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Abstract
Background: Neuropeptide Y (NPY), agouti related peptide (AgRP), cocaine and amphetamine-
regulated transcript (CART) and melanocortins, the products of the proopiomelanocortin
(POMC), are hypothalamic peptides involved in feeding regulation and energy homeostasis. Recent
evidence has demonstrated their expression in rat and human placenta.

Methods: In the current study, we have investigated the expression of those neuropeptides in the
rat placenta by real-time PCR using a model of maternal food restriction.

Results: Our results showed that placental-derived neuropeptides were regulated through
pregnancy and following food restriction.

Conclusion: These data could indicate that placental-derived neuropeptides represent a local
regulatory circuit that may fine-tune control of energy balance during pregnancy.

Background
The regulation of body weight is carried out by a complex
inter-organ circuit connecting the periphery and the brain,
where neurons in the hypothalamus and brainstem exert
potent effects on feeding and energy expenditure [1,2].
Short-acting and long-term body-weight regulating sig-
nals mainly originate from: 1) the adipose tissue, such as
leptin, and interleukin 6 (IL-6); 2) the pancreas, like insu-
lin or amylin; 3) the gastrointestinal tract such as ghrelin,
glucagon-like peptide-1 (GLP-1), peptide YY (PYY), chole-
cystokinin (CCK) and neuropeptide W (NPW); 4) the sen-

sory vagus nerve [2]. These neural and humoral signals
interact at the brain level with widely-located target recep-
tors related with the nutritional state, metabolism and
reproduction [2,3].

Hypothalamic neuropeptide expression and regulation
are stimulated by inputs from peripherally-derived hor-
monal and nutrient-related signals essential for the central
control of energy homeostasis in mammals. Neuropep-
tide Y (NPY), melanocortins (POMC-derived products),
agouti related peptide (AgRP), cocaine and amphetamine
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regulated transcript (CART), melanin concentrating hor-
mone (MCH) and orexins, have been characterized in
both rodent models and humans, by having either direct
or indirect effects in the feedback loop of body weight reg-
ulation and reproduction [4,5].

NPY and AgRP are two anabolic neuropeptides that pro-
mote weight gain by reducing energy expenditure and
stimulating food intake. They are coexpressed in arcuate
nucleus (ARC) neurons, which are inhibited by insulin
and leptin [4,6]. In contrast, CART and POMC, also coex-
pressed in the ARC neurons, are stimulated by inputs from
insulin and leptin and these catabolic neuronal pathways
act to reduce feeding and increase energy expenditure
[4,6].

Besides their role in food intake control, hypothalamic
neuropeptides have also been identified in female repro-
ductive tissues, such as the placenta and appear to have an
important role in the physiology of pregnancy [7-14]. It is
interesting to note that the placenta may play an impor-
tant role not only in reproduction but is also an important
site for translating inputs from diverse hormonal signals
that powerfully influence energy balance within the fetus
[15,16]. The aim of this study was to evaluate the
ontogenic mRNA expression pattern of NPY, AgRP,
POMC, and CART throughout pregnancy in the rat pla-
centa. In addition, we have determined the effects of
chronic food restriction on their expression levels.

Methods
Animals
Pregnant female rats of the Sprague Dawley strain aged
between 10–12 weeks (bred in the Animalario General
USC; Santiago de Compostela, Spain), were housed in a
temperature-regulated room with a 12 h light/12 h dark
cycle, with tap water and standard rat chow ad libitum or a
food-restricted diet (see below). At the end of the study
period, animals were sacrificed, hypothalami and placen-
tas were removed from each mother, and snap-frozen in
liquid nitrogen for RNA extraction and real time semi-

quantitative RT-PCR. All experiments and procedures in
this study were carried out according to a protocol
approved by the Ethics Committee of the University of
Santiago de Compostela in accordance with the European
Union normative for the care and use of experimental ani-
mals.

Maternal chronic food-restriction
A maternal chronic food-restriction model was used
throughout pregnancy to study the effect of long-term
undernutrition on placental neuropeptide mRNA expres-
sion as previously described [17]. Briefly, virgin rats were
mated on the day of proestrus and the day on which sper-
matozoa were present in vaginal smear, was designated
gestational day 1. The pregnant rats were divided into two
dietary groups: pregnant rats fed ad libitum and food-
restricted group of pregnant rats fed 30% of ad libitum
intake. Food-restricted animals were fed every day at
18:00 hours. Rats were sacrificed at gestational days 12, 16
and 21. We used 9 hypothalami and placentas per experi-
mental group, extracted from 9 different mothers. All the
samples were analyzed individually and samples were not
pooled.

RNA Isolation and real-time RT-PCR
Placental neuropeptide gene expression was analyzed by
reverse transcription polymerase chain reaction (RT-PCR)
as previously validated [18-20]. Total RNA was isolated
using Trizol according to the manufacturer's protocol
(Invitrogen, CA). First-strand cDNA was synthesized from
2 μg of total RNA by random primer reverse transcription.
A negative control without MMLV reverse transcriptase
was used to ensure specificity of the PCR amplification.
The resulting cDNA was subjected to PCR amplification
using sense and antisense primers specific for rat AgRP,
CART, NPY and POMC mRNAs (Table 1). Primer pairs
were designed overlapping on different exons to prevent
amplification from any contaminated genomic DNA
(data not shown). To verify the identity of amplified
cDNAs, PCR products were electrophoresed on a 1.5%
agarose gel, which yielded DNA fragments of the expected

Table 1: Primers used for real-time RT-PCR

mRNA Primer Sequence (5'-3') Product size (bp) Accession Number

NPY Forward cgctctgcgacactacatca 157 NM_012614
Reverse tttcatttcccatcaccaca

AgRP Forward tgtgggccctttattagacc 156 XM_574228
Reverse ccatatggacccccaatgt

POMC Forward tccatagacgtgtggagctg 174 NM_139326
Reverse gacgtacttccggggatttt

CART Forward gccctggacatctactctgc 201 NM_017110
Reverse cactgcgcactgctctcc

HPRT Forward cagtcccagcgtcgtgatta 137 NM_012583
Reverse agcaagtctttcagtcctgtc
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length for all mRNAs and were confirmed by sequencing
(data not shown). Rat hypoxanthine guanine phosphori-
bosyl transferase (HPRT) was used as a control house-
keeping gene. PCR was performed by real-time in
LightCycler real-time PCR machine 2 (Roche Diagnostics,
Germany) and the software version 3.5, according to the
method described elsewhere [19-21]. Briefly, the PCR pro-
tocol consisted of initial denaturation at 96°C for 5 min,
followed by 35 cycles of denaturation (96°C for 2 s),
annealing (62°C for 15 s) and elongation (72°C for 15 s).
This was followed by melting curve analysis consisting of
1 cycle at 95°C for 30 s, 60°C for 15 s and a temperature
rise to 85°C at a slope of 0.2°C/s with continuous meas-
urement of fluorescence. The primers specify was also
assured by the melting curve of each gene. All samples
were standardized against HPRT by using the 2ΔΔct
method [19,22].

Statistical analysis
Statistical analyzes were performed using GraphPad Instat
(version 3.05). All group values were expressed as mean ±
SEM. Differences between groups were analyzed by using
one-way analysis of variance (ANOVA) or Student's t-test.
P < 0.05 was considered significant.

Results
NPY mRNA expression is down-regulated by food 
restriction in the rat placenta
Firstly, we studied the hypothalamic mRNA levels of NPY
during pregnancy and after food restriction. Our data
showed that the transcriptional expression of NPY is
increased at the latest pregnancy stage (21 days; P < 0.001)
with food restriction inducing a further increase at both
16 and 21 days of pregnancy (P < 0.001 and P < 0.05,
respectively) (Figure 1A). Next, we evaluated the tran-
scriptional expression of NPY in rat placenta; our results
showed that placental mRNA levels of NPY were signifi-
cantly higher during the initial period of gestation studied
(12 days), and decreased significantly (P < 0.001) with
gestational age (Figure 1B). We also studied the effect of
food restriction on placental mRNA expression of NPY
and these data showed that the expression profile of NPY
was decreased by food restriction only at day 12 (P <
0.01), and remain unchanged between 16 to 21 days,
compared to the ad libitum group (Figure 1B).

AgRP mRNA expression is up-regulated by food restriction 
in the rat placenta
Throughout pregnancy, hypothalamic mRNA expression
levels of AgRP were decreased (P < 0.01) at 16 and 21 days
of gestation compared to 12 days and these levels were
increased by food restriction (P < 0.05 and P < 0.01) at all
days of gestation studied compared to the ad libitum (Fig-
ure 2A). In rat placenta, throughout the same experimen-
tal period, the expression mRNA profile of AgRP was

opposite to NPY (Figure 2B). Placental AgRP expression
remained unchanged between 12 and 16 days of gestation
reaching the highest levels at the end of the gestation
period (P < 0.001)(Figure 2B). Food restriction induced a
significant and progressive increase (P < 0.05) in placenta
AgRP mRNA expression at all studied time points.

POMC mRNA expression shows a biphasic response to 
food restriction during pregnancy in rat placenta
Hypothalamic POMC mRNA expression was increased
during pregnancy (P < 0.05) and decreased by food
restriction (P < 0.01) at 12, 16 and 21 days of gestation
(Figure 3A). Placental POMC mRNA expression showed a
significantly (P < 0.001) increasing trend of expression
from 12 to 21 days of gestation in rats fed ad libitum (Fig-
ure 3B). Placental POMC expression was significantly (P <
0.01) lower in fed ad libitum rats than in food-restricted
group at 12 days. Conversely, significantly (P < 0.01)

NPY expression in hypothalamus and placenta of ad libitum fed and food-restricted ratsFigure 1
NPY expression in hypothalamus and placenta of ad 
libitum fed and food-restricted rats. Relative NPY 
mRNA levels in (A) hypothalamus and (B) placenta from ad 
libitum fed or food-restricted female rats at different preg-
nancy stages (12, 16 and 21 days). Relative mRNA levels 
were normalized to ad libitum fed (control) as 1. **: P < 0.01 
vs. ad libitum 12d; ***: P < 0.001 vs. ad libitum 12d; ###: P < 
0.001 vs. ad libitum 16d; !: P < 0.05 ad libitum 21d vs. food-
restricted 21d.
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lower levels of POMC expression were detected in the
food-restricted group at compared to fed ad libitum exper-
imental group from 16 to 21 days of gestation.

CART mRNA expression is down-regulated by food 
restriction in rat placenta
Hypothalamic CART mRNA expression did not show any
change during the different stages of pregnancy and was
decreased by food restriction (P < 0.01) at 21 days of ges-
tation (Figure 4A). Placental CART mRNA expression did
not change significantly from 12 to 16 days, showing the
highest levels (P < 0.001) at 21 days of gestational age. In
addition, CART mRNA expression remained unchanged
throughout pregnancy from 12 to 16 days of pregnancy in
food-restricted rats. Conversely, at 21 days of gestational
age mRNA levels of CART were significantly lower in

food-restricted rats than in fed ad libitum rats (P < 0.01)
(Figure 4B).

Discussion
Although the expression of feeding neuropeptides in pla-
centa is well established, little is known about the regula-
tion of their expression during pregnancy and by
nutritional status. In this study, we investigated the pla-
cental mRNA expression levels of NPY, AgRP, CART and
POMC throughout pregnancy (from day 12 to day 21) in
fed and food-restricted rats.

Fetal development is critically determined by the availa-
bility and flux of nutrients and oxygen across the placenta
during pregnancy. The placenta tissue is an active endo-
crine organ involved in the control of not only metabo-

POMC expression in hypothalamus and placenta of ad libitum fed and food-restricted ratsFigure 3
POMC expression in hypothalamus and placenta of 
ad libitum fed and food-restricted rats. Relative POMC 
mRNA levels in (A) hypothalamus and (B) placenta from ad 
libitum fed or food-restricted female rats at different preg-
nancy stages (12, 16 and 21 days). Relative mRNA levels 
were normalized to ad libitum fed (control) as 1. *: P < 0.05 
vs. ad libitum 12d; **: P < 0.01 vs. ad libitum 12d; ***: P < 0.001 
vs. ad libitum 12d; ##: P < 0.01 vs. ad libitum 16d; ###: P < 
0.001 vs. ad libitum 16d; !!: P < 0.01 ad libitum 21d vs. food-
restricted 21d.
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AgRP expression in hypothalamus and placenta of ad libitum fed and food-restricted ratsFigure 2
AgRP expression in hypothalamus and placenta of ad 
libitum fed and food-restricted rats. Relative AgRP 
mRNA levels in (A) hypothalamus and (B) placenta from ad 
libitum fed or food-restricted female rats at different preg-
nancy stages (12, 16 and 21 days). Relative mRNA levels 
were normalized to ad libitum fed (control) as 1. *: P < 0.05 
vs.ad libitum 12d; **: P < 0.01 vs. ad libitum 12d; ***: P < 0.001 
vs. ad libitum 12d; #: P < 0.05 vs. ad libitum 16d; ###: P < 
0.001 vs. ad libitum 16d; !: P < 0.05 ad libitum 21d vs. food-
restricted 21d.
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lism and energy balance, but also of other relevant body
functions including reproduction [23,24]. Previous stud-
ies have demonstrated the placental expression of hor-
mones, such as ghrelin and leptin [25-27], as well as
neuropeptides such as NPY, AgRP, CART and POMC [7-
11] are involved in the regulation of energy homeostasis.
However, despite these data, both the physiogical rele-
vance and the regulation of these molecules in placental
tissues remain unclear.

In the hypothalamus, food restriction induces opposite
and compensatory changes in neuropeptide expression.
Thus, orexigenic neuropeptides such as AgRP and NPY are
up-regulated by decreased food availability whilst anorex-
igenic neuropeptides such as CART and POMC are down-
regulated under the same conditions. Interestingly, AgRP,
CART and POMC follow the same expression pattern in
placental tissues but NPY is down-regulated in food-
restricted rats. The reason for this discrepancy is unclear,
but it could be related to an altered hormonal milieu after

food restriction. In this sense, recent data from our group
demonstrates that pregnancy hormones, such as prolac-
tin, play a major role on hypothalamic NPY expression
[28]. Whether this interaction is present in placental tis-
sues will merit further investigation. In addition, these
data support the fact that contrary to the pattern in the
ARC, AgRP and NPY are probably coexpressed by different
cell populations in placental tissue and may be modu-
lated by different signals.

Whatever the case, the discrepancies in NPY expression
pattern suggest that an anabolic role for placental NPY in
states of increased energy demand is not clear and this
possibility merits further investigation. The data from
AgRP, CART and POMC suggest that their expression may
be under the same, or at least, a similar transcriptional
control to that in the hypothalamus. Whether placental
neuropeptide protein levels correlate with mRNA expres-
sion, as in the hypothalamus, will also merit further inves-
tigation.

Conclusion
In summary, we demonstrate that central signals involved
in energy homeostasis in the hypothalamus are also
expressed and modulated by nutritional status in the rat
placenta. These neuropeptides display a specific
ontogenic expression pattern which change over the entire
gestational range. They are also affected by chronic food
restriction. Altogether, these data suggest that neuropep-
tides could play a role in the homeostatic response to
energy availability in rat placenta.
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