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Abstract. Cancer development is a multistep process that 
may be induced by a variety of compounds. Environmental 
substances, such as pesticides, have been associated with 
different human diseases. Organophosphorus pesticides (OPs) 
are among the most commonly used insecticides. Despite 
the fact that organophosphorus has been associated with an 
increased risk of cancer, particularly hormone‑mediated 
cancer, few prospective studies have examined the use of 
individual insecticides. Reported results have demonstrated 
that OPs and estrogen induce a cascade of events indica‑
tive of the transformation of human breast epithelial cells. 
In vitro studies analyzing an immortalized non‑tumorigenic 
human breast epithelial cell line may provide us with an 
approach to analyzing cell transformation under the effects 
of OPs in the presence of estrogen. The results suggested 
hormone‑mediated effects of these insecticides on the risk 
of cancer among women. It can be concluded that, through 
experimental models, the initiation of cancer can be studied 
by analyzing the steps that transform normal breast cells to 
malignant ones through certain substances, such as pesticides 
and estrogen. Such substances cause genomic instability, and 
therefore tumor formation in the animal, and signs of carcino‑
genesis in vitro. Cancer initiation has been associated with an 
increase in genomic instability, indicated by the inactivation 
of tumor‑suppressor genes and activation of oncogenes in the 
presence of malathion, parathion, and estrogen. In the present 
study, a comprehensive summary of the impact of OPs in human 
and rat breast cancer, specifically their effects on the cell cycle, 
signaling pathways linked to epidermal growth factor, drug 
metabolism, and genomic instability in an MCF‑10F estrogen 
receptor‑negative breast cell line is provided.
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1. Introduction

Environmental substances appear to be involved in various 
human diseases, including breast cancer (1,2). Based on epide‑
miological evidence, several studies have found an association 
between human cancer and exposure to agricultural pesticides, 
such as organophosphorus pesticides (OPs) (3‑5). Generally, 
OPs can protect agricultural products for decades and have 
therefore been widely used, particularly malathion, to control 
vectors (6). Parathion has also been used as a pesticide in 
agricultural settings. These pesticides, however, pose a serious 
threat to multiple organisms, including humans. For instance, 
certain pesticides have been associated with blood diseases, 
such as non‑Hodgkin's lymphoma (7‑9) and leukemia (10,11).

Other pesticides, including organochlorines, creosote, 
and sulfallate, have been reported to be carcinogenic in 
in vivo studies (12), whereas dichlorodiphenyltrichloroethane, 
chlordane, and lindane have been found to act as tumor 
promoters (13‑15). However, individual pesticides have only 
been evaluated in a limited number of human studies. In 
addition, certain substances in commercial pesticide formula‑
tions may pose a carcinogenic risk to humans (15,16). Thus 
the International Agency for Research on Cancer (IARC) (17) 
classified parathion as ‘possibly carcinogenic’ (Group 2B) and 
malathion as ‘probably carcinogenic’ to humans (Group 2A). 
Furthermore, experimental studies have proposed that mala‑
thion or its derivatives could be carcinogenic, indicating that 
impurities found in commercial malathion, such as malaoxon 
and isomalathion, induce DNA damage (18,19).

The etiology of breast cancer remains unclear, and humans 
are exposed not only to pesticides but also to a mixture of 
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estrogenic agents (20). Estrogens have been implicated in the 
etiology of breast cancer by epidemiological and experimental 
evidence (21‑24). Moreover, the importance of hormones in 
mammary cancer (25), as well as the effect of a variety of 
compounds on this process (26,27), have been demonstrated. 
The exposure of human populations to these substances 
renders it necessary to consider the effect of pesticides and 
estrogens on human health.

Studies using various human epithelial cell lines have been 
performed to analyze the cellular and biological processes 
involved in transforming a normal cell into a cell with a 
malignant phenotype (28,29). Furthermore, the use of experi‑
mental animals and cells in the laboratory has allowed us to 
determine whether these environmental substances induce 
breast cancer (20,21,30‑36). Table I shows the phenotypic 
characteristics of cell lines.

The use of the MCF‑10F immortalized normal human 
breast epithelial cell line has enabled the detection of the 
sensitivity to several substances, such as 7,12‑dimethylbenz(a)
anthracene (DMBA) and benzo(a)pyrene (BP) (37), and 
physical factors, such as ionizing radiation (38), and the deter‑
mination of their carcinogenic properties.

The present study aimed to summarize the in vitro signs 
of transformation induced by environmental substances, such 
as malathion and parathion, in the presence of an endogenous 
substance, such as estrogen, through the use of the MCF‑10F 
human immortalized breast cell line. This type of cell line is 
an important tool in the experimental study of breast carcino‑
genesis induction by hormones or transfection with a c‑Ha‑ras, 
or its prevention by antioxidants, such as curcumin (39‑41). 
Table I shows the effect of malathion, parathion, and estrogen 
on anchorage independence and the invasive capabilities of 
treated cells. The MCF‑10F cell line treated with malathion 
or parathion alone and in combination with estrogen induced 
anchorage‑independent growth and invasion; however, the 
same cell line treated with estrogen alone and the control were 
negative under the same conditions. A previous study demon‑
strated that estrogen exerts its effects when combined with 
pesticides in this model, providing an approach to studying 
this process (35). A new approach has emerged for analyzing 
carcinogens by the IARC and previous studies; carcinogens 
were classified based on 10 common characteristics associated 
with carcinogenesis (17,42,43).

2. Data collection

In the present review, a search on MEDLINE (through 
PubMed), Web of Science, and SCOPUS was conducted 
between January 2020 and June 2020 to identify studies 
examining the in vitro changes of the normal MCF‑10F 
human breast epithelial cell line under the effect of pesti‑
cides in the presence of estrogen. The selection was based 
on cell transformation assays using the MCF‑10F cell line to 
examine the following: i) Cell proliferation by the trypan blue 
exclusion method; ii) cell growth in a semisolid medium by 
anchorage‑independent assay; iii) cell invasion by cell inva‑
sion assay; iv) oncoprotein by immunocytochemistry coupled 
with confocal microscopy; v) gene expression in several arrays 
with cell cycle‑related key genes; human drug metabolism in 
gene array including genes that encode important receptors 

and several enzymes involved in drug transport and phase I 
and phase II metabolism; and vi) genomic instability in a 
human cancer oligo array.

3. Parathion and malathion increase cell proliferation

The association between OPs and estrogen was analyzed in 
relation to mammary carcinogenic capability. Exposure to 
OPs can be considered an important initiator of breast cancer, 
as shown by several signs of carcinogenicity detected in vivo 
and in vitro. The in vivo studies were based on morphological 
and molecular experiments using Sprague‑Dawley rats. Since 
malathion significantly increased the density of terminal end 
buds (TEBs), this research allowed us to obtain a model of the 
initiation of mammary gland cancer. The primary outcome in 
rats was the increase of mammary cells in TEBs that were then 
transformed into proliferative ducts by malathion or parathion, 
eventually resulting in ductal mammary carcinomas morpho‑
logically similar to those found in the breast (30,31,44).

When the animal was injected with estrogens, the formed 
TEBs were transformed into proliferative lobules full of secre‑
tions, with a decreased density of alveolar buds, resulting in 
actively growing tumors (30,31,44); the pathology of these 
tumors was of the lobular type. Both the ductal and lobular 
mammary carcinomas were similar to those classified by the 
World Health Organization. When the animals were exposed 
to pesticides and estrogen, both types of structures such as 
ducts and lobules were observed. Mammary gland tumors then 
metastasized to the bronchi, lungs, and kidneys. The effect 
of OPs was avoided by atropine demonstrating an associa‑
tion of atropine with the muscarinic receptor. In vivo studies 
showed signs of carcinogenicity, including cell proliferation 
leading to tumor formation and genomic instability (32). The 
mechanisms for mammary carcinogenic potential included 
acetylcholinesterase inhibition, increased oxidative stress, 
decreased apoptotic signaling, and endocrine‑disrupting 
capabilities.

Parathion (33) and malathion (20) had been previously 
found to increase cell proliferation and induce cell trans‑
formation affecting protein expression in the MCF‑10F cell 
line (20,33,34,36,45). It was found that malathion alone or 
in the presence of estrogen, induced anchorage‑independent 
growth, cell invasive capabilities, altered cell cycle regulation, 
and increased genomic instability in the MCF‑10F breast cell 
line in vitro (20,36). Another study demonstrated that mala‑
thion induced changes in gene expression (45). A scheme of 
exposure to OPs, estrogen, and chemical structures of mala‑
thion and parathion is presented in Fig. 1.

When the established model was initially developed, 
morphological changes were the first observed signs 
in vitro, which included a changing doubling time, colony 
agar formation, and invasive capabilities, all indicative of 
a very aggressive phenotype, as compared to the control 
cells (20,21,33,36,38,46‑49). On the other hand, it was 
observed that atropine, an antagonist of muscarinic receptors, 
when combined with any of these pesticides inhibited all 
aforementioned effects (33).

The same was observed in another cell line, the MCF‑7 
malignant breast cancer cell line, in which estrogen mark‑
edly increased cell proliferation in vitro after 6 days (44). 
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Table I. Phenotypic characteristics of cell lines (20).

Treatment Anchorage independent growth assay Invasion assay

MCF‑10F without treatment ‑ ‑
MCF‑10F treated with E2 (10‑8 M) ‑ ‑
MCF‑10F treated with M (0.5 µg/ml) + +
MCF‑10F treated with M and E2 + +
MCF‑10F treated with P (100 ng/ml) + +
MCF‑10F treated with P and E2 + +

E2, 17β estradiol; M, malathion; P, parathion.

Figure 1. Breast carcinogenesis induced by organophosphorus pesticides (OPs), malathion and parathion. (A) Schematic diagram of key carcinogenicity 
characteristics. (B) Chemical structures of malathion and parathion. (C) Scheme of cell proliferation. (D) In vivo studies: Representative images of protein 
expression in cross‑sections of tissues derived from female Sprague‑Dawley rat mammary glands exposed to malathion and atropine. (D‑a) Normal duct, 
(D‑b) ductal carcinoma derived from malathion‑treated rats immunostained with Rho‑A where cells are observed (arrow), and (D‑c) ductal carcinoma derived 
from atropine‑treated rats immunostained with c‑Ha‑Ras where vacuoles instead of cells are observed (arrow). All images were obtained from our own labora‑
tory for this review. Tissues derived from animals were obtained out of a repository of paraffin blocks performed in a previous study (31).
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Moreover, it was reported that sumithrin, a pyrethroid pesti‑
cide used to control pests in agriculture (50), also induced 
proliferation in vitro at 10‑7 M and 10‑5 M doses after 6 days of 
treatment (51). In addition, in mammalian cells, the pesticide 
parathion‑methyl increased the number of cells and changes 
in the MCF‑7 cell line at low concentrations, exerting toxicity 
and altering cell‑cell interactions in human intestinal cells; it 
also had other effects on murine fibroblasts, such as increased 
DNA synthesis (52). These studies demonstrated not only a 
cell proliferation effect but also other possible physiological 
effects with a serious impact on humans.

It can be hypothesized that one possible mechanism for 
breast cancer development is the consequence of excessive 
estrogenic stimulation that induces cell proliferation of normal 
breast epithelial tissue (53). More specifically, the malignant 
phenotype is developed through errors in cell division (DNA 
copying errors, translocations); furthermore, estrogen is known 
to control the growth of several carcinomas in experimental 
animals and humans (53).

Although MCF‑10F cells are estrogen receptor 
(ER)‑negative, they were found to be very sensitive to 
17β‑estradiol (E2) at 10‑8 M since cell proliferation increased 
(1.6 fold) after 10 days of culture (53). The addition of E2 and 
10‑6 M tamoxifen to the MCF‑10F cells gave similar results 
to those of the malignant carcinomas in vitro since it was 
found that E2 increased cell proliferation, as compared with 
the control. However, tamoxifen alone and tamoxifen plus E2 
inhibited cell proliferation more notably when compared to E2 
alone. The association between cell proliferation and proteins 
involved in cell cycle regulation was also investigated (54,55). 
When cell cycle control is lost, cells are able to continue 
dividing (55). When the cell cycle becomes deregulated, it 
can lead to aberrant cell proliferation, eventually resulting in 
cancer (56). This observation prompted the analysis of gene 
expression during the cell cycle as well as its regulation and 
proliferation.

Differential gene expression was studied using the Oligo 
GEArray® human cancer microarray (cat. no. OHS‑802) in 
estrogen‑ and pesticide‑treated MCF‑10F breast epithelial 
cells. The results indicated that parathion and estrogen alone, 
or a combination of the two, induced transcriptional alterations 
in 22/96 genes from a cDNA array. These alterations involved 
genes associated with the regulation of the cell cycle, such as 
cyclins A1, A2, C, D3, G1, G2, and H, cyclin‑dependent kinases 
(CDKs), including CDK41, and minichromosome maintenance 
protein complex (MCM), a 2‑7 hexameric helicase, including 
MCM2 and MCM3 (20,21). Regarding cyclins, this family of 
proteins, particularly D‑type cyclins, form a complex with 
CDKs, which affects the cell cycle at the G1 phase (57,58), 
regulating the cell cycle as a whole (59). Pesticides have been 
shown to have an affinity for CDKs, with OPs exhibiting a 
particular affinity for CDK2 and CDK4, which affects cell 
cycle regulation in mammalian cells and other pesticides, such 
as carbamates and synthetic pyrethroid; these were also evalu‑
ated, and a positive interaction was identified between them 
and CDKs at low doses (60).

Previous studies have indicated that the cyclin A2 gene was 
downregulated by all the substances under study and, whereas 
cyclin C and cell division cycle 6 (CDC6) were upregulated 
3‑fold by parathion, as compared with the control. Cyclin D3 

gene was upregulated by both estrogen and parathion. 
Cyclin‑dependent kinase CDKNIA was upregulated 3‑fold by 
parathion alone, and CDKN2C, which is associated with cell 
cycle checkpoint and cell cycle arrest, was downregulated by 
both estrogen and parathion (21).

Furthermore, different treatments of pesticides alone or 
in combination with estradiol were shown to upregulate the 
cyclin D1 and CDK genes. Of note, the resulting proteins were 
involved in the phosphorylation of important effectors associ‑
ated with different stages of the cell cycle (61‑64). A previous 
study revealed upregulation by the effect of E2 in combination 
with the pesticide compounds, including the upregulation of 
cyclin family genes, including keratin 18 (20). These results 
were in agreement with previous findings (33).

The MCM2 family of proteins was upregulated by both 
malathion and parathion. The MCM family of proteins is 
known to be involved in the regulation of DNA replica‑
tion (65,66). It has been reported that the expression of MCM 
proteins increases during DNA replication (67). The MCM 
proteins controlled by E2F transcription factors have been 
shown to promote MCM expression (68). The protein kinase 
complexes interact with MCM proteins maintaining the 
post‑replication stage and MCM2/MCM4 serve as substrates 
for CDC2/cyclin B (69‑71). MCM3 cleavage can be prevented 
by caspase inhibitors, resulting in MCM complex inhibition 
during apoptosis (72). Furthermore, the MCM4, MCM6, and 
MCM7 complexes have been found to be involved in DNA 
helicase activity (71,73). In addition, results indicated that 
parathion and estrogen upregulated the MCM6 labeling index, 
as compared with the control value (21). Other studies have 
reported this index to be correlated with cell proliferation and 
malignant behavior in chondrosarcomas (74).

p53 is another gene involved in the regulation of the cell 
cycle, serving as a checkpoint for the G1‑S phase (75). At 
the same time, the MDM2 gene regulates p53 and is associ‑
ated with tumor growth and metastasis (76). It was observed 
in previous studies that the combination of parathion and 
estrogen upregulated MDM2 (21) and downregulated p53 (77), 
thus increasing tumorigenic capabilities (21). Similarly, a study 
analyzed peripheral lymphocyte DNA obtained from 180 
workers with long‑term exposure to OPs. That study reported 
that omethoate, an OP compound, affected the expression of 
p53, which in turn had an impact on the length of the telomere, 
suggesting a clear influence of pesticides over the cell cycle 
and tumor formation (75,78).

Dishevelled (DVL) is a gene that regulates the migra‑
tion and proliferation of endothelial cells present in blood 
vessels (79,80). Malathion and the combination of parathion 
and estrogen upregulated the DVL1 gene and increased the 
protein expression in cells treated with parathion, alone and 
combined with estrogen, as compared with the controls (20). 
The mammalian homologs of the Drosophila DVL together 
with DVL proteins are important molecules in the Wnt 
signaling pathway (80‑82). DVL‑2 protein expression was 
found to be increased by estrogen, malathion, and parathion, 
regulating the proliferation of the MCF‑10F cell line, as 
compared with the control (20).

Other studies have also reported that genes associ‑
ated with cell cycle progression, DNA replication, and 
checkpoint enzymes were affected by malathion (45,83,84). 
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Cyclin‑dependent kinases regulatory subunit 1 is also funda‑
mental in cell cycle progression (85), and associated with genes 
that particularly affect the G2 phase; G2/M transition was found 
to be downregulated in estrogen and parathion treatments (21). 
These results indicated that pesticides affected the regulation 
of the cell cycle with possible effects on cancer initiation.

E2 at 10‑8 M significantly increased cell proliferation; 
however, as shown in Table I, E2 did not induce anchorage‑inde‑
pendent growth, anchorage independence, or invasiveness in 
Matrigel®. Other researchers (86) reported the induction of 
complete transformation of MCF‑10F cells by E2, confirming 
its carcinogenicity; however, E2‑treated‑MCF‑10F cells were 
trypsinized and seeded in the upper Matrigel‑coated invasion 
chamber, followed by post‑seeding of cells that had crossed 
the Matrigel membrane, giving origin to several MCF‑10F 
cell lines. E2 induced complete transformation of the human 
breast epithelial MCF‑10F cells in vitro, confirming its carci‑
nogenicity and supporting the concept that this hormone could 
act as an initiator of breast cancer in women.

4. Parathion and malathion modulate epidermal growth 
factor receptor and estrogen receptor expression

Previous research has indicated that cell growth is affected by 
the epidermal growth factor (EGF) through its interaction with 
the EGF receptor (EGFR) (33); since high levels have been 
found in the surface of different types of cancer cells (87,88) 
and its association with cancer has been confirmed over the 
years. The results of a previous study indicated that EGFR 
protein expression was increased in cells treated with the 
pesticide alone or in combination with the hormone (21). These 
results are important, considering that growth factors and their 
receptors are proteins associated with cell growth (21,89). 
According to previous results, the parathion‑treated MCF‑10F 
cell line induced a higher EGFR/ERBBI protein expression, 
as compared with control and parathion plus atropine‑treated 
cell lines (21). EGFR is a receptor tyrosine kinase associated 
with cancer, the overexpression of which is correlated with 
poor prognosis, solid tumor growth, cancer metastasis, and 
lower survival rate (90,91). Such results have indicated that 
pesticides such as parathion induce EGFR expression.

It has been reported that estradiol increases the risk of 
breast cancer in women after long‑term exposure since estro‑
gens increase cell proliferation by activating ER‑mediated 
transcription; however, this interaction has been shown to 
induce genomic instability, chromosomal aberrations, and an 
increase in errors during DNA replication (25,26,92,93).

Since the MCF‑10F model lacks ER expression, E2 
appears to act through ER‑independent mechanisms. The 
ERs are ligand‑inducible transcription factors that belong to 
the superfamily of nuclear steroid hormone receptors (94,95). 
The transmission of estrogen signaling includes the activation 
of ERs and signal transduction, which can be mediated by 
genomic and non‑genomic signaling pathways. Such classifi‑
cation is based on the outcome of cellular events, including 
the modulation of gene expression or activation of signaling 
cascades. The classic genomic pathway is the best‑character‑
ized ERa signaling pathway, which is initiated by the ligand 
binding to its receptor. The binding induces a conforma‑
tional change and dissociation of their chaperones/nuclear 

matrix‑associated binding proteins (96), forming the E‑ER 
complexes that translocate to the nucleus and bind to specific 
DNA sequences; these are called estrogen response elements 
(EREs) and are located in or near the promoters of target 
genes (97). An ERE‑independent signaling pathway has been 
reported, where E2‑ER complexes can mediate gene expression 
through functional interactions with transcription factors on 
the DNA (98,99). ERs may interact with many other proteins, 
including adaptor proteins, G‑proteins, GFRs (EGFR, IGFR1, 
and HER2), cytoplasmic kinases [mitogen‑activated protein 
kinases (MAPKs), PI3K and AKT], and signaling enzymes, 
which can eventually lead to indirect changes in gene expres‑
sion (100).

On the other hand, the influence of ERα‑signaling pathways 
on epithelial‑to‑mesenchymal transition‑related transcrip‑
tional factors, which are fundamental in the development of 
breast cancer, has been reported (34,35,101,102).

5. Parathion and malathion induce metabolic alterations

It has been reported that pesticides affect the human popula‑
tion, due to their long‑term exposure and intensity, and that 
they alter the detoxification rate by changing the expression 
of enzymes associated with the transport and metabolism 
of drugs (103). Briefly, the by‑products of drug metabolism 
are substances that may be pharmacologically active, inac‑
tive, or toxic (104). This process is divided into two phases, 
phase I and phase II; the former is mainly associated with 
a sophisticated enzymatic complex, known as cytochrome 
P450 (CYP), whereas the latter is associated with the addi‑
tion of polar moieties to the substrate, to be eliminated by 
organisms (105).

Previously, genes involved in human drug metabolism have 
been analyzed by cDNA microarrays; CYPs, metallothioneins, 
and p‑glycoproteins were further studied (34). CYPs are an 
enzymatic complex that belongs to the family of monooxygen‑
ases, which are involved in the metabolism of endogenous and 
xenobiotic compounds (106).

According to cDNA microarray, parathion was found 
to result in CYP upregulation, whereas estrogen, alone or 
combined with parathion, induced the downregulation of 
CYP2F1 and CYP4F3; however, there was no change in 
the CYP3A7 gene expression following exposure to either 
substance (34).

Results have shown that catechol formation is a major risk 
factor for breast cancer (107); since it gives rise to reactive 
quinones causing DNA damage and redox cycling, which in 
turn lead to the generation of reactive oxygen species (ROS), 
which can cause oxidative damage (108).

Other important mechanisms involved in carcinogenic 
effects, besides the stimulation of cellular proliferation through 
their receptor‑mediated hormonal activity, are the direct 
genotoxic effects exerted by increasing mutation rates through 
CYP‑mediated metabolic activation. A previous study (86) 
demonstrated that estrogens are carcinogenic in the human 
breast by testing the natural E2 or its metabolites, 2‑hydroxy, 
4‑hydroxy and 16‑a‑hydroxy‑estradiol [2‑OH‑E(2), 4‑OH‑E(2) 
and 16‑α‑OH E(2), respectively] in an experimental system, 
and neoplastic transformation of MCF‑10F cells was observed, 
to a degree at least similar to that induced by the BP.
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On the other hand, estradiol metabolism may result in 
quinone derivatives, which directly replace base pairs from 
DNA through depurination, and can also alter the DNA 
repairing process (109‑111). It has been reported that estrogens 
are potent mammary tumor promoters influencing post‑initia‑
tion events through epigenetic mechanisms. The upregulation 
of the C16α‑hydroxylation pathway during E2 biotransforma‑
tion was associated with mammary cell transformation. The 
action of E2 metabolites on tumorigenic transformation was 
studied in a mammary epithelial cell line derived from the 
C57BL mouse strain, where estrogen or its metabolites were 
found to function as initiators of mammary cell transformation 
demonstrated by increased cell proliferation, anchorage‑inde‑
pendent growth, and alteration of metabolism (112).

Metallothioneins are proteins with a low molecular weight 
that are rich in cysteine domains. These proteins play an impor‑
tant role in metal homeostasis, particularly the detoxification 
of heavy metals (113,114). Their dysregulated expression has 
been observed in invasive ductal breast carcinoma, and they 
have been proposed for use as a prognostic biomarker (115). 
Metallothionein 2A expression has been found to be associated 
with cell proliferation in breast cancer (113,116). Furthermore, 
genes associated with metallothioneins have been shown to be 
altered by pesticides and estrogen; the only functional gene 
upregulated by parathion alone was metallothionein IX, with 
estrogen alone and estrogen plus parathion resulting in its 
downregulation (34).

In this context, epidemiological studies have found an 
association between metabolic enzymes and the age of onset 
for sporadic colorectal adenocarcinoma (117,118). Then, variant 
alleles of phase II, such as GST, uridine 5'‑diphospho‑glucoro‑
nosyltransferase (UDP), and glucuronosyltransferase (UGT) 
can be used as molecular biomarkers of cancer risk (119). 
For example, GSTM(µ)1 was found to be associated with 
an increased risk of colorectal, lung, and bladder cancer, and 
GSTP(π)1 with prostate cancer (120‑123). Furthermore, these 
enzymes catalyze a large variety of drugs and endogenous 
compounds, such as molecules with sulfo groups in the case 
of sulfotransferases (124,125), and are in charge of the biosyn‑
thesis of polysaccharides, oligosaccharides, and conjugates, 
in the case of glucosyltransferases (126,127). Previous studies 
have indicated that the combination of parathion and estrogen 
induced the downregulation of all methyltransferase genes, such 
as TPMT; notably, the CHST5, CHST6, and CHST7 (sulfotrans‑
ferase) genes were upregulated by parathion and downregulated 
by estrogen, alone or combined with parathion (34).

The carbohydrate sulfotransferases play a role in oxidative 
stress and the estradiol signaling pathways in carcinogen‑
esis (128); and have been investigated in breast cancer and 
glioma patients (119,129). On the other hand, several glyco‑
syltransferases (GSTs) have also been identified; the GSTP1, 
GSTT2, and microsomal glutathione s‑transferase 1 (MGST1) 
genes were overexpressed by parathion and downregulated by 
estrogen, when compared to the control, whereas the combina‑
tion of estrogen and parathion downregulated MGST1, with no 
change observed in the GSTP1 and GSTT2 genes (34).

As previously reported, UDP‑UGT is another enzyme 
associated with detoxification (130), which was found to be 
increased by parathion (UGT1A1 and UGT2B genes) and 
decreased by estrogen; however, there was no difference in 

these genes when the substances were used together (34). 
Clinical studies have shown an increase in the UGT1A1 and 
UGT2B gene expression in ovarian cancer (119); therefore, it 
can be a reliable molecular biomarker for the risk of cancer. 
The carcinogenic activity of 4‑hydroxyestradiol was analyzed 
in a hamster kidney tumor model of DNA damage by steroidal 
estrogens through catechol estrogen metabolites (24,131‑133). 
It is important to note that the 2‑hydroxylation of steroidal 
estrogens is the major metabolic oxidation of estrogenic 
hormones in most mammalian species (134,135).

Moreover, there are other enzymes with potential carcino‑
genic activity in the metabolism of endogenous and exogenous 
compounds (136,137); for example, the enzymes comprising 
the aldo‑keto reductase (AKR) family involved in redox trans‑
formation, with substrates such as glucose and steroids, as well 
as environmental pollutants, among others (138). AKR1C1 
and AKR1C2 were also upregulated by another non‑organo‑
phosphorus pesticide (45). In combination, these examples 
indicated an impairment of homeostasis by certain substances, 
ultimately leading to carcinogenesis. Another example is the 
estrogen‑responsive B box protein (139), also upregulated by 
malathion (137). This protein belongs to the tripartite motif 
protein family, and its upregulation has been associated with 
histone acetylation and the transcription of CYP26A1, which 
is important in retinoid‑resistant cancer cells (139).

In this context, particularly in cell metabolism and meta‑
bolic pathways, certain studies reported glucose homeostasis 
impairment (137) and metabolic disorders, with certain 
metabolic changes still present for a long time even after 
discontinuing long‑term exposure to malathion (140), which 
was due to OPs. These disturbances may have occurred 
through physiological stress, oxidative stress, and other mech‑
anisms (141). These results were confirmed by in vivo studies; 
for example, malathion induced insulin resistance biomarkers 
and reduced insulin sensitivity (140). Other studies reported 
that, in general, OPs increased blood glucose (142‑144) and 
induced glycogen phosphorylase and phosphoenolpyruvate 
carboxykinase activity following malathion treatment in 
rats (145). Of note, glucose and lipid metabolism were affected 
in rats under the influence of malathion (146,147).

Similarly, neonatal parathion exposure in rats was found to 
alter lipid metabolism and induce an inflammatory response 
in adipose tissue, parathion alone decreased adiponectin 
levels and increased tumor necrosis factor‑α (TNF‑α) (148). 
Adiponectin is a monomeric protein secreted in the circulation 
with the main purpose of inducing fatty acid oxidation and 
inhibiting glucose synthesis in the liver. It has also been recog‑
nized as an anti‑inflammatory agent (149), whereas TNF‑α is a 
cytokine associated with immune homeostasis, inflammation, 
apoptosis, angiogenesis, and cell migration (150,151).

These in vivo studies supported the in vitro results 
and demonstrated that exposure to OPs induces a chronic 
adipose inflammatory response, leading to the emergence of 
other diseases, such as diabetes, obesity, and cardiovascular 
diseases (148).

6. Parathion and malathion cause genomic instability

Genomic instability is known to be induced by uncontrolled 
cell proliferation, with pesticides and estrogen found to 
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increase the risk of genetic damage (152), involving changes 
in the expression of oncogenes and the loss or inactivation of 
tumor‑suppressor genes (153,154); this leads to the accumula‑
tion of abnormalities in cells. It was demonstrated by human 
cancer microarray analysis that endogenous and exogenous 
agents, including estrogens and OPs, affected 408 genes, 17 
of which were involved in human cancer regulation. Among 
those genes that were altered are those associated with cell 
cycle progression, cell differentiation, and signal transduction 
pathways (20). To determine specific genetic changes and their 
biological consequences is crucial for understanding breast 
carcinogenesis.

Studies have indicated that mutations in the Ras oncogene 
observed in cancer cells correspond to the amino acid substitu‑
tions at positions 12, 13, and 61, and it is important to consider 
that the oncogenic Ras proteins act downstream of effector 
pathways to induce the deregulation of cell proliferation and 
abnormal functional properties of cells (155). The results 
of previous studies have indicated that allelic imbalance at 
different chromosomal levels involved the overexpression of 
the H‑ras oncogene; with the marker mapped for chromosome 
11p14.1 showing microsatellite instability (MSI) in malathion‑ 
and estrogen‑treated cells (156,157). A different study showed 
that malathion or parathion, alone and in combination with 
estrogen, upregulated H‑ras (20). Those findings indicated a 
loss of heterozygosity (LOH) in parathion and estrogen‑treated 
cells, LOH in codon 12 in either malathion‑ or estrogen‑treated 
cells, and MSI in codon 61 of malathion‑ and estrogen‑treated 
cells (36). Furthermore, it was shown that chemical carcino‑
gens induced mutations in codons 12 and 61 of H‑ras (158). 
Another study provided an example of the genomic instability 
of the Ras gene in MCF‑10F cells under the influence of the 
two pesticides and the presence of estrogen (20). The use of 
microsatellite markers can be useful to determine the degrees of 
allelic imbalance, LOH or MSI (159‑161). The specific genomic 
imbalances in microsatellite regions of specific genes appear 
to be important in determining the risk of cancer since tumor 
pathogenesis is associated with specific imbalances and disease 
prognosis (162,163), and they may serve as specific therapeutic 
targets. Genomic instability was observed in parathion‑, mala‑
thion‑ and estrogen‑treated MCF‑10F cells in the form of LOH 
and MSI (36). The malignant phenotype was characterized by 
an increase in H‑ras oncogene expression. On the other hand, 
microsatellite markers helped determine that the malathion‑ and 
estrogen‑treated cells exhibited MSI with a marker for H‑ras 
mapped in chromosome 11p14.1, and LOH in the presence of 
malathion or estrogen alone (36). Other studies have reported 
overexpression of the c‑Ha‑ras p21 protein in human breast 
cancer (164‑166), indicating that the expression of this protein 
may serve as a marker of breast cancer progression.

The Trio domains exhibit Rac and Rho activity (167). Rho, 
another member of the RAS superfamily (168), is present 
in several cell types and is involved in cell polarity and 
motility (169,170). Parathion and estrogen, alone and in combi‑
nation, increased Rho‑A protein expression, as compared with 
the control (21). Kleer et al (170) reported a higher Rho‑A 
protein expression in all breast tumor biopsies, as compared 
with normal tissues, which was correlated with histological 
grade; this suggests a role of this protein in tumor progres‑
sion and indicates that it may serve as a prognostic marker 

in the clinical setting (21). Rac, a GTP‑binding protein of the 
Ras superfamily, controls several processes, including cell 
proliferation, cell polarity, and cytoskeletal arrangement (171). 
Rac was found to be overexpressed in parathion‑treated cells; 
Rac 3 was particularly overexpressed in cells treated with 
parathion combined with estrogen. In addition, an increase 
in Trio protein expression was observed in cells treated with 
parathion, alone and combined with estrogen, when compared 
to the controls (33). The Trio is a multi‑domain protein with 
two DVL‑homology/pleckstrin domains (167,172). The c‑Kit 
protein has also been found to be overexpressed in breast 
cancer (88,173). A previous study demonstrated an increase of 
c‑Kit protein expression in cells treated with parathion, alone 
and in combination with either atropine or estrogen when 
compared to their controls (33).

It is known that the activation of tumor‑promoting 
signaling, such as RAS/MAPK signaling, may promote 
cancer cell proliferation and invasion (174). OPs altered the 
c‑Ha‑Ras oncogene and Rho‑A, among others, and estrogen 
affected ER in the MCF‑10F cell line (20,21). Based on these 
findings, it is, therefore, possible to hypothesize a cross‑talk 
between pesticides and estrogen, with the combination of the 
two inducing morphological and molecular changes indicative 
of cell transformation, which would be completely different in 
the absence of estrogen. Therefore, parathion and malathion 
combined with estrogen have been found to be involved in 
breast cell carcinogenesis.

Growth factor regulators, such as fibroblast growth factors 
(FGFs) and their receptors (FGFRs), regulate different cellular 
processes, including angiogenesis, metastasis, and tumor 
progression; the deregulation of these factors affects signaling 
pathways involved in breast cancer (175‑178). Acidic FGF 
(FGF‑1), a member of the fibroblast growth factor superfamily, 
has important functions in DNA synthesis, cell division, and 
differentiation (179), and it is also critical for the development 
of different types of cancer (180‑182). FGF‑2 and its ligand, 
FGFR2, along with FGF‑1, one of the main ligands for FGFR1, 
have been associated with tumor progression, regulation of 
tumor angiogenesis, and metastasis (183); this is due to their 
presence in the tumor microenvironment, which enables them 
to mediate the effects of several different pathways, such as 
MAPL and PI3K (177,184).

Insulin‑like are growth factor‑binding proteins (IGFBPs), 
among which IGFBP3 and IGFBP5 are important for the regu‑
lation of IGF signaling (185‑188). Exposure to either parathion 
or malathion upregulated both IGFBP3 and IGFBP5 gene 
expression (20). Regarding the interaction of these compounds 
with breast cell receptors and their association with an endo‑
crine‑disrupting connotation, a review reported that malathion 
induced ER activity and served as a weak ER agonist in the 
MVLN human breast carcinoma cell line (189).

The function of the cadherin‑catenin system in cell adhe‑
sion and intracellular signaling appears to be the result of 
different mechanisms (190,191). Thus, the E‑cadherin‑catenin 
complex is the target of numerous growth factors and 
hormone‑dependent signaling pathways that regulate its 
function and expression (191). In general, β‑catenin has been 
associated with breast cancer progression due to its invasive 
capabilities (46,192‑194), which make it a very sensitive prog‑
nostic marker for invasive breast cancer (190,192‑194).
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Other OPs have also been evaluated in relation to cell adhe‑
sion. Specific genes significantly altered by OPs were detected 
in Caenorhabditis elegans; among them, genes associated 
with cell adhesion were affected, including C3C12.5, mua‑6 
(ifa‑2), and zig‑7 (195). Other studies on these types of organ‑
isms have been found to be a good model for investigating 
the effects of other substances, due to their similarities with 
mammals (196‑199). The same study also investigated genes 
that were associated with metabolism, including CYTP450 and 
UDP‑glucosyltransferases (195).

Similarly, MCF‑10F cells treated with parathion or mala‑
thion, alone or combined with estrogen, induced changes in 
cell adhesion molecules such as CD146 (35), a surface protein 
also known as melanoma cell adhesion molecule (200) that 
is involved in cell adhesion and other processes, including 
cell proliferation, migration and progression, and particularly 
angiogenesis and vascular permeability (201‑204). The afore‑
mentioned treatments also upregulated keratin 18 expression; 
another component of epithelial cells that protects them from 
external forces, serves as a biomarker in epithelial cancers and 
plays other roles in drug response and tumorigenesis (205‑215).

Heat shock proteins (HSPs) are a group of highly conserved, 
abundantly expressed proteins with diverse functions (216), 
including the assembly and sequestering of multi‑protein 
complexes, transportation of polypeptide chains across cellular 
membranes, regulation of protein folding (217‑221), and certain 
functions that protect against stress‑induced injury (137). HSPs 
are known as molecular chaperones and are organized into six 
general families according to their molecular weight and activity: 
HSP20, HSP40, HSP60, HSP70, HSP90, and HSP100 (222). 
Typically, they are proteins constitutively expressed in the cyto‑
plasm that co‑localize to the nucleus under stress induced by 
physical and chemical insult. Among them, HSP90 and HSP27 
are associated with poor prognosis and likely play an important 
role in drug‑resistant breast cancer (223), as well as serve as 
a biomarker due to toxicant exposure (224). A previous study 

showed that the gene expression of HSP27 and HSP90 was 
upregulated by malathion or parathion, alone or combined with 
estrogen (20). The overexpression of HSP27 and HSP90 may 
suggest an association between them and breast cancer. Other 
HSPs such as HSP70 were also upregulated by OPs, an upregu‑
lation positively correlated with ROS generation and apoptotic 
cell death, suggesting an association between pesticides and 
adverse conditions promoting cell and tissue injury (217‑221).

It is well known that the cell cycle involves many steps that 
can be positively or negatively regulated by several factors. 
The p53 protein is a negative regulator, and its inactivation by 
mutation, or its interactions with oncogene products of DNA 
tumors, may lead to cancer (225‑228). Furthermore, it has 
been reported that malathion or parathion, alone or combined 
with estrogen, led to the upregulation of the gene expres‑
sion of inducible protein TP53. TP53 was upregulated and 
the mutant p53 gene expression was higher in parathion and 
estrogen‑treated cells, as compared with the controls, while 
the TP53 gene in Li‑Fraumeni syndrome was upregulated by 
malathion or estrogen treatment (20). As previously mentioned, 
molecular disorders, such as MSI and LOH, are associated 
with genomic stability (229); furthermore, the TP53 gene is 
located on chromosome 17p13. It was reported that malathion 
mixed with estrogen induced MSI at loci 17p13.1 (36). This 
indicated that the loss of p53 function can cause the genetic 
instability of these transformed cells. Thus, mutant p53 can 
act as a dominant oncogene (86). These findings suggested that 
OPs and estrogen induced the malignant transformation of the 
MCF‑10F cell line, as shown by the phenotypic characteristics 
and genomic instability indicated by LOH and MSI, which are 
considered important events in the process of carcinogenesis.

Studies have shown that breast cancer is associated with 
alterations in the p53 gene in humans (230), and that mutant 
p53 expression increases as breast cancer progresses from early 
in situ to advanced metastatic lesions, with p53 gene mutations 
observed in ~20‑50% of human cancers (226,228). On the other 

Figure 2. Effect of OPs and estrogen on breast epithelial cells. Parathion, malathion, and estrogen induced alterations on protein synthesis, receptor‑mediated 
response, drug metabolism, and other modifications at the nuclear level, such as cell cycle alterations and genomic instability. OPs, organophosphorus pesti‑
cides; E2, estrogen.
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hand, a small number of mutations in p53 have been found in 
ductal breast carcinomas (231,232). The p53 gene was reported 
to be altered in 17p13.1 during cell transformation and geno‑
toxic stress (157,233). p53 was found to be overexpressed in the 
MCF‑10F cell line when it was exposed to several carcinogens, 
including DMBA and BP, and α particle (high LET) radiation 
in the presence of estrogen, inducing an allelic imbalance at 
the respective chromosomal loci (33,46,47).

In addition, the extent of DNA damage can be quantitatively 
measured by tail moment (TM), which has been widely used 
in a genotoxic study (234). An increased TM was observed in 
human peripheral blood lymphocytes following malathion and 
parathion exposure, as determined by a comet assay, this study 
also suggested a role of oxidative stress induced by pesticides 
in the cytotoxic and genotoxic process (235). Similar results 
were observed in other cell types, such as the HepG2 human 
liver carcinoma cells, in which malathion also increased the 
extent of DNA damage (236,237).

Summary of important findings. A cellular model was 
presented herein, which was based on the use of the MCF‑10F 
cell line, a human tissue‑derived, immortalized, a non‑tumor‑
igenic cell line that enables a valuable experimental approach 
that minimizes extrapolation, thereby uniquely facilitating 
the clinical translation of the data. The cellular and molecular 
endpoints altered throughout these studies in response to 
treatment with estrogen, malathion, and parathion represent 
relevant endpoints for tumorigenic transformation. Of note, 
this is a unique experimental approach that identifies mecha‑
nistic signs that link OPs with human carcinogenesis.

A non‑malignant cell line, MCF‑10F, was used to construct 
another model, which showed several signs of carcinogenicity 
due to malathion and parathion exposure, which increased 
cell proliferation and induced cell transformation by affecting 
protein expression, promoted anchorage independence, 
invasive capabilities, modulation of receptor expression, meta‑
bolic alterations and genomic instability, among others. The 
mechanisms underlying the mammary carcinogenic potential 
involved acetylcholinesterase inhibition and increased oxida‑
tive stress. A simplified scheme of the molecular changes 
induced by the effects of OPs and estrogen is shown in Fig. 2.

7. Conclusions

Exposure to chemical compounds, such as pesticides, and endog‑
enous substances, such as estrogens, exert a significant effect 
on normal breast cell processes at different levels. Compounds 
of natural origin, such as hormones, are closely associated with 
hormone‑dependent types of cancer, including breast cancer. The 
present study provides a comprehensive summary of the impact 
of parathion, malathion, and estrogen on breast carcinogenesis 
and, specifically, their effects on cell cycle, signaling pathways 
linked to EGF and IGF receptors, drug metabolism, and genomic 
instability in the ER‑negative breast cell line MCF‑10F.

Cancer initiation and progression have been correlated with 
an increase in genomic instability identified by the inactivation 
of tumor‑suppressor genes, and the activation of oncogenes in 
the presence of malathion, parathion, and estrogen. Moreover, 
advances in science and medicine have helped further iden‑
tify and elucidate the functions of useful tumor markers or 

signaling molecules, further enhancing our understanding of 
genetic changes that are relevant to tumor initiation. Therefore, 
the signs of carcinogenicity have been proven to be very useful 
for analyzing the main factors involved in breast cancer initia‑
tion and may be used for determining the origin of other types 
of cancer and the main contributing factors.
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