study, through the co-
ordination of each 5G BS and the economic dispatch of equipment in the network, the
energy consumption and electricity costs are effectively reduced in comparison with the
conventional dispatching scheme.
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Figure 11. Average indoor temperature.

Figure 12. Energy storage of backup batteries in the 5G macro BS network.

5. Conclusions

In this study, a two-step optimal energy management for a 5G macro BS network was
developed to coordinate the BSs’ on/off states, user allocation, and power transmission
among BSs in the network. A user clustering method based on geographic location was
proposed to reduce the computational burden, and the Benders decomposition method
was applied to accelerate problem solving. Case studies were conducted on a 3 × 3 5G
macro BS network and a 10 × 10 5G macro BS network. The key findings of the simulation
results are summarized as follows:

• The two-step energy management model for communication and standard equipment
can effectively reduce the energy consumption and electricity costs of the entire 5G
macro BS network compared with the conventional dispatching scheme by making
full use of the spatial and temporal fluctuations of the traffic load, the thermal inertia
of the cabinets, and the storage of the backup batteries;

• The proposed solution-accelerating methods—that is, user clustering and Benders
decomposition—were found to be computationally efficient, while they ensured
excellent performance with approximate optimality.
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Appendix A

A 3 × 3 5G macro BS network.

Figure A1. Traffic load of a 3 × 3 fifth generation mobile communications technology (5G) macro
base station (BS) network.

Figure A2. Power generation of renewable generation units of a 3 × 3 5G macro BS network.
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Figure A3. Electricity price.

A 10 × 10 5G macro BS network.

Figure A4. Traffic load of a 10 × 10 5G macro BS network.

Figure A5. Power generation of renewable generation units of a 10 × 10 5G macro BS network.
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