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Abstract

The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history
traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment
and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing
legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field.
We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing
plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of
parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female
parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of
legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body
mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with
legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious
hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids,
parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of
organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of
consumers.
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Introduction

The consequences of the ongoing loss of plant species have been

studied intensively, but rarely at other trophic levels than that of

the plants themselves [1,2]. If plant species disappear from a multi-

trophic system, it is conceivable that the effects of this loss of

primary producers ‘‘cascade up’’ the system and cause changes at

higher trophic levels. The first bottom-up cascades [3] were

described from aquatic systems, but they have since been

suggested to operate in a similar way in terrestrial systems [4].

Indeed, a few field and laboratory experiments have demonstrated

terrestrial ‘‘community- and population-level’’ bottom-up cascades

[4], such as effects of plant abundance and richness on the

abundance and richness of herbivores or predators

[5,6,7,8,9,10,11]. In contrast to these community- and popula-

tion-level approaches, other studies examined cascading effects at

the level of the individual organism (‘‘individual-level cascades’’

[4]). These studies typically manipulated plant quality and

measured effects on life-history traits of individuals at higher

trophic levels [12,13,14,15,16,17]. In this study, we hypothesize

that changes in plant community diversity affect life-history traits

of insects at higher trophic levels via changes in plant abundance

and quality, effectively linking community- and individual-level

cascades.

To address this hypothesis, we used aphid–parasitoid commu-

nities as a model system. The advantage of this system is that both

aphids and their parasitic wasps have a relatively short range of

movement, and due to their high degree of specialization are

strongly dependent on the presence and quality of their host

species [18,19,20,21]. Aphids often prefer single or few host plant

species at least during part of their life cycle [18]. Once a winged

(alate) aphid colonizer has reached such a host plant, a colony

forms via asexual reproduction of non-winged (apterous) individ-

uals. These remain rather immobile on the same plant individual.

Wasps parasitize aphids by laying single eggs into their body [22].

The parasitoid larva feeds internally on the aphid until the aphid

dies and forms a hard-shelled ‘‘mummy’’ in which the parasitoid

larva pupates. The adult primary parasitoid emerges from the
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mummy shortly after, unless it is itself parasitized by a secondary

parasitoid. These secondary parasitoids attack the primary

parasitoid either while the aphid is still alive (koinobiont

‘‘hyperparasitoids’’) or when the aphid has developed into a

mummy (idiobiont ‘‘mummy parasitoids’’).

In this study, we recorded four life-history traits of aphids and

their primary and secondary parasitoids that we expected to vary

along a plant richness gradient: (1) the proportion of winged

individuals in aphid colonies, (2) the emergence proportion of

parasitoids, (3) the proportion of parasitoids that are female and (4)

the body mass of the two most abundant parasitoids. Wings are a

costly trait for aphids that has been associated with reduced

fecundity and are therefore not constantly expressed [18,23]. The

production of winged morphs in aphids has been suggested to serve

two main purposes besides the obligatory change of host plant

species in the life cycles of some species: firstly, the avoidance of

deteriorating nutritional conditions, and secondly, the escape from

predators [23,24,25,26]. While wing production is subject to intra-

and interspecific variation [23], the proportion of winged aphids in

a colony may reflect its nutritional or enemy environment which we

anticipate to change with changing plant diversity.

Whether a parasitoid larva develops and emerges successfully

from the aphid mummy as an adult depends amongst other things

on aphid quality [27] and resistance [28,29]. Therefore, if changes

in the plant community affect the aphids’ quality in terms of

nutritional value, size or defensive abilities, these changes are

expected to influence the proportion of successfully emerging

parasitoids.

Parasitoid body mass is generally correlated with fitness [30,31],

which has been shown to be controlled by host nutritional quality

and especially by host size [e.g. 21,32]. Furthermore, some

hymenopteran parasitoids are able to select the sex of their offspring

at oviposition: fertilized eggs develop into females, unfertilized ones

into males [30]. Because female parasitoids gain more from being

large [33,34], female eggs are typically laid into the highest-quality

hosts [33]. Thus, heavier parasitoids with a female-biased sex ratio

could be expected to emerge in favorable environments.

In this study, we measured these life-history variables of aphids

and parasitoids in experimental grassland communities varying in

plant species richness and legume presence and show that (1) plant

species loss has bottom-up cascading effects on life-history traits of

organisms at higher trophic levels, (2) these cascades are mediated

by diversity-related changes in host plant biomass and host plant

nitrogen concentration.

Methods

Experimental design
This study was conducted as part of the Jena Experiment, a

temperate grassland biodiversity experiment in Jena, Germany

[35]. The experimental site is a floodplain area close to the river

Saale, which was used for agricultural cropping before the

experiment started in 2002. The site has not received fertilizer

since then and is mown twice per year, a typical mowing regime of

these grasslands. In the 3.563.5 m plots that were used for this

study, nine dominant plant species from semi-natural, mesophilic

grasslands were sown in 2002 as monocultures and mixtures

(richness levels of 1, 2, 3, 4, 6, and 9 species [36]). The original

species compositions were maintained by weeding at regular

intervals [35]. The plots were arranged in four blocks with

increasing distance to the river. Preliminary surveys showed that

aphids could be regularly found on four of the nine species at the

field site (Anthriscus sylvestris, Arrhenatherum elatius, Phleum pratense and

Trifolium pratense, plant nomenclature follows Rothmaler [37]).

Hence, only plots containing at least one of these host plant species

at a minimum abundance (.5% cover in May 2006) were used for

this study (Table S1). These selection criteria resulted in an

unbalanced design with fewer plots at the high plant-species richness

end of the gradient. Therefore, we interpret our results with caution.

Data collection
We identified and counted all aphids (a total of .16,000

individuals) that were part of an established colony on a host plant,

including nymphs and winged morphs, in the same 0.263 m

transect across the middle of the plots four times from May (first

appearance of aphids at the field site) to August 2006 (hardly any

aphids found after the fourth sampling period). All sampling

campaigns were completed within about one week: two campaigns

before the first mowing of the field site (around 2 June and 17

June) and two between the first and the second mowing (20 July

and 2 August). Sampling was usually done in the mornings from a

bench across the plots to avoid disturbing the vegetation and the

aphid populations.

All parasitized aphids (mummies) encountered in the transects

during sampling were collected. Additionally, all mummies in a

surrounding plot area (usually 4 m2) were collected at the same time

to be able to detect the full parasitoid community of a plot. A total of

more than 3,500 mummies were collected, about one third of them

from the transects. All mummies were placed individually in gelatin

capsules in the field and were taken to the laboratory for rearing of

the parasitoids. To induce parasitoid emergence, all mummies

remaining after four months were subjected to a 3-month cold-

warm-cold cycle with a minimum of 4uC. A total of about 2,000

parasitoids (about 1,700 primary parasitoids and 300 secondary

parasitoids) emerged and were identified to species level. We

individually weighed all 1,072 emerged individuals of the two most

abundant parasitoid species (both primary parasitoid species) on a

microbalance (Mettler Toledo MX5) to the nearest microgram after

drying at 70uC for 2 days. Those two species were Adialytus arvicola

(Stary), predominantly parasitizing the aphid Sipha maydis (aphid

nomenclature follows Stresemann [38]) on the host plant A. elatius;

and Trioxys brevicornis (Haliday), predominantly parasitizing the

aphid Cavariella aegopodii on the host plant A. sylvestris.

The biomass of aphid host plants was determined by clipping the

vegetation at a height of 3 cm in two 20650 cm areas within each

plot in May and August 2006. The harvested biomass was sorted

into species, dried at 70uC for 48 h and weighed. The biomass data

were averaged over the two sampling areas and summed up over the

whole year. Nitrogen concentrations of aphid host plants were

measured for each plant species from biomass samples harvested in

May 2004 [39] in the same plots that were used for aphid counts or

in replicate plots with the same plant composition.

Data analysis
The proportion of winged aphid morphs was calculated

separately for each aphid species by dividing the density of winged

individuals by the total density of this species. Alatiform nymphs

were rarely encountered and included as non-winged morphs;

parasitized aphids were excluded. The proportion of winged

aphids was arcsine square-root transformed to improve normality

and homoscedasticity. The emergence proportion of parasitoids

was calculated as the number of emerged parasitoids divided by

the sum of emerged parasitoids and remaining mummies for each

aphid species. This analysis was done at the level of the aphid

species because in the case of failed emergence we could not

confidently distinguish between primary and secondary parasitoids

or identify their species. The proportion of female parasitoids was

calculated for each parasitoid species by dividing the number of
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female individuals by the total number of emerged individuals of

this species. One parasitoid species, Lysiphlebus fabarum (Marshall)

which parasitized the aphid Aphis scaliai on the legume T. pratense,

reproduces predominantly asexually in Europe [40] and was

excluded from the analysis of proportions of females. All data were

aggregated over the four census times.

We used multiple regression and ANOVA to analyze the data.

Except for the proportion of winged aphid morphs the response

variables were not transformed for the final analyses because

model-checking procedures indicated that this was not necessary

and analyses with transformed variables gave similar results. The

biomass of aphid host plants (in g/m2) and their nitrogen

concentration (in %) were used as covariables. All analyses were

carried out with the statistical software R, version 2.7.2 [41].

Results

Plant-related variables
Overall, host plant biomass declined with increasing plant

species richness (Table 1). Host plant nitrogen concentration

increased with increasing plant species richness and was higher in

legume (2.360.8%) than in non-legume plots (1.460.3%) and

higher for legume (T. pratense: 2.960.5%) than for non-legume host

plants (A. sylvestris: 2.060.4%, A. elatius: 1.260.3%, P. pratense:

1.360.3%). Plant species on which mummies of the two most

abundant parasitoid species (A. arvicola and T. brevicornis) were

found, also showed a decrease in biomass with increasing plant

species richness (F1,24 = 16.6, P,0.001). Their average biomass

was higher in plots containing legumes (4526246 g/m2) than in

plots from which legumes were absent (1986123 g/m2,

F1,24 = 34.7, P,0.001). However, their nitrogen concentration

did not significantly increase with plant species richness

(F1,18 = 1.15, P = 0.297).

Proportion of winged aphids
Winged individuals were found in colonies of only four out of

the ten aphid species (Table S2): Aphis fabae, Cavariella aegopodi (both

mainly on the host plant A. sylvestris), Diuraphis muehlei (on the host

plant P. pratense) and Sipha maydis (on the host plant A. elatius). The

proportion of winged morphs declined with increasing plant

species richness, both for these four aphid species (Fig. 1) and when

all aphid species were included in the analysis (Table 2). The

biomass of the aphid host plants explained part of this effect:

Table 1. ANOVAs for host plant biomass and host plant nitrogen concentration.

Host plant biomass Host plant nitrogen concentration

df MS F P df MS F P

Plant species richness 1 706360 17.3 0.0001 Q 1 2.21 4.1 0.0482 q

Legume presence 1 3422 0.1 0.7735 1 16.23 30.3 ,0.0001 q

Plotcode 44 40806 4.8 ,0.0001 43 0.54 23.3 ,0.0001

Host plant species (non-legume vs. legume) 1 488148 57.0 ,0.0001 Q 1 32.37 1407.3 ,0.0001 q

Host plant species (rest) 2 13823 1.6 0.2061 2 0.78 34.0 ,0.0001

Plant species richness6Host plant species
(non-legume vs. legume)

1 261584 30.6 ,0.0001 1 0.01 0.3 0.5832

Plant species richness6Host
plant species (rest)

2 50123 5.9 0.0044 2 0.01 0.3 0.7387

Legume presence6Host plant species (rest) 2 19150 2.2 0.1142 1 0.03 1.2 0.2743

Residuals 71 8558 60 0.02

The term representing host plant species identity (‘‘Host plant species’’) is split into two contrasts: ‘‘non-legume vs. legume’’ and the term containing the remaining
variance from host plant species identity (‘‘rest’’). So for example (row 4), non-legume host plant species have a higher biomass than legume host plant species but
other host plant species identity effects are not significant. ‘‘Plant species richness’’ and ‘‘Legume presence’’ were tested against ‘‘Plotcode’’, all other terms against
‘‘Residuals’’. Directions of significant main effects (with 1 df) are indicated by arrows. P-values,0.05 are printed in bold. MS = mean square.
doi:10.1371/journal.pone.0012053.t001

Figure 1. Proportion of winged aphids as a function of plant
species richness. Only four aphid species produced winged morphs
and are shown here: A. fabae (circles), C. aegopodii (up-facing triangles,
both species mainly on the host plant species A. sylvestris) and D.
muehlei (diamonds, on the host plant species P. pratense) and S. maydis
(down-facing triangles, on the host plant species A. elatius). The size of
the plotting symbol is proportional to the biomass (g/m2) of the host
plant species of the respective aphid species in the respective plot. Host
plant biomass below 200 g/m2 is represented by a symbol with a fixed
minimal size. Proportions of winged aphids are arcsine square-root
transformed. 95% confidence intervals are shown around the regression
line.
doi:10.1371/journal.pone.0012053.g001

Plants and Insect Life History

PLoS ONE | www.plosone.org 3 August 2010 | Volume 5 | Issue 8 | e12053



higher host plant biomass had an increasing effect on the

proportion of winged aphids, but since host plant biomass declined

with plant species richness, the proportion of winged individuals

declined as well. Aphid load (aphid density per host plant biomass,

F1,28 = 0.083, P = 0.775) did not have a significant effect on the

proportions of winged aphids. Parasitoid density in the plots had a

positive effect on the proportions of winged aphids (F1,28 = 12.654,

P = 0.001, respectively).

Parasitoid emergence
The proportion of emerged parasitoids declined with increasing

plant species richness. Furthermore, the proportion was lower in

plots containing legumes. However, the latter was largely due to

the fact that parasitoids of aphid species with legume host plants

showed very low emergence proportions (Fig. 2, Table 3). Host

plant nitrogen concentration had a significant negative effect on

emergence (Table 3). When considering only aphid species that

were hosts for the two most abundant parasitoids, A. arvicola and T.

brevicornis (mummies only on non-legume host plants), emergence

proportions were similar in legume and non-legume plots

(F1,25 = 0.029, P = 0.867).

Proportion of female parasitoids
The proportion of female parasitoids was lower in the

presence of legumes, irrespective of the trophic level or species

identity of the parasitoid (Fig. 3, Table 4). Host plant biomass

had a significant negative effect on the proportion of female

parasitoids and explained part of the negative legume effect

(Table 4). There was no significant legume effect for the two

most abundant parasitoids, A. arvicola and T. brevicornis

(F1,24 = 0.528, P = 0.475).

Parasitoid body mass
The body mass of the two most abundant parasitoids, A. arvicola

and T. brevicornis was similar across all plant species richness levels

but was higher in the presence of legumes for males and females of

both parasitoid species (Figs. 4 and S1, Table 5). Because both

species emerged only from mummies on non-legume host plants,

these effects were indirect: they were largely due to increased

biomass and nitrogen concentration of these non-legume host

plants in plots containing legumes.

Discussion

Our results demonstrate that plant species richness and the

presence of legumes in plant communities affect the life history

of aphids and their parasitoids both directly and indirectly via

host plant biomass and nitrogen concentration. These effects

are paralleled by community-level cascading effects of plant

species richness on species richness and densities of aphids and

Table 2. ANOVAs for the proportion of winged aphids.

a) without covariables b) with covariables

df %SS F P df %SS F P

Host plant biomass 1 13.2 29.6 ,0.0001 q

Host plant nitrogen concentration 1 0.1 0.2 0.6902

Plant species richness 1 7.0 7.1 0.0111 1 4.1 3.9 0.0546

Legume presence 1 0.0 0.0 0.9595 1 0.1 0.1 0.7865

Plotcode 42 41.9 2.1 0.0097 41 42.5 2.3 0.0082

Aphid identity 9 27.4 6.3 ,0.0001 9 23.2 5.8 0.0001

Plant species richness6Aphid identity 6 2.1 0.7 0.6386 6 2.4 0.9 0.4996

Legume presence6Aphid identity 4 0.9 0.5 0.7436 3 0.7 0.5 0.6687

Residuals 43 20.7 31 13.8

Proportions were arcsine square-root transformed prior to analyses. The first analysis (a) was done without covariables, the second analysis (b) with biomass and
nitrogen concentration of aphid host plants as covariables. ‘‘Plant species richness’’ and ‘‘Legume presence’’ were tested against ‘‘Plotcode’’, all other terms against
‘‘Residuals’’. Directions of significant effects of the covariables are indicated by arrows. P-values,0.05 are printed in bold. % SS = percent sum of squares explained.
doi:10.1371/journal.pone.0012053.t002

Figure 2. Parasitoid emergence proportion as a function of
plant species richness. Closed black symbols depict parasitoids
emerged from mummies on non-legume host plants (A. sylvestris, A.
elatius, P. pratense) growing in plant communities without legumes,
grey symbols depict parasitoids emerged from mummies on those non-
legume host plant species in plant communities with legumes and
open symbols depict parasitoids emerged from mummies on a legume
host plant (T. pratense). The regression line (shown with 95% confidence
intervals) was fitted to all data points.
doi:10.1371/journal.pone.0012053.g002
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their parasitoids that we reported previously from the same

field site [11].

Proportion of winged aphids
The proportion of winged aphids decreased with increasing

plant species richness, partly as a result of a simultaneous

decrease in aphid host plant biomass. Whereas low host plant

abundance typically has a negative effect on herbivore

densities [5,6,11,42], the proportion of winged individuals

was expected to rise with resource limitation since wing

production after the initial colonization period in early spring

is a strategy to escape deteriorating conditions by dispersing

[23,25]. In addition to the unexpected direction of the effect,

we found no influence of crowding (aphid load) or of plant

quality (in terms of plant nitrogen concentration) on winged

morph production, suggesting that limited resource availability

was not the cause for decreasing proportions of winged morphs

with increasing plant species richness. However, Züst et al.

[43] suggested that resources might sometimes be too low to

induce wing production at all. So the resource-limitation

argument could be reversed to explain the extremely low

proportions of winged aphids in communities with high plant

species richness and low host plant biomass. Parasitoid density

had an increasing effect on aphid wing production indicating

that increased pressure from natural enemies might have

played a role in this context. However, we found relevant

proportions of winged individuals in only four aphid species. It

has been shown that intra- and interspecific variation in wing

induction can be very large [23]. Furthermore, other abiotic

effects that we did not measure (e.g. temperature) may be

important triggers [23], cautioning against drawing strong

conclusions from the results.

Parasitoid emergence and proportion of female
parasitoids

Emergence proportions of parasitoids similarly decreased with

increasing plant species richness. However, our design was

unbalanced, because of a disproportionately low number of plant

communities at high species richness levels. Therefore, we have to

interpret our results with caution. Both emergence proportions

and proportions of females were lower in plant communities

containing legumes compared with legume-free communities.

These relationships were partially explained by changes in host-

plant nitrogen concentration (parasitoid emergence) and in host

plant biomass (proportion of females).

Plant nitrogen concentrations, which are often increased even in

non-legumes by the presence of nitrogen-fixing legumes [44,45],

can have positive or negative effects on higher trophic levels. On the

one hand, plants with higher nitrogen concentrations may be more

nutritious for herbivores, which are generally nitrogen-limited

[46,47,48,49]. On the other hand, nutrient availability is known to

affect plant allocation to secondary metabolites [50,51] and plants

may use surplus nitrogen to produce higher levels of nitrogen-based

defense compounds [51,52]. One trophic level above herbivores,

the same dichotomy may become apparent. Natural enemies of

herbivores are even more strongly limited by nitrogen than the

Table 3. ANOVAs for the parasitoid emergence proportion.

a) without covariables b) with covariables

df %SS F P df %SS F P

Host plant biomass 1 1.4 1.4 0.2591

Host plant nitrogen concentration 1 18.6 17.6 0.0007 Q

Plant species richness 1 8.9 10.4 0.0024 1 5.9 7.4 0.0092

Legume presence 1 5.5 6.4 0.0149 1 0.0 0.1 0.8075

Plotcode 44 37.7 1.2 0.3621 43 33.9 0.7 0.7818

Aphid identity 6 23.6 5.3 0.0014 6 16.2 2.6 0.0629

Plant species richness6Aphid identity 4 4.9 1.7 0.1941 4 5.4 1.3 0.3198

Legume presence6Aphid identity 2 1.6 1.1 0.3523 1 1.6 1.5 0.2433

Residuals 24 17.8 16 16.9

The first analysis (a) was done without covariables, the second analysis (b) with biomass and nitrogen concentration of aphid host plants as covariables. ‘‘Plant species
richness’’ and ‘‘Legume presence’’ were tested against ‘‘Plotcode’’, all other terms against ‘‘Residuals’’. Directions of significant effects of the covariables are indicated by
arrows. P-values,0.05 are printed in bold. % SS = percent sum of squares explained.
doi:10.1371/journal.pone.0012053.t003

Figure 3. Proportion of female primary and secondary
parasitoids in communities with and without legumes. The
dashed line shows the 1:1 sex ratio.
doi:10.1371/journal.pone.0012053.g003
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herbivores themselves [53,54] and might do better on nitrogen-rich

hosts. However, some herbivores can use nitrogen-based plant

compounds or simply their own high nutritional status on nitrogen-

rich host plants to mount defenses against predators and parasitoids

[55,56]. While some of the early defense reactions (encapsulation

and abortion of parasitoid eggs) probably went unnoticed in our

study, the lower parasitoid emergence success on nitrogen-rich host

plants could still be due to increased aphid defenses.

Since mated parasitoid females can determine the sex of their

offspring at oviposition [30], we speculate that they might have

sensed a potentially different host quality and avoided ‘‘wasting’’

females on risky hosts. On the other hand, the parasitoid sexes

might have differential mortality [30], with female larvae more

prone to abortion as a result of lower host quality, potentially

explaining the lower emergence success in legume plots.

Interestingly, even secondary parasitoids showed the effect of

legumes on the proportions of females, implying a cascade to the

third trophic level above the plants.

Parasitoid body mass
In contrast to general parasitoid emergence and proportions of

females, the body mass of the two most abundant primary

parasitoids, A. arvicola and T. brevicornis, was higher in the presence

of legumes in the plant community. Host plant nitrogen

concentration and host plant biomass had a positive effect in this

case. Since we did not find a negative effect of legume presence on

emergence or the proportion of females in these two species, we

conclude that they might be resistant to potentially increased

aphid defenses in legume plots. This resistance may even explain

their high abundance at our field site. The two species seemed to

instead profit from the presence of legumes. We did not measure

aphid body mass or nitrogen content and hence have no

conclusive evidence for either higher nitrogen content of hosts

[53,54,57] or larger host size indeed mediating higher parasitoid

body mass in communities with legumes. Another field experiment

found a higher body-mass gain of herbivores (grasshoppers) in

legume-containing plant communities [58]. Since host size is

typically strongly correlated with parasitoid size [59], a size-

mediated effect seems plausible.

Conclusions
We found considerable effects of plant species richness and

community composition cascading up the food web to affect aphid

and parasitoid life-history traits. Legumes exerted a particularly

Table 4. ANOVAs for the proportion of female parasitoids.

a) without covariables b) with covariables

df %SS F P df %SS F P

Host plant biomass 1 3.6 6.5 0.0148 Q

Host plant nitrogen concentration 1 1.6 2.9 0.0988

Plant richness 1 0.7 0.9 0.3461 1 0.8 0.9 0.3432

Legume presence 1 3.3 4.3 0.0452 1 0.3 0.3 0.5732

Plotcode 39 30.1 1.6 0.0555 37 30.9 1.5 0.1081

Trophic level 1 0.0 0.0 0.9736 1 0.4 0.8 0.3735

Parasitoid identity 18 20.5 2.3 0.0077 18 22.3 2.2 0.0191

Plant species richness6Trophic level 1 0.0 0.0 0.9086 1 0.1 0.1 0.7182

Plant species richness6Parasitoid identity 15 7.1 1.0 0.5051 14 10.1 1.3 0.2496

Legume presence6Trophic level 1 0.1 0.1 0.7156 1 0.2 0.4 0.5296

Legume presence6Parasitoid identity 12 7.9 1.3 0.2216 12 9.2 1.4 0.2157

Residuals 62 30.4 37 20.5

The first analysis (a) was done without covariables, the second analysis (b) with biomass and nitrogen concentration of aphid host plants as covariables. ‘‘Plant species
richness’’ and ‘‘Legume presence’’ were tested against ‘‘Plotcode’’, all other terms against ‘‘Residuals’’. ‘‘Trophic level’’ signifies the contrast between primary and
secondary parasitoids. Directions of significant effects of the covariables are indicated by arrows. P-values,0.05 are printed in bold. % SS = percent sum of squares
explained.
doi:10.1371/journal.pone.0012053.t004

Figure 4. Body mass of two primary parasitoids in plant
communities with and without legumes. Average dry mass of the
two most abundant primary parasitoids A. arvicola and T. brevicornis 6
standard error (mg) in plots without legumes (‘‘no leg’’) and with
legumes (‘‘leg’’). Both parasitoid species developed only in aphids on
non-legume host plant species (A. elatius and A. sylvestris, respectively).
doi:10.1371/journal.pone.0012053.g004
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strong effect in some cases. This plant functional group had an

impact up to the highest trophic level considered in this study,

sometimes mediated via an additional interaction at the plant level,

thus affecting even insect communities on non-legume host plants.

In contrast, we found only plant-species richness effects but no

effects of legume presence on aphid and parasitoid richness and

densities in a community-level study at the same field site [11],

underlining the importance of life-history studies to detect different

pathways of effects of plant species loss on associated biodiversity.

This difference in the effect of legume presence between the two

studies may indicate that cascading bottom-up effects on insect

life-history traits are more strongly resource-quality mediated,

whereas cascading effects on insect species richness and density

seem to be rather mediated by abundance and richness of lower

trophic levels. On the other hand, it is possible that insect life-

history studies detect effects of plant species loss at an earlier stage

than richness or abundance studies. Similar observations have

been made in analyses of vegetation responses to habitat change,

where life-history changes could be used as early indicators [60].

The altered life-history traits of aphids and parasitoids are

expected to eventually result in altered species abundances and

richness at these consumer trophic levels. One example for this link

is the apparently low suitability of species-rich plant communities for

parasitoids. In the present study, we found for example lower

emergence success, potentially due to increased aphid defenses.

These are paralleled by low parasitoid densities and species richness

[11], possibly a result of reduced parasitoid reproduction. We

therefore advocate the additional examination of individual-level

cascades to predict and explain population- and community-level

cascades of plant species loss on higher trophic levels.

Supporting Information

Figure S1 Body mass of two primary parasitoids in communities

with and without legumes. Average dry mass of a) females and b)

males of the two most abundant primary parasitoids A. arvicola and

T. brevicornis 6 standard error (mg) in plots without legumes (‘‘no

leg’’) and with legumes (‘‘leg’’). Both parasitoid species developed

only in aphids on non-legume host plant species (A. elatius and A.

sylvestris, respectively).

Found at: doi:10.1371/journal.pone.0012053.s001 (0.06 MB TIF)

Table S1 List of all 47 sampled plots. For each plot, block

number, plot number, plant species richness, the presence of

legumes, the presence of the nine plant species in the plant

assemblage and the total host plant biomass (sum across all aphid

host plant species and both harvests in 2006) are given. In some

cases, two replicate plots with the same plant composition were

used. The presence of a plant species refers to its presence in the

seed mixture at plot establishment in 2002, independent of its

actual abundance through 2006. Only the first four plant species

hosted aphids in our study. Ant: Anthriscus sylvestris, Arr: Arrhenatherum

elatius, Phl: Phleum pratense, Tri p: Trifolium pratense, Alo: Alopecurus

pratensis, Dac: Dactylis glomerata, Ger: Geranium pratense, Poa: Poa

trivialis, Tri r: Trifolium repens.

Found at: doi:10.1371/journal.pone.0012053.s002 (0.07 MB

DOC)

Table S2 List of plant and insect species. For each species,

average densities (biomass in g per m2 for plants, individuals per

m2 for aphids and parasitoids, sums over all sampling dates) are

given. Furthermore, proportions of winged aphids, proportions of

emerged parasitoids, proportions of female parasitoids and

parasitoid body mass (mg) across all respective plots are given.

All means are shown 61 standard error. Plant nomenclature

follows Rothmaler [1], aphid nomenclature follows Stresemann

[2]. Authorities for parasitoids are given in parentheses behind

species names. Two rare aphid species and one rare parasitoid

species could not be identified due to the lack of material and

were assigned to morphospecies. Three species of Alloxysta have

not been described and were given provisional names (Frank van

Veen, personal communication). excl.:Lysiphlebus fabarum repro-

duces asexually in Europe (i.e. the proportion of females is aways

1) and was excluded from the analysis of proportions of females;

n.a.: not available (Aphis fabae and the unidentified aphid species

Table 5. ANOVAs for the body mass of the two most abundant primary parasitoid species (A. arvicola and T. brevicornis).

a) without covariables b) with covariables

df %SS F P df %SS F P

Host plant biomass 1 6.1 67.1 ,0.0001 q

Host plant nitrogen concentration 1 2.5 27.4 ,0.0001 q

Plant species richness 1 0.3 1.4 0.2452 1 0.8 2.7 0.1228

Legume presence 1 7.7 34.6 ,0.0001 1 0.6 2.2 0.1584

Parasitoid identity 1 1.7 7.7 0.0103 1 1.1 3.9 0.0664

Plant species richness6Parasitoid identity 1 0.2 0.7 0.4190 1 0.1 0.5 0.5017

Legume presence6Parasitoid identity 1 0.0 0.1 0.7088 1 0.2 0.8 0.3812

Plotcode 24 5.3 2.6 0.0001 16 4.7 3.2 ,0.0001

Sex 1 2.8 32.8 ,0.0001 1 2.4 26.3 ,0.0001

Plant species richness6Sex 1 0.1 1.7 0.1917 1 0.2 1.7 0.1894

Legume presence6Sex 1 0.2 2.0 0.1551 1 0.2 2.3 0.1297

Parasitoid identity6Sex 1 0.7 8.5 0.0036 1 0.5 5.9 0.0158

Residuals 936 80.9 877 80.5

The first analysis (a) was done without covariables, the second analysis (b) with biomass and nitrogen concentration of aphid host plants as covariables. Both parasitoid
species developed only in aphids on non-legume host plant species. The covariables and ‘‘Sex’’ (incl. all interactions with ‘‘Sex’’) were tested against ‘‘Residuals’’, all other
terms against ‘‘Plotcode’’. ‘‘Parasitoid identity’’ was tested at the ‘‘Plotcode’’ level in this analysis because in almost all cases only one of the two species was present in a
plot. Directions of significant effects of the covariables are indicated by arrows. P-values,0.05 are printed in bold. % SS = percent sum of squares explained.
doi:10.1371/journal.pone.0012053.t005
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were never parasitized in our study; the sex of the unidentified

parasitoids could not be determined). References: 1. Rothmaler R

(2002) Exkursionsflora von Deutschland; Jäger EJ, Werner K,

editors. Heidelberg-Berlin: Spektrum. 2. Stresemann E (1994)

Exkursionsfauna von Deutschland, Wirbellose: Insekten- 2.Teil.

Jena: Gustav Fischer Verlag.

Found at: doi:10.1371/journal.pone.0012053.s003 (0.06 MB

DOC)
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