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Cystic fibrosis (CF) is an autosomal recessive gene disorder that affects tens of thousands
of patients worldwide. Individuals with CF often succumb to progressive lung disease and
respiratory failure following recurrent infections with bacteria. Viral infections can also
damage the lungs and heighten the CF patient’s susceptibility to bacterial infections and
long-term sequelae. Vitamin A is a key nutrient important for immune health and epithelial
cell integrity, but there is currently no consensus as to whether vitamin A should be
monitored in CF patients. Here we evaluate previous literature and present results from a
CF mouse model, showing that oral vitamin A supplements significantly reduce lung
lesions that would otherwise persist for 5-6 weeks post-virus exposure. Based on these
results, we encourage continued research and suggest that programs for the routine
monitoring and regulation of vitamin A levels may help reduce virus-induced lung
pathology in CF patients.
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CYSTIC FIBROSIS (CF), THE DISEASE

CF is a recessive genetic disorder that affects tens of thousands of patients globally. The disease is
due to mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) that
encodes an ion channel protein. Mutations result in abnormal epithelial fluid transport in
respiratory and digestive tracts (1). Individuals with CF often succumb to progressive lung
disease and respiratory failure following recurrent infections with bacteria including
Staphylococcus aureus, Haemophilus influenza, and Pseudomonas aeruginosa (2, 3). Although
some reports suggest that CF patients clear viruses as well as their healthy counterparts (4), virus
infections can damage the lung, increase susceptibility to bacterial infections, and worsen outcomes.
CF patients with respiratory viral infections often have culture-positive bacterial pathogens (5, 6). In
one study, viral respiratory infections were evident among 65% of exacerbations in patients with CF
(7, 8). These data highlight the importance of virus control as an integral component of CF
patient care.
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VITAMIN A

Vitamin A is an essential nutrient, necessary for healthy immune
responses against respiratory pathogens, control of infectious
diseases, and the integrity of mucosal epithelial cells. Vitamin A
effector functions occur at the cell surface, within the cell
cytoplasm, and within the nucleus of target cells (9–11).
Experiments in animal models have shown that when vitamin
A is low, host susceptibility to pathogens is increased (12–15). In
vitamin A deficient animals, vaccine responses are weak, and
serious outcomes follow viral infections and bacterial co-
infections (15–17). After clearance of replicating pathogens,
residual foreign antigens and consequent inflammatory
responses may persist (18).
VITAMIN A DEFICIENCIES/
INSUFFICIENCIES ARE A GLOBAL
CONCERN

It is noteworthy that vitamin A deficiency/insufficiency, a
condition once presumed to affect developing countries only, is
now frequent in the developed world including the United States
(19, 20). A unique concern is raised for the CF patient due to
pancreatic insufficiency and malabsorption (21–23). Some
centers report that 10-40% of their CF patients are vitamin A
deficient (VAD) (24). Vitamin A monitoring is sometimes
performed as a routine and supplementation is sometimes used
as a treatment option in deficient patients (25, 26). Sapiejka et al.
observed higher blood vitamin A levels in patients who received
vitamin A supplements. They also found that low FEV1 levels
(<80%) were significantly more frequent in patients with vitamin
A levels <300 ng/ml.

Unfortunately, health guidelines vary (24–31) and many
clinical centers overlook vitamin A. Even when serum vitamin
A levels appear normal in an individual (32), there may be
inadequate vitamin A levels in parenchymal tissues (33). Tissue
deficits can be missed in humans when standard blood tests are
employed and may be revealed by vitamin A dose response tests
(34). When vitamin A levels are insufficient/deficient in an
animal, whether due to a nutritional deficiency or an
underlying health condition, vitamin supplements can improve
pathogen-specific immune responses and pathogen control (13,
17, 35, 36).
EXPERIMENTS IN A CF MOUSE MODEL
DEMONSTRATE THAT PERSISTENT LUNG
PATHOLOGY FOLLOWING A
RESPIRATORY VIRUS INFECTION IS
REDUCED BY ORAL VITAMIN A
SUPPLEMENTS

We used a CF mouse model to ask if vitamin A supplements could
reduce virus-induced lung pathology that persists after a
Frontiers in Immunology | www.frontiersin.org 2
parainfluenza virus respiratory infection. Experiments were with
Cftrtm1Unc Tg(FABPCFTR)1Jaw mice that were purchased from
Jackson Laboratories (Bar Harbor, Maine) or bred from Jackson
mice at St Jude Children’s Research Hospital. Cftrtm1Unc Tg
(FABPCFTR)1Jaw mice are homozygous for a mutation in the
mouse Cftr gene. The targeted knock-out allele (Cftrtm1Unc) was
originally created by insertion of a neomycin selection cassette into
the gene at sequences corresponding to codon 489. Mice were
additionally homozygous for a functional human CFTR gene
expressed under the control of the rat intestinal fatty acid-binding
protein 2 (Fabp2) genepromoter (FABP-hCFTR) (37, 38). The latter
genewasnecessary to rescueprotein function in themouse intestinal
epithelium, to correct malabsorption. Otherwise, mice did not
survive to adulthood. We note that in humans with CF,
malabsorption is often corrected using pancreatic enzyme
replacement therapy (39). Mice were termed ‘CF’ for simplicity. A
preliminary test of serum retinol binding protein (RBP), a surrogate
for serum vitamin A (retinol), showed no significant differences
between mice carrying the CFTR mutation and controls.

Experiments were designed and performed in triplicate to test
the benefits of vitamin A supplements for reduction of residual
lung pathology that persisted several weeks after a viral infection
in CF animals. In each of three experiments, there were two
groups of mice with 7-8 mice per group. Both groups were
infected with parainfluenza virus (Sendai virus, SeV). Test CF
mice, but not controls, were additionally treated with oral doses
of vitamin A on days -7, -3, 0, and +3 relative to the intranasal
infection. The extent and severity of residual pulmonary lesions
were then assessed at 5-6 weeks post-infection, a time after virus
had been cleared (no residual viral antigen was detected by
immunohistochemical staining at that time), to identify
persistent consequences of a virus infection in the CF model.

After SeV infections of CF mice, vitamin A-supplemented
mice exhibited fewer lung lesions at 5-6 weeks compared to
unsupplemented mice. In Figure 1, data are shown from one
experiment. The three types of lesions represented in this Figure
(interstitial inflammation, alveolar inflammation, and septal
thickening) were: (a) reduced in supplemented mice compared
to controls in each of the three experiments, and (b) significantly
reduced in supplemented mice compared to controls in at least
one of the three experiments.

Figure 2 shows images of lung tissues observed 5-6 weeks after
SeV infections in CF mice that did not receive (left column) or did
receive (right column) vitamin A supplements. In Figure 2A are
shown lesions from an unsupplemented mouse that extended
from terminal airways to the lung margins, sometimes coalescing
with lesions surrounding other bronchioles to involve entire lung
lobes. Higher magnification images revealed lesions with indistinct
borders and alveoli filled with debris and cellular infiltrates
(Figure 2C). These cell infiltrates consisted mostly of large
(activated) alveolar macrophages, with scattered clusters of
neutrophils, both intact and degenerating (see arrow,
Figure 2E). In contrast, the lesions in a CF mouse that received
vitamin A supplements at the time of SeV infection were sharply
demarcated and relatively small, rarely reaching the lung margin
and generally only partially surrounding terminal airways
(Figure 2B). Higher magnification images revealed thickened
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alveolar septa and predominantly clear alveolar spaces with
relatively little cellular debris and few alveolar macrophages
(Figures 2D, F). Peribronchiolar lymphoid aggregates were
observed (see arrow, Figure 2D). Septal thickening involved
interstitial inflammatory cell infiltrates (lymphocytic) and diffuse
hypertrophy of alveolar epithelium (Figure 2F). Images from
normal areas of tissue that were unaffected by virus are shown
in Figures 2G, H from an unsupplemented and supplemented
mouse, respectively. Here, there were no notable differences
between alveoli. Figures 2I, J provide the highest (60X)
magnifications of inflamed virus-damaged areas from an
unsupplemented and supplemented mouse, respectively. In the
unsupplemented mouse (Figure 2I), as described above, alveoli
were filled with clusters of neutrophils (arrows) and large foamy
alveolar macrophages (alveolar inflammation). In contrast, in the
vitamin A-supplemented mouse (Figure 2J), smaller pulmonary
lesions at 5-6 weeks after SeV infection were characterized by air-
filled alveoli with septa thickened by hypertrophic alveolar
epithelium and interstitial lymphocytic infiltrates (interstitial
inflammation). Lymphocytic infiltrates were especially
prominent surrounding blood vessels (near asterisk). The open
alveolar spaces contained normal-sized alveolar macrophages with
relatively small amounts of cytoplasm (arrow).

This study had limitations in that it used a single CF mouse
model and focused on a single parainfluenza virus infection and
a single vitamin A dosing regimen. The mechanism by which
vitamin A protected animals from virus-induced pathology was
not defined in this study. Studies were performed after virus had
been cleared and when viral antigens were no longer detected by
immunohistochemical studies. Possibly, the employment of a
more sensitive assay such as the polymerase chain reaction (40)
or a T-cell based assay (18) would have detected residual nucleic
Frontiers in Immunology | www.frontiersin.org 3
acids or peptide fragments pertinent to long-term health
outcomes. Follow-up studies are warranted to define
mechanisms by which vitamin A protected the animals.
Experiments may include different CF models (41–43),
different pathogens, and different vitamin A dosing regimens
with comprehensive measurements of virus titers, inflammatory
cell subsets in the lung (aided by flow cytometry), vitamin levels
(in blood, liver, and lung), animal weights, and immune
functions throughout the time course.
WHY MIGHT VITAMIN A SUPPLEMENTS
REDUCE LUNG LESIONS
POST-VIRUS INFECTION?

Vitamin A is pleiotropic in function, affecting numerous cell
types including B cells, T cells, dendritic cells (DCs) and
respiratory tract epithelial cells. As an example, vitamin A
influences the expression of a4b7 and CD103, a component of
the aEb7 homing receptor, on T cells and DCs. These homing
receptors regulate adherence and motility of immune cells,
important for rapid virus-specific immune responses (44–47).
As a second example, vitamin A assists B cell production of IgA,
a key effector for the local prevention of respiratory tract
infections (35, 48–50). In some systems, vitamin A has been
associated with the induction of interferon (IFN) a/b and the
support of IFN functions (51–53). By enhancing adaptive and
innate immune functions, vitamin A may improve viral
clearance and thereby prevent lung damage.

There are a multitude of additional effects (both
immunostimulatory and immunoregulatory) of vitamin A on
FIGURE 1 | Vitamin A supplements at the time of parainfluenza virus infections reduce lung lesions scored 5-6 weeks post-infection. Data are from one of three
experiments demonstrating the reduction of lung lesions in CF mice supplemented with vitamin A at the time of a virus infection. Lesions were given relative scores. Each
symbol represents a different test mouse (no lesions were observed in control, uninfected mice). In each of the three experiments, the vitamin A-supplemented mice (CF
+VitA) exhibited significantly or marginally reduced scores for interstitial inflammation, alveolar inflammation, and septal thickening at weeks 5-6 post-virus infection compared
to mice that received no supplement (CF). Means with standard deviations are shown. Mann Whitney tests were performed to compare groups (*p < .05, **p < .01).
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FIGURE 2 | Lung lesions from vitamin-unsupplemented and supplemented in CF mice 5-6 weeks post-parainfluenza virus infections. Images represent lung tissues
sampled 5-6 weeks after an SeV infection. Images in the left column were taken when mice received no vitamin A supplements. Images in the left column represent a
mouse that received no vitamin A supplements. Images in the right column represent a mouse that received vitamin A supplements at the time of SeV infections. Panel
(A) shows lesions from an unsupplemented mouse. These frequently extended from terminal airways to the lung margins and coalesced with lesions surrounding other
bronchioles to involve entire lung lobes (arrows). (C) Lesions were characterized by indistinct borders and alveoli filled with debris and cellular infiltrates. (E) Cell infiltrates
consisted mostly of large (activated) alveolar macrophages, with scattered clusters of neutrophils, both intact and degenerating (arrow). Panel (B) shows Pulmonary
lesions from a mouse taken 5-6 weeks after an SeV infection with vitamin A supplementation. Lesions were small and sharply demarcated, rarely reaching the lung
margin and not affecting entire lung lobes. (D) At higher magnification, lesions were observed with generally clear alveolar spaces, sharply demarcated from surrounding
normal parenchyma. Peribronchiolar lymphoid aggregates were also evident (arrow). (F) Septal thickening in the lesioned area was due to interstitial inflammatory cell
infiltrates (lymphocytic) and diffuse hypertrophy of alveolar epithelium. (G, H) Images include areas of normal tissue for comparison to areas of diseased tissue. Images
were from unsupplemented and supplemented mice, respectively. (I, J) Images show lesioned areas at 60X magnification in unsupplemented and supplemented mice,
respectively. (I) a virus-damaged area in which alveoli were filled with clusters of neutrophils (arrows) and large foamy alveolar macrophages (alveolar inflammation). (J)
Pulmonary lesions were characterized by air-filled alveoli with septa thickened by hypertrophic alveolar epithelium and interstitial lymphocytic infiltrates (interstitial
inflammation). Lymphocytic infiltrates were prominent surrounding blood vessels (near asterisk). Open alveolar spaces contained normal-sized alveolar macrophages with
relatively small amounts of cytoplasm (arrow). Scale bars: B = 1 mm; D = 200 mm; F, G = 100 mm.
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pathogen control including influences on myeloid cell expansion
(54) and Treg or Th17 maturation [with variable effects in vitro
and in vivo (12)]. Mechanisms and cause-effect relationships are
complex in that an influence of vitamin A on one cell type (e.g.,
upregulation of B cell activity) may have numerous downstream
influences (e.g., clearance of antigen and reduction of cytokines)
(12, 17, 18, 55). Disease consequences can, in turn, influence
levels of RBP (an acute-phase protein and an important blood
escort for retinol) and vitamin A.

Apart from affecting immune responses, vitamin A also
supports the growth and integrity of epithelial cells (14),
features associated with wound prevention and repair. When
introduced into in vitro systems, vitamin A assists the
establishment of epithelial monolayers and organ culture
systems (56). Epithelial cells of the respiratory tract express
retinaldehyde dehydrogenase 2 (RALDH2 or ALDH1A2), an
enzyme necessary for conversion of retinaldehyde to its end-
stage metabolite, retinoic acid (48).

Our previous studies have shown that VAD associates with
delayed clearance of respiratory viruses and viral antigens (15,
18). Vitamin A supplements can improve vitamin A levels in
peripheral tissues, including the lung, and improve immune-
mediated clearance of respiratory viral infections (12, 13, 35, 36).
Consequently, epithelial barriers are maintained and antigen-
driven inflammatory responses are resolved (18). Altogether, the
benefits of vitamin A are clearly multi-factorial and include
support of (i) rapid immune function, (ii) rapid clearance of
virus and viral antigens, and (iii) epithelial growth, to prevent
lung pathology and improve clinical health.
SHOULD VITAMIN A SUPPLEMENTS BE
USED INDISCRIMINATELY IN CF
PATIENTS?

There is unfortunately no consensus guideline for vitamin A
monitoring and control in CF patients. Replete vitamin A levels
are best attained by maintenance of healthy diets, but
supplementation programs provide a back-up solution when
patients repeatedly suffer malnutrition. Some centers encourage
vitamin A supplementation, while others do not (24, 27–30).
Indiscriminate use of vitamin A supplements is sometimes
advocated, but the fine-tuning of vitamin supplementation
programs may yield a better result. This is because vitamin A
supplements, particularly if administered at high doses, can cause
harm (57). As an example, Bresee et al. showed that when vitamin
A supplements were administered to children who were
hospitalized with respiratory syncytial virus (RSV) infections,
the supplemented children experienced longer hospital stays
than placebo controls (58). In our study of influenza vaccine
immunogenicity in children, a supplement with vitamin A+D
improved responses in children who were vitamin A+D
insufficient or deficient at baseline, but reduced responses in
children who were vitamin replete (20). Baseline vitamin levels
[and levels of other nuclear receptor ligands that may cross-
regulate vitamin functions (10, 59)] will clearly influence outcome.
Frontiers in Immunology | www.frontiersin.org 5
Few controlled clinical studies of vitamin A supplementation
in CF patients have been performed (25, 60). In one small study
of CF patients, high-dose beta-carotene supplementation was
compared to placebo and was found to reduce requirements for
antibiotics during a three-month period (25), demonstrating a
prophylactic benefit. Additional, controlled clinical trials are
needed to determine precisely when vitamin A supplements
provide benefit and what characteristics (e.g., age, obesity, sex,
and baseline vitamin levels) associate with the best outcome
among CF patients.
CONCLUSION

In a mouse model for CF, vitamin A supplements were shown to
improve lung integrity 5-6 weeks after a respiratory viral
infection. Results encourage additional basic research and the
performance of new clinical trials to determine when diet
modifications and/or vitamin A supplements are beneficial to
this patient population. Our perspective is that vitamin A should
be routinely monitored and regulated in CF patients to improve
lung health and protect from persistent tissue damage caused by
infectious disease.
METHODS

Experiments were reviewed and approved by the IACUC of St.
Jude Children’s Research Hospital (St. Jude). All experiments
were with Cftrtm1Unc Tg(FABPCFTR)1Jaw mice that were
purchased from Jackson Laboratories (Bar Harbor, Maine) or
bred from Jackson mice at St Jude. To breed mice at St. Jude,
females that were heterozygous for the mouse Cftrtm1Unc Tg and
homozygous for FABP-hCFTR were crossed to males that were
homozygous for Cftrtm1Unc Tg and homozygous for FABP-
hCFTR. Progeny were genotyped at Transnetyx (Cordova,
Tennessee) and mice that were homozygous for both
Cftrtm1Unc Tg and FABP-hCFTR were selected for study. Mice
were anesthetized with isoflurane and infected intranasally with
250 plaque forming units (pfu) of Sendai virus (SeV, a mouse
parainfluenza virus-type 1) in 30 ml phosphate buffered saline.
Test mice were supplemented with vitamin A (retinyl palmitate,
600 IU/mouse, Nutrisorb A, Interplexus Inc. [Kent, WA] in 100
ml PBS) by oral gavage on days -7, -3, 0, and +3 relative to
infection. The route of administration and dose were selected to
test a simple, clinically translatable, prophylactic methodology.
Mice were rested for 5-6 weeks post-infection and then
euthanized with CO2. The lungs were infused with formalin,
fixed by immersion in 10% neutral buffered formalin for several
weeks, embedded in paraffin, sectioned, and stained with
hematoxylin and eosin stains. Slides were stained for residual
viral antigens (18), but scored negative. Slides were analyzed and
scored by a veterinary pathologist who was blinded to mouse
groups at the time of analyses in the Veterinary Pathology Core
Department at St. Jude. Scores were given for interstitial
inflammation, alveolar inflammation, alveolar protein/fibrin,
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septal thickening, lymphoid nodules, epithelial hyperplasia,
bronchiolization, and fibrosis. Each of these types of
pulmonary lesions was assigned a severity grade on a 1-5
ranked scale as follows: 0 = no lesions (no changes outside of
normal limits; 0% tissue affected); 1 = minimal, focal to
multifocal, inconspicuous (rare lesions, barely above normal
limits; <5% tissue affected); 2 = mild, multifocal, prominent
(small, widely separated or focal lesions, limited severity; <10%
tissue affected); 3 = moderate, multifocal, prominent; 4 =
marked, multifocal or coalescing, lobar (>60% tissue affected);
5 = severe, extensive or diffuse, multilobar, with consolidation
(>80% tissue affected). Intermediate severity grades were also
assigned as needed. Grades were then converted to weighted
semi-quantitative scores to better reflect the extent of damage
and lung involvement as follows: 0 = 0; 1 = 1; 1.5 = 8; 2 = 15; 2.5 =
25; 3 = 40; 3.5 = 60; 4 = 80; 4.5 = 90; 5 = 100. Semiquantitative
scores are shown for each animal on Y axes. Experiments were
performed in triplicate with 7-8 mice per group in
each experiment.
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