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GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/
reductase (SDR) protein superfamily and catalyses the conversion of GDP-D-mannose
towards GDP-L-galactose. Although the overall reaction seems relatively simple (a double
epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with
no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction),
to perform the double epimerization of GDP-mannose to GDP-L-galactose. The enzyme is
involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in
bacteria. In this review, we provide a clear overview of these interesting epimerases,
including the latest findings such as the recently characterized bacterial and thermostable
GM35E representative and its mechanism revision but also focus on their industrial
potential in rare sugar synthesis and glycorandomization.

Keywords: epimerase, GDP-mannose, NS-SDR, short-chain dehydrogenase/reductase (SDR), NDP-sugar active
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INTRODUCTION

Recently, L-sugars have attracted scientific and industrial attention due to their importance as key
constituents of biologically relevant molecules (Xia et al., 2014; Hélaine et al., 2015) [e.g., in
antibiotics (Yu et al., 2013), bioactive oligosaccharides (Mulloy and Forster, 2000)] and potential for
the pharmaceutical industry as building blocks for antiviral and anticancer drugs (i.e., nucleosides
analogues) (Mathé and Gosselin, 2006). An example of the latter is lamivudine (also known as 3TC),
an L-nucleoside analogue that is used as antiretroviral medication to prevent and treat HIV/AIDS
and treat chronic hepatitis B (Gumina et al., 2001). A main reason therefore lay in the altered
properties of L-sugars (in comparison to their D-counterparts), such as advanced antiviral activity,
ameliorated metabolic stability and/or favourable toxicological profiles (Ahmed, 2001; Beerens et al.,
2012). Unfortunately, apart from some exceptions (i.e., L-arabinose, L-fucose and L-rhamnose), the
majority of natural sugars occurs as the D-enantiomers, making it difficult to extract them from
natural resources. Therefore, different (bio)chemical production processes have been evaluated
aiming to increase L-sugar availability and allow their commercial exploitation (Ahmed, 2001;
D’Alonzo et al., 2009; Beerens et al., 2012; Frihed et al., 2015). In recent years, researchers also tried to
explore natural enzymes and (artificial) pathways to allow efficient production of L-sugars (Gevaert,
2020) via systems biocatalysis.

For this reason, GDP-mannose 3,5-epimerase (GM35E or GME, EC 5.1.3.18), which catalyses the
reversible interconversion of GDP-D-mannose (GDP-Man 1) towards GDP-L-galactose (GDP-L-Gal
2), attracts special attention as it is one of the few enzymes that bridges between the abundant
D-sugars and their rare L-counterparts and could hence be an important biocatalyst to contribute to
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the economic production of L-Gal and other L-sugars. Indeed, in
addition to GM35E’s main product GDP-L-Gal, two other side
products are also found in its reaction mixtures, namely GDP-
L-gulose (GDP-L-Gul 3) and GDP-D-altrose (GDP-D-Alt 4)
(Gevaert et al., 2020) (more info see below). Hence, the
GM35E catalytic reaction paves the way for the synthesis of
(nucleotide activated) L-Gal, L-Gul and D-Alt as well as
derivatives and glycosides thereof. These include a diverse
range of biologically relevant molecules such as antibiotics (Yu
et al., 2013) and bioactive oligosaccharides (Mulloy and Forster,
2000). Examples thereof are bleomycin, an L-Gul containing
glycopeptide antibiotic with antitumor properties produced by
Streptomyces verticillus (Du et al., 2000; Yu et al., 2013) for which
the sugar moiety has been shown to stimulates the uptake of this
drug by cancer cells (Schroeder et al., 2014). In addition, both
L-Gal and L-Gul show potential as building blocks of
L-nucleoside-based antiviral and anticancer medications
(Mathé and Gosselin, 2006; Woodyer et al., 2010).
Furthermore, L-Gal is a constituent of some saponins
(Gutiérrez et al., 2004) and other biopolymers (Delattre et al.,
2011), which manifest various biological activities and
consequently find applications in the food, agronomic,
cosmetic, and pharmaceutical industry (Osbourn et al., 2011).
On the other hand, D-Alt can be applied as a substrate in the
synthesis of cyclic carbamates of derived glycosylamines
(polymer chemistry) (Kovacs et al., 1995).

HISTORY AND PHYSIOLOGICAL
FUNCTION

The GM35E activity was first discovered over 50 years ago in the
land snailHelix pomatia (Goudsmit and Neufeld, 1967), a decade

later in freshwater green alga (Auxeno)Chlorella pyrenoidosa
(Barber, 1979; Hebda et al., 1979; Barber and Hebda, 1982)
and further research and understanding got a boost in the
beginning of the 21st century when GM35E homologues were
discovered in plants (Wolucka et al., 2001; Wolucka and Van
Montagu, 2003; Wolucka and Van Montagu, 2007; Major et al.,
2005) and bacteria (Gevaert et al., 2019; Gevaert et al., 2020)
(Table 1). The enzyme activity is linked to various functions in
multiple organisms, such as agar and cell wall synthesis in algae
(Barber, 1979; Hebda et al., 1979; Barber and Hebda, 1982) and
production of polysaccharides and glycoconjugates in plants
(Hebda et al., 1979; Watanabe et al., 2006; Delattre et al.,
2011; Siow et al., 2013) as well as the synthesis of
lipopolysaccharide (LPS) (Gevaert et al., 2019) and potentially
even antibiotics (Du et al., 2000) in bacteria. Arabidopsis thaliana
GM35E (AtGM35E) is the most intensively studied GM35E
(Wolucka et al., 2001; Wolucka and Van Montagu, 2003,
2007; Major et al., 2005), but also other homologues were
evaluated for their role in the biosynthesis of vitamin C
(L-ascorbic acid) in photosynthetic organisms (Wolucka et al.,
2005; Watanabe et al., 2006; Gilbert et al., 2009; Voxeur et al.,
2011; Yang et al., 2011; Zhang et al., 2011; Li et al., 2013; Chen
et al., 2016) (Figure 1). Since vitamin C is an essential component
to the human diet and it affects many crucial physiological
processes (e.g., stress resistance and secondary metabolite
biosynthesis) in plants, many studies focused on the
elucidation of the vitamin C pathway and regulation (Wolucka
and Van Montagu, 2003; Watanabe et al., 2006). These studies
contributed to the understanding of GM35E’s physiological
function in plants and algae, the characterization and
investigation of plant-derived GM35Es (Wolucka et al., 2001;
Wolucka and Van Montagu, 2003; Major et al., 2005; Wolucka
et al., 2005; Watanabe et al., 2006; Wolucka and Van Montagu,

TABLE 1 | Overview of biochemically characterized GM35E

Organism Temp. opt.
(range >50%)

pH opt.
(Range)

KM

(µM)
Vmax

(µM min−1)
kcat
(s−1)

kcat/KM

(s−1 mM−1)
Structurea

(PDB)
Refs

(Auxeno)Chlorella
pyrenoidosa

Algae N.R. 8.1
(>80%: 7–9)

92
(GDP-Man)

97
(GDP-L-Gal)

2.8
(GDP-Man)

2.2
(GDP-L-Gal)

N.R. N.R. N.R. Barber (1979),
Hebda et al. (1979),
Barber and Hebda
(1982)

Arabidopsis thaliana Plantae N.R. N.R. 4.5a

18b

31c

(GDP-Man)

1.76a

0.31b

0.43c

µmol h−1 mg−1

0.041a

0.007b

0.010c

9.1a

0.4b

0.3c

2C54,
2C59,
2C5A,
2C5E

Wolucka et al.
(2001), Wolucka
and Van Montagu
(2003), Wolucka
and Van Montagu
(2007), Major et al.
(2005)

Oryza sativa Plantae 20–25°C 7.5–8.5 7.12
(GDP-Man)

N.R. 0.03 4.26 N.R. Watanabe et al.
(2006)

Methylacidiphilum
fumariolicum strain
SolV

Bacteria 60°C
(45–70°C)

7.0–7.5
(>50%: 6.7–8.0)

98
(GDP-Man)

N.R. 0.2 2.04 N.D. Gevaert et al.
(2019), Gevaert
et al. (2020)

aWT, or mutants in complex GDP-Man or GDP-L-Gal; N.R., not reported; N.D., not determined.
bNative enzyme purified from A. thaliana.
cRecombinant enzyme with N-terminal His-tag.
dRecombinant enzyme with N-terminal glutathione-S-transferase tag.
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2007; Gilbert et al., 2009; Voxeur et al., 2011; Yang et al., 2011;
Zhang et al., 2011; Li et al., 2013; Chen et al., 2016) and the first
insights in its complex mechanism by crystal structure
determination and mutagenesis (Major et al., 2005).

STRUCTURE

Within the Carbohydrate Epimerase (CEP) classification (Van
Overtveldt et al., 2015), GM35Es are clustered in the CEP1
family together with UDP-glucose 4-epimerases (GalE)
(Beerens et al., 2013, 2015) and CDP-paratose/tyvelose 2-
epimerase (CPa2E or TyvE) (Rapp et al., 2021). These CEP1
enzymes all belong to the large short-chain dehydrogenase/
reductase (SDR) enzyme superfamily and more specifically the
extended SDRs (Persson et al., 2009; Persson and Kallberg,
2013; Gräff et al., 2019). They share a common structural fold
(i.e., extended Rossmann-fold with characteristic Glycine

motif and catalytic triad ([ST]xnYx3K) (Da Costa et al.,
2021)) and mechanistic features (i.e., catalysis starts with an
initial oxidation step, see below).

Four crystal structure of native or inactivated variants of
Arabidopsis thaliana GM35E (AtGM35E) have been solved,
which form a homodimeric quaternary structure and are
complexed with substrate, products and/or reaction
intermediate (Major et al., 2005). The monomeric structure of
AtGM35E in complex with GDP-L-Gul and GDP-4-keto-L-Gul
(PDB code 2C54) will be discussed here in more detail (Figure 2).
The crystal structure’s high resolution also allowed determination
of the conformation of intermediates and thus helped to delineate
the mechanistic possibilities of the epimerases (Major et al.,
2005).

The AtGM35E structure shows a Rossmann-fold domain,
which binds one NAD+ cofactor per subunit, and a substrate
binding domain to which the reaction product and
intermediate are bound (Major et al., 2005). The

FIGURE 1 | Schematic overview of L-ascorbate biosynthesis in photosynthetic organisms, known as the Smirnoff-Wheeler pathway, with the GM35E (GDP-Man
3,5-epimerase) highlighted in green. HK, hexokinase; PGI, phosphoglucoisomerase; PMI, phosphomannoisomerase; PMM, phosphomannomutase; VTC1, GDP-Man
pyrophosphorylase; VTC2/5, GDP-L-Gal phosphorylase; VTC4, L-Gal-1-P phosphatase; L-GalDH, NAD+-dependent L-galactose dehydrogenase; GLDH, ferric
cytochrome C-dependent L-galactono-1,4-lactone dehydrogenase.

FIGURE 2 | (A)Onemonomer of the crystal structure of Arabidopsis thalianaGM35E (AtGM35E, PDB: 2C54) in complex with NAD+ and the reaction product GDP-
L-Gul. (B) Zoom of the active site of AtGM35E depicted by NAD+-binding Glycine-rich motif (light grey) and the walls of the heptagonal boxmodel [in respective colors, for
details see (Da Costa et al., 2021) and Figure 3]. The “Red wall” is not shown as it would block the view on the sugar and nicotinamide moiety of the NDP-sugar and
NAD+, respectively. The most important residues are shown in sticks. These include the conserved Ser, Tyr and Lys from the catalytic triad ([ST]xnYx3K) for C4-
oxidation/reduction (S143, Y174 & K178), the Cys-Lys catalytic acid/base couple (C145 & K217), the C143-acidifying Arg (R306), the Arg that make an important
interaction with the substrate’s di-phosphate backbone (R243) and the highly conserved Asn in the orange wall (N203).
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organization of the secondary structure elements within the
domains and the relationship between the domains is similar
to that of other NS-SDR, like dTDP-glucose 4,6-dehydratase
(RmlB) (Hegeman et al., 2001) and GalE (Beerens et al., 2015).
Shortly summarized, GM35E binds NAD+ in a modified
Rossmann-fold with seven parallel β-strands in its β-sheet
flanked by three helices on each side (Figure 2). The
Rossmann-fold has additional secondary structure elements
that contribute to the substrate binding domain. The substrate
binding domain is primarily helical with an antiparallel β-
sheet and two short parallel β-sheets. Three loops from
AtGM35E’s C-terminus fold up against the Rossmann-fold.
AtGM35E forms a dimer with helices from one face of the
Rossmann-fold forming the dimer interface. Superposition of
the two monomers in the asymmetric unit shows that the N-
and C-terminus as well as four loops differ by up to 2 Å for
their Cα positions. The substrate binding domain loops are
also involved in crystal packing. Both N- and C-termini are
flexible and when these regions were excluded a very good
overlap was observed. The crystal structures of the variants
and wild type, each containing different nucleotides sugars, are
isomorphous. Structural analysis coupled to site-directed
mutagenesis pinpointed C145 and K217 as the acid/base

pair responsible for both epimerizations (for mechanism see
below).

Heptagonal Box to Correctly Identify and
Annotate Novel GM35E
Unfortunately, misannotations of GM35E as GalE or the related
GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase
(GMER, also known as GDP-L-fucose synthase, GFS) (or vice
versa) still occur for many automatic annotations of enzymes in
databases. Our recent review and in silico analysis of NDP-sugar
active SDR (NS-SDR) enzymes (Da Costa et al., 2021), also
highlighted additional motifs and residues that can be applied
to correctly identify and annotate novel GM35E. Inclusion of this
heptagonal box model in the algorithms could improve the
automated annotations. Indeed, GM35E and GMER clearly
differ from GalE by their presence of an additional catalytic
acid and base, which are needed for the double epimerization.
The difference between GM35E and GMER is that they employ
slightly different residues; the catalytic acid is in both cases a Cys
(yellow wall), but the catalytic base is a Lys for the epimerase but a
His for the epimerase-reductase (purple wall). In addition, also
the residue in charge of acidifying the catalytic Cys is different,

FIGURE 3 | (A) Multiple Sequence Alignment (MSA) of several studied GM35E (At, Arabidopsis thaliana; Os, Oryza sativa; Nt, Nicotiana tabacum; Sl, Solanum
lycopersicum; Cs,Citrus sinensis; Ad, Actinidia deliciosa; Zj, Ziziphus jujuba; Mf,Methylacidiphilum fumariolicum strain SolV) and 2 representatives of the related NS-SDR
activities GMER, GalE and CPa2E (At, Arabidopsis thaliana; Hs, Homo sapiens; Ec, Eschericia coli; Ta, Thermodesulfatator atlanticus; St, Salmonella typhi), with
highlighting of the Glycine motifs for NAD(P)+ binding (light grey), heptagonal box motifs (in corresponding colors) and important residues (arrows). The above given
α-helices, β-strands and their numbering are from the Arabidopsis thaliana GM35E (At_GM35E). (B) Heptagonal box model of GM35E, GMER, GalE and CPa2E. The
numbering of the motifs are derived from TaCPa2E since this figure is adapted from Da Costa et al. (Da Costa et al., 2021).
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FIGURE 4 | Mechanistic similarities demonstrate the evolutionary connection between GalE and GM35E. The mechanisms of both enzymes start with the
formation of a keto-group at C4 (black), followed by a rotation and reduction of the keto-intermediate in GalE (blue), whereas an additional catalytic acid and base
promote deprotonation/reprotonation at C5 and C3 in the GM35E (red) before final reduction of the keto-group at C4. The hydroxyl group at the C2 position is not shown
for clarity reasons.

FIGURE 5 | Mechanism of the GDP-mannose 3,5-epimerase. The epimerization reaction results in equilibrium between GDP-Man, GDP-L-Gal, GDP-L-Gul and
GDP-D-Alt.
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namely an Arg for GM35E and a Lys for GMER (green wall).
They also show different Glycine motifs and different residues in
between the catalytic Tyr and Lys (cyan wall). In addition, also the
other three walls (red, purple and grey) of the heptagonal box
model show to be slightly different for GM35E and GMER
(Figure 3).

MECHANISM

A key feature of the SDR superfamily, and thus also GM35E, is the
transfer of a hydride between substrate and enzyme-bound
NAD(P)+ cofactor. Indeed, it was found that the GM35E
reaction starts with a C4-oxidation of GDP-Man 1 with the
aid of the NAD+ cofactor, tightly bound to the enzyme, and
the conserved Tyr (Yx3K) residue that acts as catalytic acid to
assist the deprotonation, hereby highlighting its similarity to
other CEP1 enzymes (Van Overtveldt et al., 2015). Instead of
a simple rotation of the 4-ketopyranose intermediate and transfer
of the hydride back to the C4 of the sugar, completing the 4-
epimerization in GalE, the chemistry in GM35E is more complex
(Figures 4, 5). Indeed, the initial oxidation results in a transient
keto-intermediate at C4 (compound 5), which merely functions
to lower the pKa of the protons on the neighboring carbons (C3
and C5). Subsequently, an additional catalytic acid (Cys) and base
(Lys) accomplish de- and reprotonation at both C5 and C3. The
enolate that is created during this process is stabilized by
hydrogen bonds with the catalytic Tyr, as well as with an
additional Ser (S143) from the catalytic triad. Since initially
only GDP-L-Gal 2 and GDP-L-Gul 3 (the C5-epimer of GDP-
Man) were found in the reaction mixture, it was postulated that
the enzyme performs the C5-epimerization prior to the C3-
epimerization (Major et al., 2005) (Figure 4). However, GDP-
D-Alt 4 was recently found as a reaction product, which means
that both reaction routes can occur: C5-prior-to-C3 and C3-
prior-to-C5 (Gevaert et al., 2020) (Figure 5). Eventually, the
different keto-intermediate (GDP-4-keto-L-Gal 13, GDP-4-keto-
L-Gul 8 and GDP-4-keto-D-Alt 14) can be reduced, resulting in its
three reaction products, namely the main product GDP-L-Gal 2
(C3,5-epimer of GDP-Man) and two by-products: GDP-L-Gul 3
(C5-epimer) and GDP-D-Alt 4 (C3-epimer).

Initially, Major and coworkers took a closer look at the
different reaction steps of the C5-prior-to-C3 route (Figure 5,
green route) and predicted that a ring flip occurs during the first
epimerization (C5) and that a boat intermediate is likely for the
second epimerization (C3), suggesting a C4-movement prior to
and after the second epimerization (Major et al., 2005). However,
the observation of the GDP-D-Alt 4 as reaction product resulted
in a detailed re-evaluation of these different reaction steps
(Gevaert et al., 2020). Major and coworkers explained that for
the C5-prior-to-C3 route, a sugar ring flip (compound 11) would
place the C3 proton in an axial position but would also place C6-
O6 in an axial position, which was unlikely from earlier structural
data. The ring-flipped conformation (compound 11) would be
significantly strained by a 1,5-diaxial clash between C6-O6 and
O1. The second epimerization reaction would operate on a very
high energy intermediate, and the transition state would have

some 1,3,5-triaxial character, which is extremely unfavourable
(compound 12). Altogether this would present a formidable
kinetic barrier to the second epimerization making this route
much less likely, suggesting that the upper route with C4-
movement (over a boat 9 and half chair 10 intermediate) is
most plausible. A similar route is also most likely the route for C3-
prior-to-C5-epimerisation. In this case, a ring flip would lead to
disfavored 1,3-diaxial clash and 1,2,3-triaxial intermediate
(compound 17 and 18, resp.) again constraining the second
epimerization by a kinetic barrier. Hence, also this route
includes a C4-movement that is needed to position the
substrate to allow the second proton abstraction at C5
(Figure 5, red route).

It is in fact not surprising that GM35E can utilize both routes
to complete the overall double epimerization since it is proposed
that the related GMER (full name: GDP-4-keto-6-deoxy-
D-mannose-3,5-epimerase/4-reductase) catalyzes the C3,5-
epimerization (of GDP-4-keto-6-deoxy-mannose) in a definite
order, namely starting with C3-epimerization followed by the C5-
epimerization before the reaction is completed by C4-ketone
reduction, resulting in GDP-L-fucose (Rosano et al., 2000; Lau
and Tanner, 2008). [This C3-prior-to-C5-epimerisation in
GMER is based on the observation of the C3-intermediate in a
crystal structure and the fact that the Cys109Ser mutant catalyzed
a rapid wash-in of solvent derived deuterium into the C5 position
of GDP-L-fucose in the presence of NADP+ (Rosano et al., 2000;
Lau and Tanner, 2008)]. However, the confirmation that both
routes to convert GDP-Man to GDP-L-Gal are possible for
GM35E, combined with the structural and mechanistic
similarity between GM35E and GMER, could also hint
towards a dual epimerization route for GMER. Indeed, both
enzymes employ very similar residues to achieve the double
C3,5-double epimerization, namely Cys/Lys (Arg) and Cys/His
(Lys). However, only detection of the GDP-4-keto-6-deoxy-
L-gulose intermediate (C5-epimerization) or GDP-6-deoxy-
L-gulose side product (C5-epimerization followed by
reduction) in a GMER reaction could confirm this.

As mentioned by Major et al. GM35E are quite remarkable
enzymes as they catalyze three distinct chemical reactions in one
active site (i.e., oxidation, epimerization and reduction) and
therefore a more correct name would be GDP-mannose 4-
oxidase/3,5-epimerase/4-reductase, as it would better reflect
the fact that they perform three distinct chemical catalytic
reactions (Major et al., 2005).

INDUSTRIAL POTENTIAL OF GM35E

L-Galactose Production
In terms of rare sugar production, epimerases play a key role as
they can bridge between abundant D-sugars and their rare
L-counterparts (Beerens et al., 2017) and this also holds true
for the GM35E enzyme. Indeed, GM35Es (no matter their origin,
microbial or plant) can theoretically be applied in a biocatalytic
pathway to produce L-Gal, L-Gul and/or D-Alt. However, it has
until now only been shown in practice for L-Gal starting from
GDP-Man (Figure 6, in black) (Gevaert, 2020). After initial
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epimerization of GDP-Man to GDP-L-Gal (and side products
GDP-L-Gul and GDP-D-Alt), the free L-Gal monosaccharide can
be obtained by the addition of two other enzymes from the
Smirnoff-Wheeler pathway. Starting from GDP-Man, Gevaert
and co-workers achieved L-Gal with good yield (75%) and high
purity (∼94%), due to the high selectivity of the additional
enzyme(s) (Gevaert, 2020). Unfortunately, the GDP-Man used
as substrate here remains a scarce and expensive substrate to
produce L-Gal. Nonetheless, the Nidetzky group published an
interesting pathway to produce GDP-Man from cheap sucrose
and mannose in a kinase-independent one-pot multi-enzyme
cascade (Pfeiffer et al., 2016), which could allow cheaper synthesis

of GDP-Man (Figure 6, in blue). This setup for GDP-Man
synthesis only requires one expensive NTP molecule (1 GTP),
in comparison to the natural pathway from Glc or Man that
requires 2 NTP molecules (1 ATP and 1 GTP) (Figure 1).
Furthermore, another promising biocatalyst that could further
improve GDP-Man (and thus L-Gal) synthesis is the recently
discovered promiscuous CDP-paratose 2-epimerase (CPa2E),
which is able to epimerise GDP-Glc to GDP-Man (Rapp et al.,
2021). Hence, in combination with the sucrose synthase (SuSy)
enzyme, this 2-epimerase could produce GDP-Man starting from
sucrose and GDP (over GDP-Glc as pathway intermediate)
(Figure 6, in red). Unfortunately, the CPa2E’s low activity
currently remains a bottleneck. On the other hand, an
additional benefit from this multi-enzyme pathway using SuSy
and CPa2E is that the GDP released by the GDP-L-galactose
phosphorylase can be recycled by the SuSy enzyme and thus
requires only catalytic GDP quantities. In a similar manner the
phosphate needed for the L-galactose 1-phopshate phosphatase
would also be recycled (Figure 6, dashed arrows). However,
implementation of the steps to produce L-Gal directly from
sucrose remains to be investigated.

Glycorandomization
Another potential exploitation area of GM35E is situated in the
technology called “glycorandomization” (sometimes also called
“glycodiversification”, Figure 7). Since the majority of epimerases
(such as GM35E) are active on NDP-sugars, their products can
subsequently be valorized via for example glycosylation reactions.
Glycosylation is the attachment of a carbohydrate (glycon) to another
molecule (aglycon), yielding so-called glycosides. The aglycones can
be very diverse and range from small molecules (e.g., vitamins,
antibiotics, flavors and fragrances, etc.) to macromolecules (e.g.,
proteins, lipids and cell wall glycans) (De Bruyn et al., 2015;
Desmet et al., 2012). Glycosides are widespread in nature and
display a variety of interesting applications (Keegstra and Raikhel,
2001; Brandle and Telmer, 2007) and can show altered features
compared than the free aglycon (e.g., increased water solubility or
reduced chemical reactivity) but also based on the glycol attached
(e.g., improved chemical stability or altered biological activity) (Jones

FIGURE 6 | Biocatalytic pathway for the production of L-Gal starting from GDP-Man (as described in (Gevaert, 2020)) in which the GM35E plays a crucial role
(black). The theoretical options to start L-Gal synthesis from sucrose are given in red and blue (explanation in main text). SuSy, sucrose synthase; CPa2E, CDP-paratose
2-epimerase; SP, sucrose phosphorylase; AGP, α-D-Glc 1-P phosphatase; VTC1, GDP-Man pyrophosphorylase; VTC2, GDP-L-Gal phosphorylase; VTC4, L-Gal-1-P
phosphatase.

FIGURE 7 | Creation of a glycorandomized library by
glycosyltransferases (GT) through the diversification of sugar donor and/or
acceptor (aglycon) molecule.
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and Vogt, 2001). Hence, glycosides can be applied in many industrial
disciplines as for instance nutraceuticals, therapeutics or food
additives (De Bruyn et al., 2015; Desmet et al., 2012). As
pharmaceuticals, glycosides can both be used as an innovative
approach for targeted drug delivery (Lepenies et al., 2010; Chen
and Huang, 2019) or as an active moiety for therapeutic activity
(Palcic, 2011). Furthermore, numerous antibiotics are glycosides and
inmany cases, the sugar entity is crucial to their activity and selectivity
(Thorson et al., 2001; Kren and Rezanka, 2008; Song et al., 2013). For
example, the antitumor antibiotic bleomycin contains a disaccharide
moiety composed of L-Gul and 3-O-carbamoyl-D-Man, of which the
L-Gul sugar unit possessed tumor cell targeting properties as it enables
the uptake of the drug (Schroeder et al., 2014). Another example are
macrolide antibiotics, such as erythromycin, which operate by
binding bacterial ribosomes, thereby inhibiting protein synthesis.
This binding is realized by their sugar moieties (Schroeder et al.,
2014). Furthermore, also the L-Gal subunit of the nucleoside
antibiotic A201A was found to be essential for the drug’s
bioactivity (Zhu et al., 2017) and L-sugar containing analogs of the
phytosteroid digitoxin showed an improved anti-cytomegalovirus
activity (Cai et al., 2014). This effect of the carbohydrate moiety on
therapeutics led to an increasing interest in unusual glycosides. On
that account, glycorandomization has become a valuable tool for the
expansion and optimization of various glycoside antibiotics. In this
technology, the carbohydrate moiety of antibiotics is altered in order
to tailor their pharmacological properties and/or biological activity
(De Bruyn et al., 2015; Thibodeaux et al., 2007; Desmet et al., 2012).
This approach facilitates drug screening and discovery andmight be a
powerful strategy in the battle against antibiotic resistance (Ventola,
2015; Mohs and Greig, 2017). Exotic NDP-sugar libraries can be
created by a collection of epimerase specificities. These can be
combined with aglycon libraries, consisting of both natural
products and synthetic compounds, to generate novel
glycorandomized libraries (Figure 7). The practice of the
glycorandomization technology resulted in unnatural sugar
analogues of vancomycin and the macrolide antibiotic YC-17 with
improved antibacterial activity as compared to the natural product
(Fu et al., 2005; Shinde et al., 2013). Moreover, erythromycin variants
that regained activity against an erythromycin-resistant strain have
been obtained (Zhang G. et al., 2015).

GM35E shows excellent capacity to make such NDP-sugar
libraries as it would make a mixture of GDP-Man, GDP-L-Gal,
GDP-L-Gul and GDP-D-Alt. Coupling to glycosyltransferases
(GT, EC 2.4), which perform the majority of glycosylation
reactions in nature (Desmet et al., 2012), is of course
necessary since GTs catalyze the sugar transfer from a sugar
donor to an acceptor molecule to generate glycosides with high
efficiency and enantioselectivity (Lim, 2005). Within this large
enzyme family, the Leloir glycosyltransferases use NDP-sugars as
sugar donors (Lairson et al., 2008; Mestrom et al., 2019). GTs
have been applied for the synthesis of natural glycosides and
artificial derivatives (Luzhetskyy and Bechthold, 2008; Palcic,
2011), and have contributed to successful in vivo and in vitro
glycodiversification projects (Blanchard and Thorson, 2006;
Thibodeaux et al., 2008). Despite most GT specificities
discovered to date are highly specific towards both the donor
and acceptor (Henrissat and Davies, 2000; Bowles et al., 2005),

several promiscuous GTs have also been reported and could thus
be used for glycodiversification. For example, SorF and OleD
display flexible donor and acceptor specificities, respectively
(Bolam et al., 2007; Kopp et al., 2007). In the case of OleD, its
promiscuity is presumed to derive from its natural function as a
defense mechanism against macrolide antibiotics. More
interestingly, YjiC is a promiscuous GT with regard to both
donor and acceptor molecules, spanning various chemical classes
(Pandey et al., 2014). In addition, enzyme engineering already
extensively contributed to the expansion of GT promiscuity
(Williams et al., 2007; Jakeman, 2008; Williams et al., 2008;
Chen, 2011; Gantt et al., 2011).

Similar as for several epimerases, the large-scale application of
GTs is restricted by their need for NDP-sugars as substrates,
which are expensive and hard to acquire in large quantities
(Masada et al., 2007). Furthermore, it was suggested that NDP
released during the transfer reaction can act as an inhibitor of GT
activity, resulting in lower yields (Masada et al., 2007; Terasaka
et al., 2012; Huang et al., 2016). Systems biocatalysis, the concept
of creating cell-free “artificial metabolisms” for preparative multi-
enzymatic synthesis (Fessner, 2015; Tessaro et al., 2015), might be
applied to tackle these issues. Indeed, the use of regeneration
systems allows the in situ regeneration of NDP-sugars, resulting
in reduced costs and increased productivity (Ichikawa et al., 1994;
Elleuche, 2015). Several of these systems including sucrose
synthase (SuSy) have been developed to date, yielding for
example glucosides of curcumin, resveratrol and quercetin
(Masada et al., 2007; Terasaka et al., 2012; Lepak et al., 2015;
Schmölzer et al., 2016). The NDP is recycled and the NDP-sugar
regenerated by SuSy, yielding an overall reaction that would only
require sucrose and catalytic amounts of NDP to proceed (Lim,
2005; Masada et al., 2007). Such cascade reaction could be
expanded with epimerases (like GM35, but also CPa2E and/or
GalE) to obtain various rare NDP-sugars as starting point for
glycosylation, similar to the pathway shown in Figure 6, however,
with promiscuous GTs at the end to achieve synthesize of a library
of glycosides instead of releasing L-Gal. In a pathway, the
equilibrium of the epimerization reactions is not an issue since
the irreversible GT reaction pulls the overall cascade towards
product formation.

Importance and Application Potential of
Plant GM35Es: Improved Stress Tolerance
and Glycans Biosynthesis
Since L-ascorbic acid (also known as vitamin C) is an important
plant antioxidant with important metabolic functions in both plants
and animals (obtained via a plant-based diet), its plant biosynthesis
has been studied intensively (Smirnoff andWheeler, 2000) and plant
engineering had already early on been suggested to achieve increased
L-ascorbic acid production to increase both plant stress tolerance and
nutritional value of humans and animals (Wheeler et al., 1998). Since
both L-galactose (Wheeler et al., 1998) and L-gulose (Valpuesta and
Botella, 2004) are important intermediates for L-ascorbic acid
biosynthesis and both are derived from GDP-activated
D-mannose, their synthesis is strongly dependent on the GDP-
mannose-3,5-epimerase (and downstream enzymes). Hence, it is
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not surprising that GM35E and its pathway-connected enzymes
have been studied in different plant species, including rice
(Watanabe et al., 2006; Zhang G.-Y. et al., 2015), peach (Imai
et al., 2009), cabbage (Ren et al., 2013), tomato (Mounet-Gilbert
et al., 2016; Li et al., 2019), amongst others. Indeed, transgenic
tomato plants over-expressing GM35E exhibited significantly
increased L-ascorbic acid levels in leaves and red fruits compared
with wild-type plants, which led to enhanced tolerance of different
types of abiotic plant stress, incl. herbicide, oxidative stress, cold, and
salt stress (Zhang et al., 2011). Similarly, transgenic GM35E
overexpression in Arabidopsis also enhanced acid, drought and
salt tolerance by increased L-ascorbate accumulation (Ma et al.,
2014) and manipulation of the rice L-galactose pathway (incl.
GM35E overexpression) also revealed enhanced salt stress
tolerance (Zhang G.-Y. et al., 2015). However, this study by
Zhang et al. (2015) suggest that another enzyme involved in the
pathway, namely the GDP-L-galactose phosphorylase (GGP), may
be a key rate-limiting step L-ascorbic acid biosynthesis, at least in
rice. This, in fact, highlights that the entire L-ascorbic acid
biosynthesis pathway is important and not only the GM35E.
Indeed, studies with transgenic tobacco revealed that the
equilibrium of the GM35E reaction is unfavorable to forward
L-ascorbic acid biosynthesis, thus indicating a complex
modulation (Imai et al., 2012). On the other hand, it has also
been found that GM35E plays a key role beyond L-ascorbic acid,
namely in non-cellulosic cell-wall biosynthesis. Indeed, GM35E
silencing in tomato affected rhamnogalacturonan II (RG-II)
structure (approx. 60% decrease in terminal L-Gal content in RG-
II’s side chain A), hereby leading to a lower cross-linking capacity of
the pectic polysaccharide RG-II and hindered normal plant growth
and development (Voxeur et al., 2011). Similarly, earlier studies with
transgenic tomato lines also showed growth defects affecting both
cell division and cell expansion, as well as altered cell-wall
monosaccharide content, especially mannose and L-galactose that
is directly linked to GM35E activity, leading to plant fragility and loss
of fruit firmness (Gilbert et al., 2009).

Considered all together, these findings highlight that GM35E
activity is very important in plants, not only for L-ascorbic acid
biosynthesis and the linked induced stress tolerance but also for
its involvement in RG-II biosynthesis (Gilbert et al., 2009; Voxeur
et al., 2011), needed for strong healthy plants and firm fruit.
Hence, future applications of plant-derived GM35Es will most
likely occur via plant engineering studies (transgenic
overexpression) to enhance stress tolerance, obtain stronger
plants and/or healthier and firmer fruit. Here, we recommend
considering all enzymes involved in the L-ascorbic acid pathway
instead of only the GM35E. Similarly, future studies focused on
targeting RG-II biosynthesis should also focus beyond only
GM35E and target the entire pathway.

Production of L-galactosides: Interplay of
GM35E and Promiscuous
L-fucosyltransferases
In a similar fashion as described for the L-galactose production (as
a monosaccharide) and glycans biosynthesis in vivo in plants,
GM35E has also been applied for the synthesis of L-galactose-

containing N-glycans in vitro (Ohashi et al., 2017). In this case,
Ohashi et al. carried out a preparative scale GDP-L-Gal synthesis
starting from GDP-Man by using recombinant A. thaliana
GM35E followed by desalting, recycling high performance
liquid chromatography and lyophilization steps. The produced
and purified GDP-L-Gal was consecutively used as substrate for
L-galactosylation, which was achieved using mouse α1,6-
fucosyltransferase (MmFUT8) or A. thaliana α1,3-
fucosyltransferase (AtFucTA) (Ohashi et al., 2017). Indeed, it
had already been shown that multiple α-L-fucosyltransferases
(FucT) were promiscuous towards GDP-L-Fuc analogs like
GDP-L-Gal, leading to the formation of L-galactosylated Lewis
structures (Stangier et al., 1997; Düffels et al., 2000). In these
earlier cases, the GDP-L-Gal was synthesized either chemically or
enzymatically using L-fucokinase/GDP-L-fucose
pyrophosphorylase (FKP) rather than utilizing GM35E and
starting from GDP-Man. The promiscuous nature of FucT has
also been observed in vivo in the L-fucose deficient mur1 mutant
of A. thaliana (Zablackis et al., 1996), in which L-galactose
replaces the absent L-fucose as a required component of the
biologically active cell wall xyloglucan-derived oligosaccharides.
L-Galactosylation of these xyloglucan oligosaccharides by AtFucT
has recently also been demonstrated in vitro (Ohashi et al., 2019).
In vivo, the GDP-L-Gal is most likely obtained via de novo
synthesis over GDP-Man and thus utilizing the GM35E.
Likewise, future production of other L-galactosides and
L-galactose-containing glycans can utilize a combination of
both GM35E and promiscuous L-fucosyltransferases. This
setup is both achievable for biotransformations (in vivo) and
biocatalytic production (in vitro). However, especially for the
in vitro setup, it will be important to keep in mind the most
efficient production route for GDP-L-Gal, either over GDP-Man
using GM35E or methods starting from L-Gal directly.

Instead of using the GM35E’s major product (GDP-L-Gal),
one could also aim at utilizing its minor side products (e.g., GDP-
L-Gul). By using GTs that would (specifically) transfer L-gulose to
acceptors, the same setup of GM35E coupled to GT could be used
to produce L-gulosides. An example of a natural L-guloside is the
main polar lipid of Thermoplasma acidophilum. Also here, the
biosynthesis route for the activated L-gulose is expected to pass
over an GM35E or homologous enzyme (Yamauchi and
Nakayama, 2013). These natural sources of L-Gal and L-Gul
could also be interesting targets to search for novel GM35E’s
and/or GT enzymes that would be able to utilize GM35E’s
products as substrate for glycoside production.

FUTURE PERSPECTIVES FOR GM35E (AND
RELATED HOMOLOGUES/ENZYMES)

To increase the portfolio of available GM35E biocatalysts that can
be applied for industrial applications, an important research focus
will be the characterization of novel GM35E homologues. This
could be focused on bacteria and Archaea to obtain homologues
with good recombinant overexpression and high (thermo)
stability. Other important characteristics to look for are
substrate promiscuity, for example variants that show activity
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on NDP-Glc, hence allowing synthesis of NDP-L-talose (C3,5),
NDP-D-allose (C3) and NDP-L-idose (C5). Such enzymes would
be interesting to both rare sugar and glycoside synthesis, and
especially for glycorandomization studies. Pathway optimization
will lead to increased yields and productivities. However, for the
computational modelling of these pathways, it is important to
perform in-depth characterizations (pH, temperature, selectivity/
promiscuity, . . .) and detailed kinetic analysis of GM35E
homologues (Km, kcat, inhibition, . . .) for the models to
correctly predict and help to guide such pathway optimization
studies.

GM35E belong to the CEP1 family, a group of epimerases
displaying the same fold, similar mechanism and substrate, but
are also part of the much bigger SDR superfamily. What can we
learn from other CEP1 and/or SDR enzymes and what is
applicable on GM35E? We recently reviewed and initiated in
silico analysis of NS-SDR (short for NDP-Sugar active SDR
enzymes (Da Costa et al., 2021)) in order to harvest
information from the vast amount of NS-SDR and to guide
engineering studies. An interesting observation is that where
GM35E creates 3 products (GDP-L-Gal, GDP-L-Gul and GDP-
D-Alt), the biosynthesis of the respective 6-deoxy-variants
requires different specific bifunctional epimerase/reductase
[after the initial GDP-mannose 4,6-dehydratase step needed
for the deoxygenation), namely the GDP-4-keto-6-deoxy-
D-mannose 3,5-epimerase/4-reductase (GMER also referred to
as GDP-L-fucose synthase, GFS) (Rosano et al., 2000), a GDP-6-
deoxy-L-gulose synthase (GGS, 5-epim.+4-red.)] (Galm et al.,
2011) and a putative GDP-6-deoxy-D-altrose synthase (GAS, 3-
epim.+4-red.) (Kudo et al., 2016) for GDP-L-Fucose (� GDP-6-

deoxy-L-Gal), GDP-6-deoxy-L-Gul and GDP-6-deoxy-D-Alt,
respectively. Like GM35E, these enzymes also belong the NS-
SDR enzymes, once more highlighting the importance of NS-SDR
for biosynthesis of special sugars but it also shows that similar
enzymes perform either single (C3 or C5) or double (C3,5)
epimerization reactions. Could this mean that also single
NDP-sugar 3- and 5-epimerases exist in addition to the 3,5-
epimerase? (Figure 8)? Such homologues are certainly worth
screening for or could be targeted by enzyme engineering.

Shortly summarized, GDP-mannose 3,5-epimerase
(GM35E) is a very special and interesting enzyme, initially
mostly studied in plant research (where it remains highly
relevant due to potential in improving stress tolerance for
structural glycan synthesis), but has now found its way to
applied biochemistry and systems biocatalysis: an interesting
past and a challenging future ahead.
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