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Abstract: Quantum memory effects can be qualitatively understood as a consequence of an
environment-to-system backflow of information. Here, we analyze and compare how this con-
cept is interpreted and implemented in different approaches to quantum non-Markovianity. We study
a nonoperational approach, defined by the distinguishability between two system states character-
ized by different initial conditions, and an operational approach, which is defined by the correlation
between different outcomes associated to successive measurement processes performed over the
system of interest. The differences, limitations, and vantages of each approach are characterized in
detail by considering diverse system–environment models and dynamics. As a specific example, we
study a non-Markovian depolarizing map induced by the interaction of the system of interest with
an environment characterized by incoherent and coherent self-dynamics.

Keywords: open quantum systems; quantum non-Markovianity

1. Introduction

The time-evolution of both classical and quantum systems may develop memory
effects [1–4]. Nevertheless, the characterization and definition of these effects is quite
different in both regimes [5–7]. As is well known, in a classical regime memory effects can
be rigorously defined in a probabilistic approach. The independence or dependence of con-
ditional probabilities on the previous system history define, respectively, the (memoryless)
Markovian and non-Markovian regimes [1].

In a quantum regime, one is immediately confronted with an extra aspect. In fact, the
state of a quantum system (and consequently its history) can only be determined by per-
forming a measurement process, which intrinsically implies a perturbation to its (originally
unperturbed) dynamics. Therefore, the definition of memory effects and quantum non-
Markovianity can be tackled from two intrinsically different approaches. In nonoperational
approaches, memory effects are defined by taking solely into account the properties of the
unperturbed open system dynamics (its propagator). In operational approaches, memory
effects are defined by the statistical properties of different outcomes associated to system
measurement processes and transformations (such as unitary ones).

A wide variety of measures and memory witnesses have been utilized in the context of
nonoperational approaches (see reviews [5–7]). The first proposals correspond to deviations
of the system propagator from divisibility [8,9] and a nonmonotonous behavior of the trace
distance (TD) between two distinct system states [10,11]. In this context, memory effects
were associated to an environment-to-system backflow of information: information stored in the
initial system state is transferred to the environmental degrees of freedom; their influence
on the system at later times implies a backflow of information that leads to memory effects.
In spite of this clear and well-motivated interpretation [12–14], the precise assessment of
this concept is still under debate [15–23].

The basic idea of operational approaches is to appeal to the standard definition of
memory effects in terms of probabilities [1]. Hence, the (quantum) system must be subjected
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to a set of measurement processes such that their statistical properties determine the
presence or absence of memory effects [24–27]. The study and understanding of this
approach was performed in the recent literature [28–34], including alternative definitions
and analysis of information flows [35,36].

The main goal of this paper is to analyze and to compare how the concept of environment-
to-system backflow of information is interpreted and implemented in operational and
nonoperational approaches. As a nonoperational memory witness, we take the TD between
two different systems’ initial states [10,11], also taking into account the bounds on its revival
behavior that have been characterized recently [22,23]. As an operational memory witness,
we consider a conditional past–future (CPF) correlation [26,27], both in deterministic and
random schemes [36]. The comparison is performed by considering different system–
environment models and analyzing in each case the information flows from the two
perspectives. We consider statistical mixtures of Markovian system evolutions and systems
coupled to incoherent [16] and coherent casual bystander environments [37], which are
characterized by a self-dynamics that is independent of the system degrees of freedom. In
addition, we consider (standard) unitary system–environment models [2]. As a specific
model, we study a depolarizing map induced by the interaction of a system with a finite
set of incoherent degrees of freedom. In this regime, as well as in a quantum coherent
one, we explain how and why both approaches lead to different notions of quantum
non-Markovianity and environment-to-system backflows of information.

The paper is outlined as follows. In Section 2 we review the definition and main prop-
erties of the considered nonoperational [10,11,22,23] and operational [26,27,36] approaches.
In Section 3 we study both approaches by considering different system–environment mod-
els. In Section 4, we study the depolarizing map. In Section 5, we provide the conclusions.

2. Quantum Non-Markovianity

Here, we briefly review the main characteristics of the different approaches to quantum
non-Markovianity.

2.1. Nonoperational Approach

If the open system is not affected or perturbed during its evolution, the unique
object that allows defining the presence or absence of memory effects is its (unperturbed)
density matrix propagator. The rigorous theory of quantum dynamical semigroups [38]
motivate associating the (memoryless) quantum Markovian regime with propagators whose
time-evolution obey a Lindblad equation (or Gorini–Kossakowski–Sudarshan–Lindblad
equation). Consequently, any (scalar) measure or property that quantifies departures of
the system propagator from a Lindblad equation can be taken as a witness of quantum
memory effects.

Lindblad equations lead to completely positive propagators between two arbitrary
times [38]. As is well known, completely positive transformations lead to very specific con-
tractive properties for different distance measures and entropic quantities [39]. For example,
the TD between two arbitrary density matrixes ρ and σ, defined as D(ρ, σ) ≡ (1/2)Tr|ρ− σ|,
under a completely positive transformation Φ, fulfills the inequality D(Φ[ρ], Φ[σ]) ≤ D(ρ, σ).
Consequently, it is possible to define quantum Markovianity by the condition [10,11]

D(ρs
t+τ , σs

t+τ) ≤ D(ρs
t , σs

t ), (1)

where ρs
t and σs

t are two arbitrary evolved system states that differ in their initial conditions,
ρs

0 6= σs
0. Alternatively, one can interpret that quantum memory effects are present whenever

this inequality is not fulfilled for a set of two arbitrary time intervals t ≥ 0 and τ > 0.
In spite of the simplicity and efficacy of the previous theoretical frame, in general, it is

not possible to know or infer which physical processes are involved when the contractive
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condition (1) is not fulfilled. A remarkable advance in this direction was recently obtained
in Refs. [22,23] by establishing the inequality

D(ρs
t+τ , σs

t+τ) ≤ D(ρs
t , σs

t ) + D(ρe
t , σe

t ) (2)

+D(ρse
t , ρs

t ⊗ ρe
t) + D(σse

t , σs
t ⊗ σe

t ).

Here, ρse
t and σse

t are the evolved system–environment states with initial conditions ρse
0 =

ρs
0 ⊗ ρe

0 and σse
0 = σs

0 ⊗ σe
0. As usual, the system and bath states follow from partial trace op-

erations, ρs
t = Tre[ρse

t ] and ρe
t = Trs[ρse

t ]. The asymmetry between system and environment
(s = e) is introduced by taking in both cases the same initial environmental state, ρe

0 = σe
0.

The result (2) only relies on the triangle inequality fulfilled by the TD. Thus, it is valid
for arbitrary system–environment models. In addition, this expression allows to bounding
the environment-to-system backflow of information defined by the “revivals”

D(ρs
t+τ , σs

t+τ)−D(ρs
t , σs

t ) > 0. (3)

The remaining (bounding) contributions in the rhs of Equation (2) have a clear physical
interpretation. One can relate the contribution D(ρe

t , σe
t ) to changes in the environmental

state, while the terms D(ρse
t , ρs

t ⊗ ρe
t) + D(σse

t , σs
t ⊗ σe

t ) measure the correlations established
between the system and the environment [22,23]. Nevertheless, it is important to realize
that these physical processes do not guarantee the developing of revivals. The right
conclusion is that given that there exists revivals, their origin can related to changes in the
environmental state or to the establishing of system–environment correlations.

It was also proven that the inequality (2) remains valid when the TD is replaced by
a telescopic relative entropy and the square root of a quantum Jensen–Shannon diver-
gence [22,23]. Thus, the interpretation of the bounds remains the same when using these
entropic quantities.

2.2. Operational Approach

In a probabilistic frame, given a sequence of system states x → y → z with joint
probability P(z, y, x), Markovianity is defined by the condition

P(z, y, x) = P(z|y)P(y|x)P(x), (4)

where P(b|a) denotes in general the conditional probability of b given a. By Bayes rule,
the equality (4) implies the (memoryless) condition P(z|y, x) = P(z|y). Similar constraints
emerge when considering higher joint probabilities involving an arbitrary number of
events [1].

For quantum systems, the definition of Markovianity in terms of probabilities unavoid-
ably implies performing a set of system measurement processes. In Refs. [24,25], by means
of a process tensor formalism, the Markovian condition is taken into account for arbitrary
(higher order) joint probabilities. Nevertheless, for quantum systems coupled to standard
environment models (standard classical noises and/or unitary system–environment in-
teraction models), only three measurement events are enough for detecting departures
from a (probabilistic) Markovian regime [26,27]. In such a case, the condition (4) can be
conveniently rewritten as a CPF independence,

P(z, x|y) = P(z|y)P(x|y). (5)

This result follows straightforwardly by using P(z, x|y) = P(z, y, x)/P(y), where P(y) =
∑z,x P(z, y, x).

The CPF independence (5) implies that any (conditional) correlation between past and
future events witnesses memory effects. Correspondingly, a CPF correlation is defined
as [26,27]

Cp f (t, τ)|y̆
d/r
= ∑

z,x
zx[P(z, x|y̆)− P(z|y̆)P(x|y̆)], (6)
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where {x} and {z} are the (past and future) measurement outcomes. The time dependence
(t, τ) emerges because the past, present, and future measurements are performed at the
initial time t = 0, at time t, and t + τ, respectively. Evidently, Cp f (t, τ)|y̆ vanishes in a
(probabilistic) Markovian regime (Equation (5)).

In Equation (6), the change y → y̆ was introduced, which is stretchy related with
the definition of memory effects and information flows in this approach. Two different
measurement schemes are necessary [36]. In a deterministic scheme (denoted with the
supra d), after the intermediate measurement (whose outcome defines the conditional
property) no change is introduced. Hence, y̆ = y. In a random scheme (denoted with the
supra r), after the intermediate measurement, the system state is randomly chosen (y→ y̆)
over the set of possible states associated to the outcomes {y}. The CPF correlation is defined
with this renewed conditional state.

In the deterministic scheme, the CPF correlation [Cp f (t, τ)|y̆
d
6= 0] detects memory

effects (departures with respect to Equation (4), or equivalently, Equation (5)) independently
of the specific system–environment model. In the random scheme, a nonvanishing CPF

correlation [Cp f (t, τ)|y̆
r
6= 0], by definition, detects the presence of environment-to-system

backflows of information (or bidirectional system–environment information flows). This
relation is motivated by the complementary case Cp f (t, τ)|y̆

r
= 0 that applies when the

environment (which induces the memory effects Cp f (t, τ)|y̆
d
6= 0) is unperturbed by its

coupling with the system [36].
The previous characteristics of the deterministic and random schemes can be easily

understood from the properties of projective measurements performed over bipartite
systems [37]. Interestingly, the formalism remains the same and is also valid for purely
(classically) incoherent system–environment arrangements.

2.3. Bipartite Propagator vs. Single Propagator

Before comparing both approaches (next section), here, we clarify which dynamical
objects determine each one. In the nonoperational approach, the presence of memory
effects (TD revivals defined by Equation (3)) can be determined after knowing solely the
system (single) propagator. In contrast, for determining the bound defined by Equation (2),
it is necessary to know the bipartite system–environment propagator specified for a given
initial bath state.

In contrast, the operational approach can only be characterized by knowing (exact or
approximate) the bipartite propagator for different initial bath states (the initial one and the
bath state after the intermediate measurement). As a matter of fact, the CPF correlation (6)
can be written as a function of the joint probability P(z, y̆, x). Assuming that the three
measurements are projective ones, in the deterministic scheme it reads [36]

P(z, y̆, x)
P(x)

d
= Trse(EzGse

t+τ,t[ρy̆ ⊗ Trs(Ey̆Gse
t,0[ρ

se
x ])]), (7)

while in the random scheme it is [36]

P(z, y̆, x)
P(x)

r
= Trse(EzGse

t+τ,t[ρy̆ ⊗ Trs(Gse
t,0[ρ

se
x ])])℘(y̆|x). (8)

In these expressions, Gse
t+τ,t is the bipartite propagator between t and t + τ. In addition,

Em ≡ |m〉〈m| and ρm ≡ |m〉〈m| [m = z, y̆, x] represent the (positive) effect measurement
operators and postmeasurement states, respectively. The sets {|m〉} [m = z, y̆, x] are the
eigenstates of each measured observable. Furthermore, ρse

x ≡ ρx ⊗ ρe
0 and P(x) = 〈x|ρs

0|x〉.
The random scheme is parameterized by an arbitrary conditional probability ℘(y̆|x) that
defines the change in the system state (y→ y̆) after the intermediate measurement.
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The different dependence of both approaches on the bipartite propagator leads to
strong different conclusions about memory effects and information flows, which are ana-
lyzed in the next section.

3. Comparing Both Approaches

In order to perform a systematic comparison we consider different system–environment
models and approximations. In general, we assume that the bipartite system–environment
state ρse

t evolves as
d
dt

ρse
t = (Ls + Le + Lse)[ρ

se
t ], (9)

where Ls and Le define the self-dynamics of the system and the environment, respectively,
while Lse defines their mutual interaction. This interaction term may be unitary or include
dissipative couplings.

3.1. Born–Markov Approximation

For systems weakly coupled to their environments, the Born–Markov approximation [2]
allows to write the bipartite state as

ρse
t ' ρs

t ⊗ ρe
0, (10)

where ρs
t is the system state, while ρe

0 is the (almost) unperturbed environment state.
When this approximation is valid, in the nonoperational approach, it is simple to

check that Equation (2) reduces to Equation (1). In fact, D(ρe
t , σe

t ) = D(ρse
t , ρs

t ⊗ ρe
t) =

D(σse
t , σs

t ⊗ σe
t ) = 0. Furthermore, ρs

t can be well approximated by a Lindblad equation,
which guarantees the absence of any revival in D(ρs

t , σs
t ). Thus, the dynamics is Markovian.

In the operational approach, by introducing the approximation (10) into Equations (7) and (8)

straightforwardly, it follows that Cp f (t, τ)|y̆
d/r
= 0 (Equation (6)). These results are indepen-

dent of which observables are measured. Thus, the dynamics is Markovian.
In this case (Equation (10)), both approaches coincide. Strong differences appear in the

cases studied below.

3.2. Casual Bystander Environments

A wide class of “non-Markovian” dynamics can be derived by assuming that the
system interacts with a “casual bystander” environment. These baths are defined by the
independence of their marginal states ρe

t = Trs[ρse
t ] of any degree of freedom of the system.

Alternatively, the time evolution of ρe
t can be written in the environment Hilbert space

without involving any operator or state of the system. These properties must be valid for
arbitrary system and environment (separable) initial conditions.

For fulfilling the previous properties, the interaction term Lse in the general evolution (9)
must be restricted such that

Trs(Lse[ρ
se
t ]) = A[ρe

t ], (11)

where A is an arbitrary superoperator acting on ρe
t that does not have any dependence

on the system degrees of freedom. In general, this constraint can only be satisfied by
dissipative (nonunitary) system–environment couplings. On the other hand, the bath
dynamics can be quantum [37] or a classical (incoherent) one [16].

In the nonoperational approach, the independence of the environment state on the
system degrees of freedom cannot be translated to any restriction on the inequality defined
by Equation (2). In fact, under the constraint (11), the TD may or not present revivals,
property that can only be cheeked for each specific model. Thus, some dynamics are classified as
Markovian and other as non-Markovian. The unique simplification that can be introduced
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is to assume that the environment state does not evolve in time, ρe
t = ρe

0, that is, the
environment begins in its stationary state. In this case, Equation (2) reduces to

D(ρs
t+τ , σs

t+τ)−D(ρs
t , σs

t ) ≤ D(ρse
t , ρs

t ⊗ ρe
0)

+D(σse
t , σs

t ⊗ ρe
0). (12)

Even in this case (ρe
t = ρe

0), the TD may or may not present revivals, that is, depending on
the model, the system may be classified as Markovian or non-Markovian.

In Equation (12), any environment-to-system backflow of information can be related to
the establishing of the correlations D(ρse

t , ρs
t ⊗ ρe

0) + D(σse
t , σs

t ⊗ ρe
0). Certainly, the system–

environment correlations (always) changes in time. Nevertheless, even when there are no
revivals in the TD system–environment, correlations are established. This feature represents
a central problem for the interpretation of this approach. In addition, here, the environment
state is completely independent of the system (and even of time). Thus, the revivals of the
TD must be taken as a (mathematical) model-dependent property whose origin cannot
be related to any physical process that implies a physical transfer of information from the
environment to the system.

A different perspective emerges in the operational approach. By using the independence
of the environment state [ρe

t = Trs(ρse
t )] of any degree of freedom of the system, it is possible

to check that the joint probability (7) of the deterministic scheme does not fulfill the Markov
property (4). In contrast, it is simple to check that the joint probability (8) of the random
scheme fulfills the Markov property (4). Consequently, a casual bystander environment
leads to the CPF correlations (Equation (6))

Cp f (t, τ)|y̆
d
6= 0, Cp f (t, τ)|y̆

r
= 0. (13)

In this approach, the property Cp f (t, τ)|y̆
d
6= 0, valid for any model under the con-

straint (11), implies that the system dynamics is non-Markovian. Its origin can be related to
the establishing of (arbitrary) system–environment correlations. On the other hand, the
property Cp f (t, τ)|y̆

r
= 0, which is valid for arbitrary measurement processes and specific

models, is read as the absence of bidirectional system–environment information flows. In
fact, given that the environment is characterized by a self-dynamics that is completely
independent of the system, any environment-to-system backflow of information (as de-
tected in the nonoperational approach) does not rely on any physical process that affects
the environment state or its dynamics.

The meaning of the previous analysis is clarified by specifying different bipartite
models that fulfill the evolution (9) and the constraint (11).

3.2.1. Classical Mixture of Quantum Markovian Dynamics

Given a set of different system Lindblad superoperators {Lc
s}, which may include

both unitary and dissipative contributions, and given a set of normalized positive weights
{pc}, ∑c pc = 1, a classical statistical mixture of Markovian dynamics is defined by the
bipartite state

ρse
t = ∑

c
exp(tLc

s)[ρ
s
0]⊗ pc|c〉〈c|. (14)

Here, {|c〉〈c|} is a set of projectors associated to the environment space. The marginal
system and environment states read

ρs
t = ∑

c
pc exp(tLc

s)[ρ
s
0], ρe

t = ∑
c

pc|c〉〈c|. (15)

Memory effects in this kind of non-Markovian system dynamics have been explored in
the literature [40–44]. Notice that the environment does not have any dynamics. Even more,
the system dynamics can be performed by mixing in a random way (with weight pc) each of
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the evolved Markovian system states exp(tLc
s)[ρ

s
0]. Thus, the detection of an environment-

to-system backflow of information via Equation (3) seems to have a formal mathematical
interpretation rather than a physical one. On the other hand, in the operational approach,
this case is characterized by Equation (13), which guaranties the presence of memory effects

Cp f (t, τ)|y̆
d
6= 0 but not any bidirectional information flow, Cp f (t, τ)|y̆

r
= 0.

3.2.2. Interaction with Stochastic Classical Degrees of Freedom

When the system interacts with stochastic classical degrees of freedom, the bipartite
state can be written as

ρse
t = ∑

c
ρc

t ⊗ pc(t)|c〉〈c|. (16)

In contrast to the previous case (Equation (14)), the weights {pc(t)} are time-dependent
and the evolution of the states {ρc

t} may involve coupling between all of them. In fact,
under the constraint (11), the more general evolution can be written as [16]

dρ̃c
t

dt
= Lc

s[ρ̃
c
t ]−∑

c′
γc′cρ̃c

t + ∑
c′

γcc′Scc′ [ρ̃
c′
t ]. (17)

Here, ρ̃c
t ≡ pc(t)ρc

t . Thus, pc(t) = Trs(ρ̃c
t ). Furthermore, {Scc′} are arbitrarily completely

positive system transformations, which are trace preserving Trs(Scc′ [ρ]) = Trs(ρ). Conse-
quently, the environment probabilities {pc(t)} obey a classical master equation

dpc(t)
dt

= −∑
c′

γc′c pc(t) + ∑
c′

γcc′ pc′(t), (18)

which in turn shows the role played by the coupling rates {γc′c}. In contrast, the system
dynamics depart from a Markovian (Lindblad) evolution. From some specific models, it
is possible to recover some phenomenological non-Markovian master equations (see, for
example, [45–47]).

In the nonoperational approach, it is very difficult to predict if a given dynamics
(Equation (16)) leads or not to revivals in the TD. If the incoherent degrees of freedom
begin in their stationary state, pc(0) = limt→∞ pc(t), one is confronted with the bounds
defined by Equation (12). Even in this case, one cannot predict when there exists or not an
environment-to-system backflow of information.

Interestingly, the origin of the contributions D(ρse
t , ρs

t ⊗ ρe
0) + D(σse

t , σs
t ⊗ ρe

0) in
Equation (12) (or in general in Equation (2)) can be easily read from the evolution (17). In
fact, this equation shows that the system evolution is totally conditioned to the environment
dynamics. The contributions Lc

s are “active” whenever the environment is in the state
|c〉〈c|. Furthermore, the system suffers the transformation ρ→ Sc′c[ρ] whenever the envi-
ronment “jumps” between the states c→ c′. This is the physical mechanism that leads to
the system–environment correlations, which in turn does not imply any system-dependent
change in the environment state or dynamics. Thus, the interpretation of revivals in the TD
as environment-to-system backflow of information is again controversial.

Independently of the Lindblad contributions {Lc
s}, the superoperators {Scc′}, and rates

{γc′c}, the operational approach is characterized by Equation (13), that is, the dynamics

is non-Markovian [Cp f (t, τ)|y̆
d
6= 0] without the development of any bidirectional system–

environment information flow [Cp f (t, τ)|y̆
r
= 0].

3.2.3. Environmental Quantum Degrees of Freedom

The condition Equation (11) can be satisfied even when the environment is a quantum
one, that is, it develops coherent behaviors. In this case, the bipartite state can be written as

ρse
t = ∑ ρc

t ⊗ pc(t)|ct〉〈ct|. (19)



Entropy 2022, 24, 649 8 of 17

In contrast to Equation (16), due to the quantum nature of the environment, the projectors
{|ct〉〈ct|} are time-dependent. In fact, they define the base in which the environment density
matrix ρe

t is diagonal. The more general bipartite evolution (9) under the constraint (11), in
its diagonal representation, is given by [37]

d
dt

ρse
t = (Ls + Le)[ρ

se
t ] + ∑

α

Γα BαSα[ρ
se
t ]B

†
α

−1
2 ∑

α

Γα{B†
αBα, ρse

t }+, (20)

where {·, ·}+ is an anticommutator operation. Furthermore, {Bα} are arbitrary environment
operators, while Sα are completely positive trace-preserving system superoperators. The
rates {Γα} set the environment dynamics. In fact,

d
dt

ρe
t = Le[ρ

e
t ] + ∑

α

Γα (Bαρe
t B†

α −
1
2
{B†

αBα, ρe
t}+), (21)

which is a Lindblad dynamics completely independent of the system degrees of freedom.
These evolutions recover, as particular cases, some phenomenological collisional models
introduced in the literature (see, for example, [48–50]).

The physical interpretation of the evolution (20) is quite similar to that of Equation (17).
In fact, here, the application of the system superoperators Sα occurs whenever the environ-
ment suffers a transition associated to the operators Bα. This (unidirectional) mechanism
defines how the system–environment correlations are built up.

In the nonoperational approach, even when the environment begins in its stationary
state ρe

0 = limt→∞ ρe
t (where ρe

t obeys Equation (21)), it is not possible to infer for an
arbitrary model the presence or absence of revivals in the TD (Equation (3)). In contrast,
the operational approach is still characterized by Equation (13).

3.3. Unitary System–Environment Interactions

Independently of the specific models, the correlation between the system and the
casual bystander environments introduced previously does not involve quantum entangle-
ment [51] (see the separable states Equations (14), (16) and (19)). In contrast, quantum entan-
glement may emerge when considering Hamiltonian (time-reversible) system–environment
interactions. In fact, solely for special system–environment initial conditions, a bipartite
unitary dynamics does not induce quantum entanglement [52–54].

The total Hamiltonian is written as

HT = Hs + He + HI . (22)

Each contribution corresponds to the system, environment, and interaction Hamiltonians,
respectively. The bipartite propagator is

Gse
t,t0

[•] = exp[−i(t− t0)HT ] • exp[+i(t− t0)HT ]. (23)

In the nonoperational approach, each contribution in the rhs of Equation (2) makes
complete sense in this context. In fact, almost all unitary interactions lead to a change in
the environment state and also induce the development of (arbitrary) system–environment
correlations. When revivals in the TD develop, Equation (2) defines a bound with a
clear physical meaning. Nevertheless, in general, it is not possible to infer which kind of
dynamics develop or do not develop revivals in the TD. Even for a given (Hamiltonian)
model, depending on the underlying parameters, the system dynamics may be Markovian
or not. Consequently, it is not clear which physical property defines the boundary between
Markovian and non-Markovian dynamics.



Entropy 2022, 24, 649 9 of 17

In the operational approach, given that the state and dynamics of the environment are in
general modified by a unitary interaction, instead of Equation (13), here, it follows

Cp f (t, τ)|y̆
d
6= 0, Cp f (t, τ)|y̆

r
6= 0. (24)

Both inequalities can be supported by performing a perturbation theory based on projector
techniques [31]. Consistently, it has been shown that even close to the validity of a Born–
Markov approximation, the operational approach can detect memory effects [34].

The inequality Cp f (t, τ)|y̆
d
6= 0 implies that the system dynamics is non-Markovian

(system–environment correlations are developed during the evolution), while Cp f (t, τ)|y̆
r
6=

0 detects the presence of bidirectional information flows. In fact, here, the environment
state and evolution always depend on the system degrees of freedom.

There exists a unique exception to Equation (24), which reduces to Equation (13).
Hence, even when the environment state is modified, for any system observables, one
obtains Cp f (t, τ)|y̆

r
= 0. While this property is certainly undesirable, this case has a clear

physical interpretation. It emerges when, in a given environmental base {|e〉}, the diagonal
part of the bipartite propagator (23) can be written as

〈e|Gse
t,0[•]|e〉 = T

(e)
t,0 〈e| • |e〉, (25)

where T (e)
t,0 is a system (density matrix) propagator that parametrically depends on each

environmental state {|e〉}. The condition (25) is fulfilled, for example, when the environment
and interaction Hamiltonians commutate

[He, HI ] = 0. (26)

Introducing the condition (25) into Equations (7) and (8), it is possible to check that

Cp f (t, τ)|y̆
d
6= 0, and Cp f (t, τ)|y̆

r
= 0. This last equality does not imply that the environment

in not affected. It emerges because the system state assumes the structure

ρs
t = Tre(Gse

t,0[ρ
s
0 ⊗ ρe

0]) = ∑
e
〈e|ρe

0|e〉T
(e)

t,0 [ρs
0]. (27)

Therefore, the system evolution can be written as a statistical superposition of unitary
maps, quite similar to Equation (15). Consequently, for unitary system–environment
models, the condition Cp f (t, τ)|y̆

r
= 0 allows to detect when the system dynamics (even

between measurements) can be represented by a Hamiltonian ensemble, a property that has
been of interest in the recent literature [55].

4. Example

In this section, we consider an explicit example of the dynamics discussed previously.
The quantum system (s), taken for simplicity as a two-level system, interacts with an
incoherent environment (e) (see Section 3.2.2), which here is defined by four discrete states,
denoted as {|1〉, |2〉, |3〉, |4〉}. Correspondingly, the bipartite system–environment state is
written as

ρse
t = ∑

k=1,2,3,4
ρ̃k(t)⊗ |k〉〈k|. (28)

The system and environment states then read

ρs
t = ∑

k=1,2,3,4
ρ̃k(t), ρe

t = ∑
k=1,2,3,4

pk(t)|k〉〈k|, (29)
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where pk(t) = Trs[ρ̃k(t)]. The evolution of the unnormalized system states {ρ̃k(t)}k=4
k=1 is

taken as

dρ̃4(t)
dt

= −γρ̃4(t) + φ ∑
k=1,2,3

σk ρ̃k(t)σk, (30a)

dρ̃k(t)
dt

= −φρ̃k(t) +
(γ

3

)
σk ρ̃4(t)σk, k = 1, 2, 3. (30b)

In this expression, γ and φ are characteristic coupling rates. Furthermore, the set of Pauli
matrixes is denoted as (σx, σy, σz, I)↔ (σ1, σ2, σ3, σ4), where I is the identity matrix in the
two-dimensional system Hilbert space. From Equations (30a) and (30b), the evolution of
the environment populations is defined by the following classical master equation

dp4(t)
dt

= −γp4(t) + φ ∑
k=1,2,3

pk(t), (31a)

dpk(t)
dt

= −φpk(t) +
(γ

3

)
p4(t), k = 1, 2, 3. (31b)

This equation is completely independent of the system degrees of freedom. Thus, the
evolution ((30a) and (30b)) has a simple interpretation. When the environment suffers the

transition |4〉 γ/3→ |k〉 or the transition |k〉 φ→ |4〉 (k = 1, 2, 3), the transformation σk • σk is
conditionally applied over the open quantum system.

Equations (30a) and (30b) can be solved after specifying the bipartite initial conditions.
We consider a separable state, ρse

0 = ρs
0 ⊗ ρe

0, which implies ρ̃k(0) = ρs
0 pk(0). In general,

each auxiliary state ρ̃k(t) can be written as a superposition of the Pauli channels acting on
the initial system state ρs

0, that is,

ρ̃k(t) = ∑
j=1,2,3,4

gj
k(t)σjρ

s
0σj, (32)

where {gj
k(t)} are (sixteen) scalar functions that depend on time. Their initial conditions are

g4
k(0) = pk(0) and gj

k(0) = 0, with j = 1, 2, 3, and k = 1, 2, 3, 4. The evolution of the set

{gj
k(t)} follows after inserting the previous expression for ρ̃k(t) into Equations (30a) and (30b).

Consistent with their definition, pk(t) = Trs[ρ̃k(t)], the environment populations are recov-
ered as

pk(t) = ∑
j=1,2,3,4

gj
k(t). (33)

4.1. Depolarizing Dynamics

The evolution of the auxiliary states Equations (30a) and (30b) is (structurally) the same
for the states {ρ̃1(t), ρ̃2(t), ρ̃3(t)}. Thus, if we consider environment initial conditions where
p1(0) = p2(0) = p3(0), from Equations (29) and (32), it follows that the solution map ρs

0 → ρs
t

must be a depolarizing channel [39], that is,

ρs
t = w(t)ρs

0 +
1− w(t)

3 ∑
k=1,2,3

σkρs
0σk, (34)

where the positive weight w(t), from Equation (32), follows as

w(t) = ∑
k=1,2,3,4

g4
k(t). (35)

Consistently, [1− w(t)]/3 = ∑k=1,2,3,4 gj
k(t), with j = 1, 2, 3.
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The more natural initial conditions for the environment are their stationary populations
p∞

k ≡ limt→∞ pk(t), where pk(t) is defined by Equations (31a) and (31b). Straightforwardly,
we obtain

p∞
4 =

φ

γ + φ
, p∞

k =
1
3

γ

γ + φ
(k = 1, 2, 3). (36)

Under the assumption pk(0) = p∞
k , after obtaining the set {gj

k(t)} in an explicit analytical way,
the function w(t) that characterizes the depolarizing channel Equation (34) can be written as

w(t) =
(γ2 + 3φ2)

3(γ + φ)2 +
4γφ

3(γ + φ)2 e−(γ+φ)t +
2γ

3(γ + φ)
e−φt, (37)

which consistently satisfies w(0) = 1. Furthermore, lim t→∞w(t) 6= 0. On the hand, the
environment dynamics is stationary, that is, pk(t) = pk(0) = p∞

k (Equation (36)).

4.2. Operational vs. Nonoperational Quantum Non-Markovianity

In the nonoperational approach, quantum non-Markovianity is defined by the re-
vivals in the trace distance between two different initial states, Equation (3). By using
that (I/2) = (ρ + ∑k=1,2,3 σkρσk)/4 [39], the depolarizing map (34) can be rewritten as
ρs

t = w(t)ρs
0 + (1/3)[1− w(t)](2I− ρs

0). Thus, the trace distance straightforwardly can be
written as

D[ρs
t , σs

t ] =

∣∣∣∣4w(t)− 1
3

∣∣∣∣D[ρs
0, σs

0] ≡ d(t)D[ρs
0, σs

0] (38)

where D[ρs
0, σs

0] is the trace distance between the two initial states ρs
0 and σs

0. Notice that the
decay of the trace distance does not depend on the initial states, being dictated by the function
d(t).

In Figure 1a, we plot the function d(t) for different values of the characteristic parameter
φ/γ. As expected from Equation (37), D[ρs

t , σs
t ] decays in a monotonous way without developing

any revival. Thus, under the trace distance criteria, the dynamics is Markovian, and there is not
any environment-to-system backflow of information. Nevertheless, notice that for any value of
φ/γ, system–environment correlations are built up during the dynamics [see Equation (28)].
This feature, which is irrelevant for the TD decay behavior, is relevant for the CPF correlation.
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Figure 1. (a) Decay of the trace distance d(t) (Equation (38)) corresponding to the model ((31a) and (31b)).
(b) Time dependence of the CPF correlation Cp f (t, t)|y̆ in the deterministic scheme [56] corresponding to
the same model. The value of the quotient φ/γ is indicated in each plot.

In the operational approach, the presence of memory effects is witnessed by the CPF correla-
tion (Equation (6)) in the deterministic scheme. We assume that the three measurements are
projective ones, all of them being performed in the z-direction of the Bloch sphere. Furthermore,
the initial condition of the system is taken as ρs

0 = |ψ〉〈ψ|, where |ψ〉 is an eigenstate of the
x-Pauli matrix. Explicit general expression for Cp f (t, τ)|y̆ in terms of the coefficients {gj

k(t)} can
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be found in Ref. [57] (see corresponding Appendix D). Under the previous assumptions, the CPF
correlation can be obtained in an analytical way, which is written in [56]. Simple expressions are
obtained for specific values of the decay rates. For example, for φ = γ, it follows

Cp f (t, τ)|y̆
d
=

4
81

(1− e−γt)(1− e−γτ) (39)

×(2+ e−γt + e−γτ + 5e−γ(t+τ)).

Due to the symmetry of the problem, in all cases Cp f (t, τ)|y̆ does not depend on the value of the
conditional y̆ = ±1.

In Figure 1b, we plot the CPF correlation at equal times Cp f (t, t)|y̆ for different values of
φ/γ. In contrast to the nonoperational approach, here, for all possible values of the characteristic

parameter φ/γ it is fulfilled Cp f (t, τ)|y̆
d
6= 0, which indicates a non-Markovian regime. In fact,

the system is strongly correlated with the environment (Equation (28)).
The system–environment correlations emerge due to a unidirectional dependence of the

system dynamics on the environment transitions (Equations (30a) and (30b)). In fact, the
environment populations do not depend on the system degrees of freedom (see Equations (31a)
and (31b)). These properties are relevant in the random scheme and imply that Cp f (t, τ)|y̆

r
= 0

(Equation (13)). This result is valid for arbitrary measurement processes, indicating in the
operational approach the absence of any environment-to-system backflow of information.

4.3. Environment-to-System Backflow of Information

In the previous section, we concluded that both approaches differ in the classification of the
dynamics (Markovian vs. non-Markovian), but (due to different reasons) agree in the absence
of any environment-to-system backflow of information. Here, we show that in general, both
approaches also differ in this last aspect. Different mechanisms can be proposed for obtaining a
revival in the trace distance Equation (38).

4.3.1. Slow Modulation of the Stationary Environment State

First, we consider the same model (Equations (30a) and (30b)), but in addition, it is assumed
that the characteristic rates are time-dependent, γ→ γ(t), φ→ φ(t), with

γ(t) = γ[1+ b(t)] > 0, φ(t) = φ[1− b(t)] > 0. (40)

Here, b(t) is an arbitrary function of time that fulfills the constraint−1 < b(t) < 1. The previous
structure is chosen for simplifying the argument and calculus. Nevertheless, we remark that
similar dependences can be implemented in different experimental situations (see for example
Ref. [58]). The more relevant aspect is that the assumption (40) can be implemented by affecting
solely the environmental degrees of freedom (see Equations (31a) and (31b)).

In addition, in Equation (40), it is assumed that∣∣∣∣ d
dt

b(t)
∣∣∣∣� γ,

∣∣∣∣ d
dt

b(t)
∣∣∣∣� φ. (41)

Hence, the time dependence of b(t) can be considered slow with respect to the decay times (1/γ)
and (1/φ). Consequently, the full dynamics can be described in an adiabatic approximation,
where the full bipartite system in the long time regime (γt� 1, φt� 1) rapidly adjusts to the
instantaneous values of γ(t) and φ(t). In particular, in this regime, the environment populations
from Equation (36) can be written as

p∞
4 (t) ' φ

γ + φ
[1− b(t)], p∞

k (t) '
1
3

γ

γ + φ
[1+ b(t)], (42)

where k = 1, 2, 3. For simplicity, we assumed that (γ− φ)� (γ + φ), which allows to approxi-
mate γ(t) + φ(t) = (γ + φ) + b(t)(γ− φ) ' (γ + φ).
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In the long time regime, the nonoperational approach is characterized by the value
limt→∞ w(t) 6= 0 (see Equations (37) and (38)). For time-independent rates, this quan-
tity can be written in terms of the stationary populations {p∞

k }
k=4
k=1 (Equation (36)) as

limt→∞ w(t) = [p∞
4 ]2 + ∑k=1,2,3[p∞

k ]
2. Given that in the slow modulation regime

(Equation (41)) these values become time dependent, p∞
k −→ p∞

k (t) (Equation (42)), it
follows that

w(t)
slow' [p∞

4 (t)]2 + ∑
k=1,2,3

[p∞
k (t)]

2, γt� 1, φt� 1. (43)

Therefore, under the previous hypothesis, the stationary values of the TD in Figure 1a [d(t) =
|4w(t)− 1|/3] become proportional to the arbitrary function b(t). This result implies that one
can obtain arbitrary revivals in the trace distance (Equation (38)) by choosing different time
dependences of the function b(t). Alternatively, an arbitrary environment-to-system backflow of
information can be produced by changing solely in a slow way the (“stationary”) environment
populations. Nevertheless, we remark that the full dynamics is essentially the same as in the
static-rate case. While one can associate the revivals in the TD to the system–environment
correlations, these correlations have the same origin and structure as in the absence of revivals,
such as in Figure 1a (static case) and when b(t) does not lead to revivals.

In the deterministic scheme, the operational approach is characterized by the stationary
value [56]

lim
t→∞
τ→∞

Cp f (t, τ)|y̆
d
=

8γ(γ− 3φ)2(γ + 3φ)

81(γ + φ)4 , (44)

which can also be written in terms of {p∞
k }

k=4
k=1 (Equation (36)). Thus, under the same conditions

that guarantee the slow modulation regime (Equations (41) and (42)), the stationary values of
Cp f (t, t)|y̆ plotted in Figure 1b also become proportional to the function b(t). Nevertheless, in
this approach, this property does not imply the presence of any backflow of information. In
fact, given that the environment state does not depend at all on the system degrees of freedom,
even in the slow modulation regime, it follows that Cp f (t, τ)|y̆

r
= 0 (Equation (13)). In this way,

it is clear that both the nonoperational and operational approaches also strongly disagree in this
aspect.

4.3.2. Quantum Coherent Contributions in the Environment Dynamics

The system–environment dynamics associated to the depolarizing channel
(Equations (30a) and (30b)) can alternatively be represented through a Lindblad equation.
In fact, the evolution of the bipartite state ρse

t can be written as

dρse
t

dt
= +

γ

3 ∑
k=1,2,3

(Bkσk[ρ
se
t ]σkB†

k −
1
2
{B†

k Bk, ρse
t }+)

+φ ∑
k=1,2,3

(B†
k σk[ρ

se
t ]σkBk −

1
2
{BkB†

k , ρse
t }+)

−i[He, ρse
t ], (45)

where the bath operators are Bk ≡ |k〉〈4|, k = 1, 2, 3. As before, {|1〉, |2〉, |3〉, |4〉} are the environ-
ment base. Defining the states ρ̃k ≡ 〈k|ρse

t |k〉, it is simple to check that the first two lines of the
previous Lindblad dynamics recover the time evolution introduced in Equations (30a) and (30b).

From Equation (45), it is simple to check that the bath state (ρe
t = Trs[ρse

t ]) obeys a Lindblad
equation that, even with the extra contribution−i[He, ρse

t ], is independent of the system degrees
of freedom. Thus, the environment is still a casual bystander one (see Equations (20) and (21)).
In order to obtain a (system) depolarizing channel (Equation (34)), the symmetry between the
bath states {|1〉, |2〉, |3〉}must be granted. For example, the Hamiltonian

He =
Ω
2 ∑

k=1,2,3
(|k〉〈4|+ |4〉〈k|) (46)
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fulfills this property.
In consistence with the solution defined by Equations (28) and (32), here, the bipartite state

is written as
ρse

t = ∑
k=1,2,3,4

(σkρs
0σk)⊗ $k

t , (47)

where {$k
t} are states in the environment Hilbert space. In order to obtain analytically treatable

solutions, we assume the bipartite initial condition

ρse
0 = ρs

0⊗ ρe
0 = ρs

0⊗ |4〉〈4|. (48)

Under this assumption (ρe
0 = |4〉〈4|), given that the underlying system stochastic dynamics

associated to Equation (45) is the same as in the incoherent case (Equation (30)), it follows that
the system state goes back to the initial condition ρs

0 whenever the environment goes back
to the state |4〉. This property straightforwardly follows from σ2

k = I. Therefore, under the
assumption (48), here, the depolarizing map Equation (34) is defined with the function

w(t) = Tre[$
4
t ] = 〈4|ρe

t |4〉, (49)

where ρe
t is the density matrix of the environment. Consistently, [1− w(t)]/3 = Tre[$k

t ] =
〈k|ρe

t |k〉, with k = 1, 2, 3. Consequently, the decay of the trace distance is proportional to the bath
population 〈4|ρe

t |4〉. Its explicit analytical expression is rather complex and noninformative [59].
In this alternative situation, it is clear that He induces intrinsic quantum coherent oscillations

in the environment dynamics, which in turn may lead to oscillations in the trace distance
(Equation (38)). In Figure 2, we plot the TD decay d(t) = |4w(t)− 1|/3 taking φ = γ and for
different values of Ω/γ. When Ω/γ < 1, a monotonous decay is observed. Nevertheless, for
Ω/γ > 1, revivals in the TD are observed.

Figure 2. Decay of the trace distance d(t) (Equations (38) and (49)) corresponding to the model (45) with
φ = γ for different values of the Hamiltonian frequency Ω/γ.

The CPF correlation in the deterministic scheme cannot be calculated in an analytical
way. Nevertheless, given that the system dynamics is still controlled by the environment (self)

transitions, it follows that Cp f (t, τ)|y̆
d
6= 0. Thus, the dynamics become non-Markovian in both

approaches (Ω/γ > 1). Nevertheless, given that the environment is a casual bystander one,
in the random scheme it is valid that Cp f (t, τ)|y̆

r
= 0 (Equation (13)) for any value of Ω/γ.

Consequently, in the same way as in the previous model (Equation (40)), the nonoperational
and operational approaches give different results about the presence of environment-to-system
backflows of information.
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5. Summary and Conclusions

The interpretation of quantum memory effects in terms of an environment-to-system
backflow of information is still under vivid debate. In this contribution, we presented a
partial view of this problem by comparing how this concept is introduced and interpreted
in nonoperational and operational approaches to quantum non-Markovianity.

Our main contribution is a comparison between both formalisms for different environ-
ment models. We considered casual bystander environments, which are characterized by a
density matrix that does not depend on the system degrees of freedom. This class covers
classical statistical mixtures of Markovian dynamics (Equation (14)), interactions with
stochastic classical degrees of freedom (Equation (16)), and environmental quantum de-
grees of freedom (Equation (19)). In addition, we considered unitary system–environment
models (Equation (22)).

As a nonoperational approach, we used the TD between two system states with differ-
ent initial conditions. This formalism is characterized by the bound Equation (2). We have
argued that, in general, it is not possible to predict if for a given model the TD presents or
does not present revivals in its time behavior. This property is valid for all environmental
models. In the case of casual bystander ones, the previous feature represents an obstacle for
giving a consistent physical interpretation of any environment-to-system backflow of infor-
mation defined as revivals in the TD (Equation (3)). In fact, for these dynamics, the system–
environment correlations emerge due to the unidirectional dependence of the system
dynamics in the state of the environment and its transitions. In particular, for stationary en-
vironments, it is not possible to know when the system–environment correlations lead to the
presence or absence of backflows of information. The possibility of obtaining monotonous
decay behaviors of the TD for unitary interaction models also represents an undesirable
property because, in general, the environment state is modified by its interaction with
the system.

As an operational approach, we used a CPF correlation (Equation (6)), which is defined
by three consecutive system measurement processes. Both deterministic and random
schemes were considered (with associated joint probabilities Equations (7) and (8)). In the
case of casual bystander environments, the CPF correlation in the deterministic scheme does
not vanish, while in the random scheme it vanishes identically for any chosen measurement
observables (Equation (13)). Thus, in this approach, any casual bystander environment
leads to a non-Markovian system dynamics but not any bidirectional information flow
is detected. In the case of Hamiltonian models, in general, in both schemes the CPF
correlation does not vanish, indicating non-Markovian system dynamics and the presence
of bidirectional information flows (Equation (24)). An undesirable exception to this last
property emerges when the system dynamics can equivalently be represented by a random
unitary map (Equations (25) and (27)).

As a specific example, we considered a system coupled to an environment able to
induce depolarizing dynamics (Equations (30a), (30b), (40) and (45)). We found that both
approaches differ in the Markovian and non-Markovian regimes, as well in the presence or
absence of environment-to-system backflows of information.

In general, both operational and nonoperational approaches to quantum non-Markovi-
anity provide necessary and complementary points of view for defining and understanding
memory effects in open quantum systems. The present results shed light on some con-
ceptual differences and properties of these approaches. They may be useful for extending
the application of these formalisms for the understanding of memory effects induced by
structured or spatially extended environments.
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