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Abstract: Soil-borne microbes are major ecological players in terrestrial environments since they
cycle organic matter, channel nutrients across trophic levels and influence plant growth and health.
Therefore, the identification, taxonomic characterization and determination of the ecological role
of members of soil microbial communities have become major topics of interest. The development
and continuous improvement of high-throughput sequencing platforms have further stimulated the
study of complex microbiota in soils and plants. The most frequently used approach to study micro-
biota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific
taxonomically informative gene markers with the subsequent sequencing of the amplicons. This
methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding
has rapidly emerged as a powerful and cost-effective method for the description of microbiota in
environmental samples. However, this approach involves several processing steps, each of which
might introduce significant biases that can considerably compromise the reliability of the metabar-
coding output. The aim of this review is to provide state-of-the-art background knowledge needed
to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial
steps that, if considered, ensures an accurate and standardized characterization of microbiota in
environmental studies.

Keywords: DNA metabarcoding workflow; high-throughput sequencing; terrestrial ecosystem;
bacteria; archaea; fungi; protists; soil and plant-associated microorganisms

1. Introduction

Soil microorganisms have been recognized as an integral part of terrestrial ecosystems
because they play a central role in nutrient transformation and in plant community pro-
ductivity, composition and diversity [1]. However, our knowledge of soil microbiota is
limited by the huge microbial diversity that characterizes terrestrial ecosystems and by the
complexity of soil–plant–microbe interactions [2]. Indeed, soil has often been dubbed a
“black box” because of the high abundance of soil microbial populations (108–1011 cells
per gram) and the methodological challenges to characterize them [3,4]. Currently, this
black box is beginning to be pried open, largely due to advances in molecular tools that
have paved the way forward for soil microbial ecologists to unravel the composition and
function of the soil microbiota in terrestrial ecosystems [5]. Novel molecular approaches,
which employ polymerase chain reaction (PCR) and high-throughput sequencing (HTS),
have revolutionized the way to study the soil microbiota. Application of these methods
has demonstrated that a large fraction of terrestrial microbes can be detected solely using
molecular approaches, thus discouraging the need for laboratory isolation and culturing
of specimens. Furthermore, with the decrease of sequencing price and high-throughput
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samples analysis by various bioinformatics tools, the use of massively parallel sequencing
(MPS) in soil microbial ecology has become a standard approach.

Prokaryotes (Archaea and Bacteria) and fungi are the most studied microbes in soils
and plants. The “other” microbes in soils are grouped under the term protists [6], and
despite their relative lower abundance compared to their prokaryotic and fungal counter-
parts, they carry significant functional roles at all trophic levels [7]. The characterization of
the soil microbial community is commonly carried out via PCR amplification of taxonomic
marker genes (called “DNA barcodes”). These markers are typically 100 to 600 bp long, and
they need to be sufficiently variable to provide deep taxonomic resolution and are simul-
taneously flanked by conserved regions to cover a broad range of taxa. The combination
of HTS with barcoding has been named “metabarcoding” [8]. The relative short length of
these markers does not always allow a resolution to species level, so alternative approaches
like single-cell metagenomics or isolation via cultivation are needed to fully discriminate
microbial species. Despite this limitation, DNA metabarcoding has rapidly emerged as a
powerful, repeatable and cost-effective method for characterizing microbial communities
in small and large-scale studies. This comprehensive approach has enabled soil microbiolo-
gists to explore important ecological aspects related to soil–plant–microbe systems, such
as the identification of microbial taxa that are (i) dominant or low in abundance across
different terrestrial ecosystems; (ii) involved in specific processes (e.g., litter decomposition,
nitrogen cycling, degradation of toxic compounds and many more); (iii) more sensitive
to abiotic and biotic factors. DNA metabarcoding further allows assessing soil microbial
biodiversity (also in terms of phylogenetic relatedness), and to compare soil communities
subjected to experimental conditions or geographical distance. It is also a cost-effective
method for biomonitoring as DNA metabarcoding is more frequently used for monitoring
agricultural practices, restoration efforts or forensics [9–12]. Presently, it represents the
most used molecular approach to characterize microbiota in environmental samples.

In this review, we focus on all the steps in the identification of soil and plant-associated
microbes using DNA metabarcoding (Figure 1). This approach consists of multiple lab-
oratory procedures and requires bioinformatics and computational statistics. Therefore,
sufficient technical knowledge and informed choice at each step are essential for successful
microbial detection and taxonomic identification [13]. In addition, the use of DNA metabar-
coding for microbial identification has some important limitations, including the variable
number of copies of the selected gene markers in microbial genomes, the low taxonomic
resolution at the species level for some microbial groups and biases in the taxonomic
annotation of sequences depending on the variable region chosen for the analysis [14,15].
Hence, the choice of a proper modus operandi for all the steps in metabarcoding work-
flows is crucially important. Inappropriate methods in microbiota studies may generate
insufficient and fallacious biological inferences [16,17]. Indeed, significant biases can occur
from the cumulative effect of both systematic and random errors throughout the whole
workflow, including sampling, DNA extraction, amplicon library preparation, sequencing
and bioinformatics [18,19].

Based on literature review and experience, we provide a comprehensive overview
of the positive and negative aspects related to each step of the metabarcoding workflow
for microbiota studies on samples associated with terrestrial ecosystems (Figure 1). Since
sampling procedures for soil- and plant-associated microbiome were already covered
in other reviews [18,20,21], we here concentrate mainly on the molecular aspects of the
metabarcoding workflow. Therefore, in the next sections, we first discuss practical sample
handling procedures and molecular approaches fundamental in the preparation of the
sequencing library. This will provide guidance on important methodological issues that
might be overlooked. Second, we describe useful software tools that are typically em-
ployed in the bioinformatics data processing and in the taxonomic characterization of the
detected microbial taxa. Finally, we discuss potential future applications of next-generation
sequencing (NGS) platforms and technologies in unraveling the relationships between
microbial biodiversity and ecosystem functions.
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Figure 1. DNA metabarcoding workflow with suggested adjustments and improvements. 
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2. DNA Extraction Procedure

Extraction of the genetic material from environmental samples is the first step in the
metabarcoding workflow. Total genomic DNA extraction represents a crucial stage in
which the potential biases have to be minimized using appropriate laboratory protocols.
The analytical success of molecular techniques is significantly affected by a successful DNA
extraction, which involves the effective sample homogenization and disruption of cells,
denaturation of proteins and nucleoprotein complexes, inactivation of nucleases, removal
of humic acids and other PCR inhibitors and recovery of the DNA. Presently, these steps
are performed using commercial kits that employ both chemicals and solid-phase matrices.
Such DNA extraction kits are simple to use and rapid, and most of them do not include
harmful solutions. However, chemical-based DNA extraction protocols that do not involve
the use of commercial kits, such as phenol-chloroform-based extraction method, are still in
use [22]. Such DNA extraction procedures are usually cheaper per extraction compared
to commercial kits, in addition to their good quality and quantity of the extracted DNA.
Moreover, the different steps and solutions of such a procedure can be optimized to the
sample material. However, solution-based DNA extraction protocols can be quite laborious,
since (i) all the steps are manual, (ii) they often need fresh-made solutions and (iii) they use
toxic chemicals.

For the isolation of total genomic DNA from terrestrial environments (soil and plant
material), many commercial kits and protocols for soil, seeds and plant tissue are available
(Table 1). However, the choice of the suitable DNA extraction procedure can be more
complicated when dealing with multiple sample types such as bulk soil, rhizosphere, stem
and leaf. In the case that the experimental aim is the comparison of microbiota across
compartments, then the DNA associated with such compartments must be extracted with
the same method. This is necessary to avoid protocol-specific biases when comparing, for
example, rhizospheric soil to root or either of those to the leaf or stem tissue. However,
each compartment can be extracted with the method that works best for it when the
comparison across compartments is not the aim. This will provide a better snapshot of
the community associated with each compartment, but with the loss of the capability to
compare between them. Based on our experience, the soil DNA extraction kits listed in
Table 1 can be employed for the extraction of genomic material from different types of
samples (soil, sediments and plant material) with satisfactory results in terms of quantity
and quality of the DNA.

Another important aspect to consider concerning the DNA extraction procedure is
that Gram-positive and -negative Bacteria, Archaea, fungi and protists are differentially
sensitive to cell disruption. Thus, sample homogenization and disruption of cells can
represent a major cause of bias in the microbiota composition. Thereby, bead-beating in
combination with chemical lysis agents was shown to be most efficient for soil and plant
material [23]. Thus, the downstream analyses will not be confounded to less or highly
resistant microorganisms. Furthermore, when there is the need to process a large number of
samples, bead beating-based kits can represent a much better choice than tedious and time-
consuming “home-made” protocols (e.g., phenol-chloroform-based methods), although the
kits tend to be more costly. It is worth mentioning that the bead beating procedure requires
a dedicated bead beater homogenizer, which can be prohibitive due to its cost (from a few
thousand up to 10,000 dollars depending on the homogenizer features).

Additionally, other extraction methodologies can be employed when the objective is to
extract not the soil total genomic DNA (also known as environmental DNA or eDNA [24])
but specific fractions of it. For instance, to collect the extracellular DNA fraction, which
can be released from dead prokaryotic and eukaryotic cells and can be protected against
nuclease degradation by its adsorption on soil colloids and sand particles, protocols that
avoid the lysis of the cells by using only low centrifugation speeds and mild chemical
concentrations are generally used [25,26]. Another approach, named “indirect DNA extrac-
tion”, is employed when the aim is to individually collect different microbial DNA fractions.
This method involves the initial separation of prokaryotic and eukaryotic cells from the
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soil matrix by density gradient centrifugation prior to their lysis [27,28]. Such isolated cell
communities could then be further sorted at the single-cell level using flow cytometry or
microfluidic devices before DNA extraction and subsequent metabarcoding [29,30].

Therefore, the choice of a particular DNA extraction protocol depends on the type
and number of samples, study purpose, equipment availability and financial constraints.
Finally, the extracted DNA can be stored at −20 ◦C or −80 ◦C for further processing. It is
also worth noting that RNA could be extracted in parallel to DNA using dedicated kits,
but this aspect was covered elsewhere [31–33] and we will not go into detail here.

Table 1. Commonly used DNA extraction kits and methods for soil and plant-associated microbiota.

Kit Manufacturer or
Method Sample Type Homogenization and

Cell Lysis
DNA Purification and

Concentration

Relative Cost Per
Sample

[Low ($) to High ($$$)]

DNeasy PowerSoil
Qiagen, USA

Soil, compost, manure,
plant material

Bead beating +
chemical lysis

Silica membrane
binding $$$

FastDNA Kit for Soil
MP Biomedicals, USA Soil, compost, manure Bead beating +

chemical lysis
Silica membrane

binding $$$

Plant DNeasy Mini kit
Qiagen, USA Plant and fungal tissue.

Mortar/pestel or
TissueLyzer + chemical

lysis

Silica membrane
binding $$

Quick-DNA Fecal/Soil
Microbe Miniprep Kit

Zymo Research,
Germany

Soil, biofilm, animal
and human samples

Bead beating +
chemical lysis

Silica membrane
binding $$

Phenol-chloroform-
isoamyl

alcohol-Extraction [22]
Soil Bead beating + CTAB a PEG b 6000 + ethanol

precipitation
$

Phenol-chloroform-
isoamyl

alcohol-Extraction
modified [31]

Soil Bead beating + CTAB a

+ PVP c
PEG b 6000 + ethanol

precipitation
$

Phenol-chloroform-
isoamyl

alcohol-Extraction
modified [32]

Soil Bead beating + CTAB a

+ PVPP d
Isopropanol
precipitation $$

Sodiumphosphate
extraction [34] Sediments

Bead beating +
Sodiumphosphate

buffer + PVP c

Silica membrane
binding + GuaHCL e

precipitation
$$

a hexadecyltrimethylammonium bromide; b polyethylene glycol; c polyvinylpyrrolidone; d polyvinylpolypyrrolidone; e guanidium-hydrochlorid.

3. Amplicon Library Preparation
3.1. DNA Quality and Quantity

The next step in the metabarcoding workflow is the preparation of the sequencing
library. In this stage, several key points deserve careful consideration regardless of the
sequencing platform that will be employed once the amplicon library is complete. First,
the DNA template that will be used for the subsequent PCRs should be checked for its
quality and quantity. The easiest way to assess DNA quality is by a spectrophotometer.
Nucleic acids (DNA and RNA) absorb maximally at a wavelength of 260 nm. Protein
absorbs best at 280 nm and organic compounds and chaotropic salts at 230 nm. In general,
the A260/A280 ratio is used as an indicator of DNA purity, and its value should range
between 1.8 and 2.0. The A260/A230 ratio is also a metric for DNA quality, and it is
best if it is greater than 1.5. If these ratios are appreciably lower in either case, it may
indicate the presence of protein, phenol or other contaminants that may be introduced by
extraction procedures and can act as PCR inhibitors. To overcome PCR inhibition due to a
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low purity of the extracted DNA, preliminary PCR tests using a serial dilution of template
DNA, additional purification procedures (commercial kit or manual ethanol, isopropanol,
polyethylene glycol precipitation) and/or addition of PCR-enhancing or -stabilizing agents
(dimethyl sulfoxide, betaine, bovine serum albumin) can be performed. As alternatives,
PVP (polyvinylpyrrolidone) and 2-mercaptoethanol can be added during the cell lysis
step in the DNA extraction procedure to remove negatively charged polysaccharides
and polyphenols.

For accurate quantification of the extracted DNA, the use of fluorimetric determina-
tion is recommended, which utilizes fluorescent dyes that bind to double-strand DNA.
This quantification method is more sensitive than using a spectrophotometer, especially
when samples with low, e.g., nanomolar, DNA concentration are measured. After DNA
quantification, it is recommended to standardize DNA concentrations prior to PCR, be-
cause DNA concentration might be highly variable among samples. The importance of this
latter step is to have approximately the same amount of template DNA for the subsequent
PCR amplification. Typically, 10–20 ng of template DNA is sufficient for amplification
of ribosomal marker genes (see below for further details), but higher amounts might be
required if rare gene markers are targeted [35].

3.2. Amplification of a Target Marker Gene

The success of DNA metabarcoding mainly depends on the selection of the appropriate
DNA marker gene, which requires careful consideration. Ideally, such gene markers
should have sufficiently conserved flanking primer-binding sites to minimize taxonomic
bias during PCR amplification, while the intervening sequence is sufficiently variable for
taxonomic identification [36]. In silico PCR is thus a critical step in the development of
a primer in order to control for appropriate coverage of the target group (i.e., taxonomic
coverage and breath), the efficient exclusion of outgroups (i.e., taxonomic specificity) and
the ability to discriminate taxa based on nucleotide variability of the amplified marker (i.e.,
taxonomic resolution). Integrated tools, such as TestPrime [37], are available to perform in
silico PCR directly on a specific database (e.g., SILVA rDNA database). More generic tools
that search for primers can be used on any set of reference sequences and allow for the
computation of standard coverage and specificity indices, like ecoPCR or cutadapt [38,39].

Moreover, amplicon length is a critical aspect, as longer sequences will substantially
increase annotation accuracy and phylogenetic resolution [40]. Amplicon libraries created
for being sequenced using Illumina paired-end technology will produce amplicon sizes
up to 2 × 300 bp. For longer amplicons, third-generation NGS technology, such as those
of Pacific Biosciences [41] and Oxford Nanopore Technologies [42], can be employed. The
major advantage of third-generation NGS technology over broadly established technologies
is the capability to produce ultra-long reads spanning genomic fragments measured in
tens of thousands of bases [43]. At present, the benefits of the third-generation sequencing
come at cost of sequencing accuracy [44]. However, Illumina technology is, so far, the most
accurate technology that has been used in nearly all metabarcoding studies. It provides
reads of 100 to 500 bp, which in most cases is sufficient for the analysis of typical gene
markers, such as the informative regions of 16S/18S rRNA gene of prokaryotes/eukaryotes
or the ITS region of fungi. Hence, we will focus only on amplicons library preparation
conceived for Illumina sequencing in the next sections.

3.2.1. Identification of Prokaryotes from Environmental Samples

Characterization of prokaryotic communities (Bacteria and Archaea) in environmental
samples targeting regions of the 16S rRNA gene has been widely employed, unless primers
have been designed to detect individual species and/or genera. 16S rRNA gene primer
pairs usually target a single stretch of the hypervariable regions of the ~1500 bp prokaryote
16S rRNA gene [45,46]. Thus, the choice of the hypervariable region (V-region) targeted and
the corresponding primer set should be done meticulously in order to provide coverage
and accurate representation of the prokaryotic profiles in microbiota analyses [47,48]. In
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this line, using suboptimal primer pairs can lead to under-representation of certain or
selection against single taxa, which can lead to incorrect results and conclusions [49]. The
various evaluated primer sets commonly employed to identify bacteria are listed in Table 2.

Table 2. Primer pairs targeting the 16S rRNA gene that have been frequently used to characterize Bacteria biodiversity in
studies based on Illumina sequencing.

Primer Pair Sequence
5′-3′ Tm (◦C) * Amplified Region Amplicon Length Reference

515fB GTGYCAGCMGCCGCGGTAA 63.6
V4 253

[50]
806rB GGACTACNVGGGTWTCTAAT 51.2 [51]

515fB GTGYCAGCMGCCGCGGTAA 63.6
V4-V5 394

[50]
926r CCGYCAATTYMTTTRAGTTT 48.9 [52]

341f CCTACGGGAGGCAGCAG 58.2
V3-V4 418 [37]B805r GACTACHVGGGTATCTAATCC 51.3

799f AACMGGATTAGATACCCKG 50.9
V5–V6 301

[53]
1115r AGGGTTGCGCTCGTTG 56.1 [54]

799f AACMGGATTAGATACCCKG 50.9
V5-V7 377

[53]
1193r ACGTCATCCCCACCTTCC 57.1 [55]

967f CAACGCGAAGAACCTTACC 53.8
V6-V8 405

[56]
1391r GACGGGCGGTGWGTRCA 59.5 [57]

68f TNANACATGCAAGTCGRRCG 55.5
V1-V3 438

[58]
518r WTTACCGCGGCTGCTG 56 [59]

* Average melting temperature as calculated with OligoAnalyzer using default parameter (www.idtdna.com/calc/analyzer, accessed on
13 January 2021).

Two of the most used sets of primers for soil samples are 515fB [50] and 806rB [51].
This primer pair, which was designed for use with the Illumina platform [60], is recom-
mended for the identification of Bacteria and Archaea from soil samples by the international
scientific consortium Earth Microbiome Project (EMP) [61]. However, a recent study on the
performance of different Archaea-specific primers reported that the 515fB/806rB primer
set performed worst for analysis of Archaea by producing only 2.1% of Archaea reads
(on average) and covering only the phyla Euryarchaeota and Thaumarchaeota [62]. This
suggests that the diversity of Archaea can been largely underestimated when utilizing the
primers 515fB and 806rB, while the primer sets SSU1ArF/SSU520R and 340f/806rB yielded
a higher sequencing coverage of the archaeal diversity using Illumina platform [62]. A list
of specific primer sets to identify Archaea from soil samples is reported in Table 3.

Table 3. Primer pairs targeting the 16S rRNA gene that have been frequently used to characterize Archaea biodiversity in
studies based on Illumina sequencing.

Primer Pair Sequence
5′-3′ Tm (◦C) * Amplified Region Amplicon Length Reference

515fB GTGYCAGCMGCCGCGGTAA 63.6
V4 253

[50]
806rB GGACTACNVGGGTWTCTAAT 51.2 [51]

340f CCCTAYGGGGYGCASCAG 61.3
V3-V4 388

[63]
806rB GGACTACNVGGGTWTCTAAT 51.2 [51]

SSU1ArF TCCGGTTGATCCYGCBRG 59.2
V1-V4 491 [62]SSU520R GCTACGRRYGYTTTARRC 51

349f GYGCASCAGKCGMGAAW 57.7
V3-V4 111

[64]
519r TTACCGCGGCKGCTG 57.6 [37]

Parch519f CAGCCGCCGCGGTAA 59.4
V4-V5 386

[65]
Arch915r GTGCTCCCCCGCCAATTCCT 62.9 [66]

1106F TTWAGTCAGGCAACGAGC 52.5
V7-V8 280 [67]1378R TGTGCAAGGAGCAGGGAC 57.9

* Average melting temperature as calculated with OligoAnalyzer using default parameter (www.idtdna.com/calc/analyzer, accessed on
13 January 2021).

www.idtdna.com/calc/analyzer
www.idtdna.com/calc/analyzer
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Several other primer sets have been tested and proposed as suitable candidates for
the characterization of Bacteria diversity of soil samples (Table 2). For instance, a recent
study [46] reported that the primer pair 341f/B805r [37], which targets the V3 to V4 region,
outperformed the other three primer sets in terms of operational taxonomic unit (OTU)
numbers, phylogenetic richness and Shannon diversity. The 341f/B805r primers are also
recommended in the official protocol for the amplification of 16S rRNA genes released
by Illumina [68].

The choice of prokaryotic primer pairs becomes more difficult when amplifying re-
gions of the 16S rRNA gene from plant-associated samples. In this type of sample, it is
crucial to reduce the amplification of non-target DNA-sequences, such as those co-extracted
from plastid (mostly chloroplast) and mitochondria. Hence, the homology between bac-
terial 16S rRNA gene, mitochondrial and chloroplast 16S rRNA genes complicates the
selection of the appropriate primers to study plant–bacteria interactions [48]. The preferred
method to reduce the impact of these contaminant sequences is the use of specific mis-
matching primers, which amplify bacterial 16S rRNA genes while discriminating against
chloroplast 16S rRNA genes. The chloroplast mismatch primer 799f [53] has been widely
used in combination with the reverse primer 1193r [55] to characterize the bacterial com-
munity of plant samples, especially of roots. This primer combination has also revealed
the lowest co-amplification levels of chloroplast and mitochondrial 16S rRNA gene reads
among the other three bacterial primers tested [46]. It generates ~380 bp amplicons from
the hypervariable region V5 to V7 of the bacterial 16S rRNA gene. Mitochondrial 16S rRNA
gene amplicons with length of 800 bp are also produced, but they can be easily removed
via agarose gel purification. For stem and leaf material, the primer set 799f/1115r [53]
can be selected, as recommended in previous works [69,70]. These chloroplast 16S rRNA
gene-discriminating primers are commonly utilized for the identification of phyllosphere
associated Bacteria [71–73] because these primers do not amplify host-plant nor cyanobac-
terial DNA; cyanobacteria are known to be rare in the phyllosphere [74,75].

Alternative techniques, such as the use of peptide-nucleic acid (PNA) PCR-clamps [45]
can be employed to reduce the co-amplification of non-target DNA sequences. PNA clamps
are synthetic oligomers that bind tightly and specifically to a unique signature in the
contaminant sequence and physically block its amplification [76,77]. In brief, they are
designed to suppress plant host plastid and mitochondrial 16S rRNA gene contamination
in the PCR reaction. For instance, the widely used primer set 515fB/806rB showed a high
affinity for chloroplast 16S rRNA gene (up to 97% of the total number of reads) when used
to characterize the plant-associated Bacteria from leaves and roots [78]. However, very
low chloroplast co-amplification levels have been reported when this primer set is used in
combination with PNA clamps [79–81], although their employment might also lead to the
exclusion of certain microbial taxa [82]. It is worth mentioning that the efficacy of these
approaches in reducing host-organelle 16S rRNA gene amplification significantly varies
across plant species [83].

3.2.2. Identification of Fungi from Environmental Samples

The common marker DNA sequence used to identify fungi from soil and plant material
is the internal transcribed spacer (ITS) region, which has an average length of 500 and
600 base pairs (bp) [84,85]. The ITS region includes the ITS1 and ITS2 sublocus, separated
by the 5.8S rRNA gene, and it is situated between the 18S (SSU) and 28S (LSU) rRNA
genes in the eukaryotic rRNA cistron [86]. The entire ITS region was described as the
genetic marker with the highest probability of successful identification for a very broad
range of fungi [87]. Further studies have supported the use of the ITS region as a suitable
universal fungal barcode [88,89]. Consequently, most of the environmental and ecological
research studies have used and are using the ITS region in combination with NGS for
the identification of fungal taxa in environmental samples. Thus, large numbers of ITS
sequences have been collected from terrestrial environments that are available in different
reference databases, such as UNITE and GenBank (see below in Section 4.2 for more details),
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making the ITS region the most ubiqutous gene marker for taxonomic characterization of
fungal biodiversity.

However, with the rapid establishment of Illumina technology as the most popular
sequencing platform, only short fragments can be sequenced, which constrains the choice
to one of the subloci that compose the ITS region, ITS1 or ITS2 (Table 4). Therefore, the
primer set selection for the characterization of fungal diversity has created a crucial and
critical issue. There is some controversy on the selection of ITS markers for metabarcoding,
and yet there is no consensus about which ITS sublocus is the best. Comparisons between
ITS1 and ITS2 for fungal profiles have been assessed in many studies, which yielded
contrasting conclusions. For example, ITS1 was thought to be more variable and hence
should allow for better distinction among fungal species than ITS2 [90,91]. However, the
opposite has been shown [92,93]. Nonetheless, both of these ITS regions have meaningful
drawbacks and limitations in assessing fungal diversity, such as a taxonomic bias relative to
the length of the amplified region, unsuitability for phylogenetic studies, co-amplification
of plant DNA and exclusion of specific fungal taxonomic groups [94]. More and detailed
information on the differences between the primer sets targeting the ITS1 and ITS2 regions
can be found elsewhere (i.e., [95–98]).

Table 4. Primer pairs targeting the ITS region that have been frequently used to characterize fungal biodiversity in studies
based on Illumina sequencing.

Primer Pair Sequence
5′-3′ Tm (◦C) * Amplified Region Amplicon Length Reference

ITS1f CTTGGTCATTTAGAGGAAGTAA 49.7
ITS1 357 [99]ITS2r GCTGCGTTCTTCATCGATGC 57

ITS1F_KYO2 TAGAGGAAGTAAAAGTCGTAA 48
ITS1 358 [100]ITS2_KYO2 TTYRCTRCGTTCTTCATC 48.4

ITS3 GCATCGATGAAGAACGCAGC 57
ITS2 306 [99]ITS4 TCCTCCGCTTATTGATATGC 52.1

gITS7 GTGARTCATCGARTCTTTG 48.3
ITS2 288

[101]
ITS4ngs TTCCTSCGCTTATTGATATGC 52.9 [102]

fITS7 GTGARTCATCGAATCTTTG 47.3
ITS2 292

[101]
ITS4 TCCTCCGCTTATTGATATGC 52.1 [99]

ITS86f GTGAATCATCGAATCTTTGAA 48.6
ITS2 290

[103]
ITS4 TCCTCCGCTTATTGATATGC 52.1 [99]

* Average melting temperature as calculated with OligoAnalyzer using default parameter (www.idtdna.com/calc/analyzer, accessed on
13 January 2021).

Although the ITS region has been described, and frequently utilized, as the universal
barcode for fungi [87], it has consistently demonstrated poor resolution for the arbuscular
mycorrhizal fungi (AMF; phylum Glomeromycota) compared with the 18S rRNA gene (SSU
markers) [104]. In Glomeromycota, species are multinucleate with extreme intraspecies
divergence in nuclear ribosomal sequences, which creates additional challenges for the
use of ITS for species discrimination [105]. Specifically, primer sets targeting the ITS1
sublocus have limited coverage for AMF [106], whereas recent research has highlighted
that ITS2 primers can be successfully employed to characterize the most abundant AMF
taxa from soil samples [107,108]. However, AMF-specific 18S rRNA gene primers might be
able to amplify more families and provide a broader view of the AMF community than
fungal ITS2 primers [107]. In this regard, the primer pair AMV4.5NF/AMDGR [109] is
widely used to characterize fungal members affiliated with the Glomeromycota using
Illumina platforms [110–112]. These primers amplify a ~258 bp fragment internal to the
18S rRNA gene. A direct comparison with other AMF-specific primers revealed that the
AMV4.5NF/AMDGR outperformed the other tested primer pairs in terms of number of
Glomeromycota reads (AMF specificity and coverage) [113,114]. However, these primers
tended to preferentially amplify Glomeraceae at the expense of other major families (i.e.,
Ambisporaceae, Claroideoglomeraceae, Paraglomeraceae) of Glomeromycota [113].

www.idtdna.com/calc/analyzer
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Another disadvantage of the ITS region is its poor resolution for phylogenetic anal-
ysis. Diverging levels of genetic variation, due to different rates of evolution, have been
observed for the three separate regions (18S rRNA gene, ITS and 28S rRNA gene) that
compose the fungal nuclear ribosomal operon. The 18S rRNA gene possesses a low amount
of variation among fungal taxa because it evolves slowly compared to the ITS region,
which evolves the fastest and exhibits the highest variation among the three rRNA gene
regions [115,116]. For phylogenetic analysis at higher taxonomic levels, such as family,
order, class and phyla, former studies recommended targeting the 18S regions V1 to V5
with the primer set NS1 and NS4 [99,117]. However, these primers produce sequences of
incompatible length for high-throughput sequencing, so new primers targeting the V7-V8
regions of the 18S have been proposed to target fungi in environmental samples when
using Illumina sequencing [118]. These primers also have the advantage to cover well the
basal fungal groups (i.e., Blastocladiomycota, Chytridiomycota, Entomophthoromycotina,
Glomeromycota, Kickxellomycotina, Mucoromycota and Zoopagomycotina) when ITS
primers are biased toward Dikarya. Fungal diversity could also be assessed jointly with
protists using general eukaryotic primers, particularly the one targeting the V4 18S rRNA
gene (see next section, e.g., [119]). The last alternative is to target the 28S rRNA gene with
the primer combination LROR and LR3, with the 100 nucleotide (nt) region before the
reverse primer being the best discriminant region for fungi [120]. However, this primer
pair also amplifies a too-long fragment for Illumina sequencing (~600 nt), so that different
strategies to shorten the reads (e.g., nested PCR, sequence fragmentation) have to be care-
fully investigated before routine high-throughput sequencing. Consequently, the 18S and
28S rRNA genes are more suitable for investigating the phylogenetic relationship among
higher rank fungal taxa, while the ITS region can be used alone or in combination with
other protein-coding genes for genus- to species-level taxonomic identification [76]. Hence,
it is important to recognize and account for biases and limitations inherent to universal
barcodes, especially in fungal studies, where the primer selection might have a significant
impact on the taxonomic identification.

3.2.3. Identification of Protists from Environmental Samples

The major issue when selecting a primer pair for protists is the paraphyletic nature
of this group. Protists are composed of all eukaryotic clades except Fungi, Metazoa and
Embryophyta (i.e., higher plants). Except for a few protist clades that are found almost
exclusively in marine environments (e.g., Diplonemea, Picozoa, Radiolaria, Telonemia,
see [121]), all other clades were detected in soil, and thus only general eukaryotic primer
can cover the complete biodiversity of terrestrial protists. Analogous to prokaryotes, the
18S rRNA gene has established as the standard gene for protist metabarcoding. The hyper-
variable regions V4 and V9 are the most commonly used, but multiple other hypervariable
regions have been identified as suitable to cover the diversity of protists [122]. The EMP
selected the primer pairs 1391F and EukBr targeting the V9 region for their standard proto-
col [123,124] while multiple other studies use slight variants with the primer 1380F/1389F
and 1510R [125,126] (Table 5).
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Table 5. Primer pairs targeting the 18S rRNA gene that have been frequently used to characterize protists biodiversity in
studies based on Illumina sequencing.

Primer Pair Sequence
5′-3′ Tm (◦C) * Amplified Region Amplicon Length Reference

NS1/Euk20f GTAGTCATATGCTTGTCTC 47.2
V1-V3 507

[99,127]
Euk516r ACCAGACTTGCCCTCC 54.3 [128]

18S_0067a_deg AAGCCATGCATGYCTAAGTATMA 54.4
V1-V3 310 [129]NSR 399 TCTCAGGCTCCYTCTCCGG 59.7

fw_366 ATTAGGGTTCGATTCCGGAGAGG 58.2
V3 180 [130]rv_586 CTGGAATTACCGCGGSTGCTG 61

TAReuk454FWD1/
V4_1f

CCAGCASCYGCGGTAATTCC/
CCAGCASCYGCGGTAATWCC 60.1/59.9

V4 391
[131]

TAReukREV3 ACTTTCGTTCTTGATYRA 45.9 [132]

616*f TTAAARVGYTCGTAGTYG 47.1
V4-V5 504 [133]1132r CCGTCAATTHCTTYAART 45.4

18S_allshorts-f TTTGTCTGSTTAATTSCG 47.7
V7 109 [134]18S_allshort-r TCACAGACCTGTTATTGC 49.4

V8f ATAACAGGTCTGTGATGCCCT 55.9
V8-V9 339

[135]
1510R CCTTCYGCAGGTTCACCTAC 56.6 [125]

1380F/1389F CCCTGCCHTTTGTACACAC/
TTGTACACACCGCCC 54.6/51.9

V9 141/136 [125]
1510R CCTTCYGCAGGTTCACCTAC 56.6

1391F GTACACACCGCCCGTC 56.1
V9 127

[123]
EukBr TGATCCTTCTGCAGGTTCACCTAC 58.4 [124]

* Average melting temperature as calculated with OligoAnalyzer using default parameter (www.idtdna.com/calc/analyzer, accessed on
13 January 2021).

In parallel, the V4 region has also been established as an equally powerful region to
resolve protist diversity when amplified with the TAReuk primer pair [132,136]. Other
primer pairs have been designed to target V1-V3, V4-V5 and V7 regions, and they cover
the biodiversity of protist clades well (see Table 5). However, no comparison has been
thoroughly conducted of the performances of these primer pairs on terrestrial samples,
and only in silico studies are available comparing them with the bias of database complete-
ness for each region [18,121,122]. Moreover, considering that the Illumina sequencing of
2 × 300 bp now delivers almost identical quality to the 2 × 150 bp variant, a promising
combination of primer amplifying 400 to 500 nt spanning regions can be tested like, for
example, the V7 to V9 regions. The same primers have been used to study plant-associated
protists. This is, for example, the case of Sphagnum and peatland-mosses-associated protists
for which both V4 (TAReuk) and V9 (1380F/1510R) primers have been used [137,138]. Both
V4 (V4_1f/TAReukREV3) and V9 (1380F/1510R) primers have also been employed to study
rhizospheric protists [139,140]. Although plant sequences could represent the majority of
reads in such plant-associated protist metabarcoding datasets, strategies to reduce the co-
amplification of the associated plant(s), for example, the utilization of blocking oligos, have
not yet been implemented. Furthermore, the use of general eukaryotic primers can come
at the cost of reduced taxonomic coverage, which is not limited anymore by the primers
and sequencing depth but by the competition between all target DNA during the PCR
amplification. Indeed, specific primers have been shown to cover two to three times more
diversity than general eukaryotic primers [141]. Likewise, clades often under-represented
in general eukaryotic datasets, like Myxomycetes, can be recovered with clade-specific
primers [142]. Lists of clade-specific primer pairs targeting either the same gene (18S) or
other genes (e.g., 28S, ITS, COI, rbcL) are provided elsewhere [143,144].

3.3. Further Recommendations for Library Preparation

Once a proper primer pair has been selected, the library preparation workflow should
be checked and evaluated for its compatibility with the chosen sequencing platform. In

www.idtdna.com/calc/analyzer
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the case of Illumina sequencing technology, adaptor sequences and short barcodes must
be added to the target gene primer sequence to enable the sequencing of many samples
in parallel. This can be achieved with three different approaches. The Illumina standard
workflow recommends a two-steps procedure in which the template is first amplified with
the target gene primers that include the Illumina’s adaptors, while barcodes are added in
a second PCR [68]. The second procedure involves only a single PCR step, in which the
primers already incorporate the barcodes and adaptors [60]. This latter approach is used
and recommended by the Earth Microbiome Project [61]. The third alternative is to perform
the first PCR as for the Illumina standard workflow, and then to use a ligation-based kit,
originally developed for shotgun sequencing, in order to reduce cost and avoid potential
cross-contamination during the second PCR [145]. For this third approach, it is important
to note that different steps in the ligation protocol (e.g., blunt ending, post-ligation PCR)
can considerably increase the amount of tag-jump (sequencing outputs with false forward
and reverse combinations of used tags) when pooling multiple tagged amplicons in the
same library, and that adaptation of original kit protocol is necessary [146].

Several other factors related to library preparation and sequencing technology can
significantly influence the accuracy of the metabarcoding procedure. For example, it
is advisable to perform technical replicates for each sample during the PCR step and
subsequently pool them before sequencing. This procedure allows one to minimize PCR-
introduced biases on relative abundance and to efficiently saturate the diversity estimates
of soil microbes [147]. To further reduce primer bias in the amplification process, it is
important to determine the optimal annealing temperature for the primer pair chosen
to avoid the formation of unspecific products. The optimal annealing temperature was
found to be a function of the melting temperatures of the primers [148], and it should be
determined empirically usually using the gradient PCR method. The use of proofreading
DNA polymerases is strongly recommended to reduce chimera formation during PCR
amplification, which may result in an overestimation of community richness [149].

Another important argument to consider is that Illumina sequencing platforms are
known to causes biases when sequencing DNA libraries with low gene diversity, such as
samples containing exclusively 16S rRNA gene or ITS amplicons [49,150]. To artificially
increase sequence diversity, especially in the primer region, the addition of genomic
DNA from the phage PhiX to the amplicon library is a common procedure. On the
other hand, this results in a loss of sequence recovery because between 5 and 50% of the
capacity of an Illumina sequencing run may have to be allocated to PhiX DNA sequencing.
However, the amount of PhiX DNA to be used varies between Illumina platforms [151].
Alternatively, the design of heterogeneity spacers, short sequences of 1–7 bp linked to index
adaptors or the gene-specific primers, can be utilized to reduce the amount of Phix DNA
added to amplicon library pools to create the base diversity needed [152,153]. However,
designing index adaptors or primers comprising different variable-length sequences can
be a complicated and challenging approach with additional technical limitations [154].
However, this approach has been tested for multiple targets and allowed for an increased
reads recovery and increased base quality at the 3′ end [155–158]. Another possibility to
increase the base diversity is to sequence multiple targets in the same sequencing run
(i.e., 16S, 18S and ITS gene libraries of the same samples), which is pertinent in research
projects interested in multiple target taxa but should be restricted to marker gene of
comparable length.

The addition of negative controls is needed in order to estimate potential contami-
nation during the DNA extraction and PCR preparation. It is thus recommended to use
negative controls during each DNA extraction and each PCR preparation [8]. For DNA
extraction, soil or plant material can be replaced with sterile water to create the negative
control. This extracted material will then be used in PCR as a template to control for con-
tamination during the DNA extraction. PCR negative controls use sterile water to replace
DNA template in PCR in order to check for contamination during the PCR preparation.
Even if no bands are visible on agarose gels for these negative controls, it is necessary to in-
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clude them in the sequencing pool in order to detect potential low abundant contaminants.
Sequences assigned to a PCR negative control need to be removed from any other sample
from which the DNA was PCR-amplified together with this control. A particular case may
arise when using double-tagging, as tag-jump could potentially produce sequences with
an unused combination of tags by recombination of sequences from different samples in
the sequencing pool. In such a situation, sequences assigned to negative controls by their
tags could originate from other original samples and would thus contain a set of sequences
mainly composed of the most abundant sequences found in the other samples sharing the
same forward or reverse tag. Consequently, double tagging has to be used with caution,
and multiple approaches have been developed to mitigate this issue [155,159].

The addition of mock communities (DNA pools of multiple known species) or pos-
itive controls (single-species DNA) into run libraries is also a common practice that can
be helpful to (i) assess the primer bias and error rate of the sequenced run, (ii) benchmark
bioinformatic tools, (iii) control for false positive in the case of tag-jumping, (iv) determine
a relative abundance threshold to remove putative artifact out and (v) correct for composi-
tional bias in case of differential abundance analyses. Initial Illumina MiSeq metabarcoding
studies combining error rate estimates and bioinformatic tool benchmarking were based on
sequencing bacterial, fungal and protists mock communities [135,160,161]. In general, mock
communities are needed to validate new molecular (e.g., primer evaluation) and bioinfor-
matic (e.g., sequence grouping algorithm) methods but are not crucial to analyze samples
with established methodologies. Mock or positive controls can also be used to determine
a threshold below which an OTU can be considered as an artifact. This threshold can be
either a fixed number of reads [142] or a per-sample relative abundance when multiple
positive controls were sequenced [162]. Most recent studies advocate for the use of separate
or spike-in mock communities in order to use the recovered relative abundance of the
known mixed species to apply a correction factor to a sample’s relative abundances [163].
This approach appears to be particularly crucial in differential abundance analyses when
taking into account the compositional bias of amplicon sequencing data [164,165].

4. Bioinformatic Processing
4.1. Pre-Processing of the Metabarcoding Dataset

The typical metabarcoding bioinformatics pipeline consists of several steps, including
(i) the demultiplexing of barcoded samples, (ii) pair-end assembly, (iii) removal of chimeric
reads, (iv) quality filtering, (v) sequence grouping and (vi) comparison of the represen-
tative sequences to a reference database (Figure 1). QIIME and MOTHUR are the most-
used platforms to perform bioinformatic analyses of metabarcoding data [166,167]. These
software pipelines provide the capability to customize the analysis of high-throughput
metabarcoding data using a wide choice of tools. However, many other pipelines and
bioinformatics tools have been developed for the processing of amplicon sequencing data,
such as PEMA [168], PipeCraft [169], SLIM [170], BioMas/Galaxy [171], PIPITS [172]
USEARCH [173], VSEARCH [174], OBITools [175] and DADA2 [176]. Most of the above-
mentioned platforms and pipelines are particularly well-suited for beginners in the field
because they provide smooth wrappers around commonly used command-line tools as
well as well-documented tutorials and examples [177]. It is important to note that some
equivalent tools have been preferred in the analyses of certain target genes due to preference
among the scientific communities, but most of them can be used for any metabarcoding target.

After the filtering and quality procedures, a key step in the bioinformatics analysis
workflow is the clustering of reads based on their homology. Traditionally, during clus-
tering, reads sharing a predefined level of similarity (generally between 95% and 99%)
are assembled into Operational Taxonomic Units (OTUs) [178]. This step is intended to
eliminate erroneous sequences produced by PCR and sequencing errors [18] as well as to
merge intraspecific variance on diverging alleles or gene copies. However, such a global
OTU clustering approach has several limitations [179]. For example, the 97% similarity
cut-off used for V4 16S is to a large degree arbitrary, since different taxa might differ by
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a small percentage in their nucleotide sequence but still represent ecologically distinct
clades [180,181]. In other words, there might be the risk that multiple similar species can
be grouped into one single OTU with their true individual identifications being lost, while
on the other hand, reads of a unique species may end up in different OTUs when the
intra-specific variability is high. Other disadvantages of this method are associated with (i)
the addition of data outputs, such as OTUs, that exclusively consist of PCR amplification
or sequencing errors and (ii) the biologically meaningful interpretations/annotations of
the inferred OTUs [181].

Recently, novel methods that use either single-linkage local clustering or error model
correction algorithms have been developed to produce high-resolution representative se-
quences independently from a determined similarity threshold. The first approach was
developed in the tool Swarm [182,183]. It allowed tackling the main issue of arbitrary simi-
larity threshold of the global clustering approach. Swarm has allowed better discrimination
of reads from closely related species, which is acknowledged by its wide adoption in the
analysis of 18S rRNA metabarcoding datasets [136,184]. The second approach is called
oligotyping [185] and is now mainly computed using the algorithm DADA2 [176]. DADA2
has been developed to control errors sufficiently to produce amplicon sequence variants
(ASVs) that can be resolved exactly, down to the level of single-nucleotide differences
over the sequenced region. This approach avoids clustering sequences at an arbitrarily
defined similarity threshold (e.g., 97%) and instead uses only unique, identical sequences
for downstream community analyses. Furthermore, because ASVs are exact sequences
generated without clustering or reference databases, ASVs output can be readily compared
between studies using the same target region and the same primers [186]. Several studies
have reported that ASV-level pipelines allow for easier inter-study integration of biological
features, as ASVs have intrinsic biological meaning, independent of reference database
or study context [187–189]. The ASVs approach has also been described as being more
effective than OTU clustering for recovering richness and composition of fungal [190] and
bacterial [191] communities from environmental samples. Indeed, the DADA2 algorithm
has shown to find more ASVs than other denoising pipelines when analyzing sequencing
data from soil datasets, suggesting that it could be better at finding rare organisms, but
at the expense of possible false positives [192]. For the aforementioned reasons, most of
the recent metabarcoding studies on bacterial and fungal microbiota associated with soil
and plant material have chosen ASVs over OTUs [193–198]. However, fungal and bacterial
diversity patterns appear to be equally well described by both OTU and ASV, which does
not appear to change the conclusion on alpha and beta diversity analyses over contrasted
samples along elevation gradients [199].

For a meaningful interpretation and reliable analysis of amplicon sequencing data,
after the OTU/ASVs generation stage, additional steps should be considered. Primarily,
post-clustering algorithm should be used when a high amount of artefactual sequence
variants are suspected [200,201]. Then, an adequate coverage, in terms of sequencing depth,
is crucial to generate reliable information on the composition and taxonomic structure of
the microbial community investigated. Rarefaction and accumulation curves can provide
useful information to assess whether the sequencing depth yielded sufficient reads to
describe most of the diversity in the samples. For example, if the coverage per sample is
too low, the diversity of the microbiota being studied is likely to be underrepresented, as
rarer members of the microbiota are less likely to be detected [19]. In general, a satisfactory
coverage can be achieved with 10,000 to 100,000 sequences per sample, but it largely
depends on the complexity of the microbiota, type of starting material (soil or plant), the
targeted gene and the desired resolution [35].

Additional filtering steps will increase the quality and resolution of the output dataset.
For example, the exclusion of rare OTUs or ASVs, which may be sequencing artifacts, is
commonly recommended [202]. However, there is no consensus on the threshold number
of sequences below which an OTU/ASV can be considered rare [190]. The suggested
thresholds might range from 1 to 10 sequences [203] or depend on the relative abundance
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of OTUs/ASVs [160]. Another filtering option is to remove OTUs/ASVs that have been
detected solely in one or a few samples from a single sequencing run, but such an approach
strictly depends on the number of samples that constitute the entire dataset and if multiple
sequencing runs were used.

4.2. Taxonomic Profiling

The taxonomic annotation of the OTUs/ASVs identified is the last step of the metabar-
coding workflow. It provides valuable information on the OTUs/ASVs in light of what
is known about these taxa from previous works, and, more broadly, it allows comparison
across microbiota studies [18]. Essentially, the taxonomical identification of microbes relies
on sequence similarity searches in reference databases. It is noteworthy that taxonomy
assignment based on different reference databases might lead to different results [204]. So
far, there is no consensus on which reference database to use for taxonomic assignment of
the detected OTUs/ASVs. In this section, we report the most common options utilized by
bioinformaticians and microbial ecologists.

Reference databases for 16S rRNA gene taxonomy assignment include SILVA [205],
the Ribosomal Database Project (RDP) [206], Greengenes [207] and the National Center
for Biotechnology Information (NCBI) [208]. Since all these databases are widely used for
taxonomical identification of prokaryotic sequences, we provide here a quick overview of
each of them (Table 6).

Table 6. List of the main reference databases used for the taxonomic annotation of the representative sequences in
metabarcoding studies of terrestrial microbial communities.

Database/Release Marker/Taxa URL * Reference

SILVA/138.1
16S, 18S SSU, 23S, 28S, LSU rRNA
sequences/Archaea, Prokaryotes,

Eukaryotes
www.arb-silva.de [205]

Ribosomal Database Project
(RDP)/11

16S, 28S rRNA
sequences/Prokaryotes, Archaea

and Fungi
rdp.cme.msu.edu [207]

Greengenes/12_10 16S rRNA sequences/Archaea and
Bacteria greengenes.secondgenome.com [207]

National Center for Biotechnology
Information (NCBI)

GenBank/241.0

raw sequences/Archaea,
Prokaryotes, Eukaryotes www.ncbi.nlm.nih.gov [208]

UNITE/8.2 nuclear ribosomal ITS region
sequences/Eukaryotes unite.ut.ee [209],

Protist Reference Database
(PR2)/4.12.0 18S rRNA sequences/Eukaryotes pr2-database.org [210]

*, accessed on 13 January 2021.

The SILVA database provides a phylogenetic classification for the small and large
rRNA subunits for Bacteria, Archaea and Eukarya in the European Nucleotide Archive
(ENA) [211]. It is based primarily on phylogenies for small subunit rRNAs (16S rRNA gene
for prokaryotes and 18S rRNA gene for eukaryotes), and its taxonomic rank assignment
is manually curated. To date, the last SILVA database update was on 27.08.2020 with the
138.1 release. Interestingly, the QIIME2 platform makes available pre-formatted SILVA
reference databases to QIIME2 users in order to provide a fast and standardized workflow
in the taxonomy assignation step. The RDP database also contains rRNA sequences from
the three domains, but it provides primarily phylogenetic classification for prokaryotic
organisms. It contains sequences available from the International Nucleotide Sequence
Database Collaboration (INSDC) [212]. The RDP classifier was updated to version 2.13,
which was released on 30 July 2020. Greengenes is a database that provides a phylo-

www.arb-silva.de
www.ncbi.nlm.nih.gov
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genetic classification of prokaryotic organisms, and most of the sequences are retrieved
from the NCBI GenBank [213]. The last update of the Greengenes database occurred on
5 January 2019. The NCBI taxonomy database contains the names of all organisms associ-
ated with submissions to the NCBI sequence databases. Specifically, the NCBI Taxonomy
database is the standard nomenclature and classification repository for the International
Nucleotide Sequence Database Collaboration (INSDC), comprising the GenBank, European
Nucleotide Archive (ENA) and DNA Data Bank of Japan (DDBJ) databases [208].

For the taxonomic identification of fungi, three main reference ITS databases spanning
the fungal kingdom are available: UNITE [209], Warcup ITS [214] and RDP. Among them,
UNITE is considered as the main reference ITS database for the identification of fungi.
It represents a middle ground between including the very latest sequences and offering
detailed taxonomic annotation [95]. Indeed, UNITE clusters the ITS sequences at different
sequence similarity thresholds to obtain approximate species-level OTUs referred to as
species hypotheses (SHs) [215]. These SHs (458,797 as of August 2018) have a unique digital
object identifier (DOI) to allow stable, unambiguous reference across studies [216]. Its last
update was on 20 February 2020 with the release version 8.2. It is worth noting the existence
of two ITS reference databases sequences associated with a specific ITS sublocus. This is
the case of ITSoneDB [217], which is a curated collection of eukaryotic ITS1 sequences, and
the ITS2 Database [218], which is a eukaryotic ITS2 database.

Other reference databases for fungal annotation are used if the target marker gene
amplified via PCR differs from the ITS region, such as LSU or SSU regions of the fungal
rRNA gene. In this case, SILVA, RDP and NCBI databases are ubiquitously employed.
Interestingly, for the specific taxonomic classification of fungal taxa affiliated to the phylum
Glomeromycota, the MaarjAM database [219] was created in 2010. This database associates
information about geography, habitat and climate to Glomeromycota sequences, which
cluster in “Virtual Taxa”, a proxy for fungal species [220]. The MaarjAM database is
manually curated, and its last update occurred on 5 June 2019.

The main reference database for the eukaryotic 18S rRNA gene is the Protist Reference
Database (PR2; [210], now accessible at https://github.com/pr2database/pr2database,
accessed on 13 January 2021). It is a curated reference 18S sequence collection that follows
the most up-to-date higher ranks taxonomic classification of eukaryotes [143]. The classifi-
cation is provided in a fixed eight-rank taxonomy, which eases the statistical analyses. The
last version is 4.12.0 from 8 August 2019. Alternatively, the SSU Ref NR 99 SILVA reference
database can also be used, which can be particularly interesting when using the aligned
version of the database.

Overall, the selection and availability of curated reference databases are crucial to char-
acterize on a large scale the taxonomic complexity of microbiota from various environments
through metabarcoding.

5. Importance of Metadata Standards and Archiving Practices

As DNA metabarcoding has become a routine approach for the characterization of
microbial communities across different environments, in recent years a surge in the volume
of the sequences archived in public genetic repositories has been recorded [221]. Presently,
the deposition of sequencing data in genetic databases has become standard practice,
mainly because it is a more frequent requirement for the publication of studies in peer-
reviewed journals. The electronic archiving of sequencing data is primarily centralized
in three public genetic databases that are routinely synchronized and members of the
INSDC: NCBI’s Sequence Read Archive (SRA), the EBI’s European Nucleotide Archive
(ENA) and DDJ’s Sequence Read Archives (DRA) [212]. These archives represent an
invaluable resource as they create a window of opportunity for data reuse and synthesis
in microbiome research. Therefore, it is crucial that the sequencing data are correctly
uploaded and made available in public genetic repositories with appropriate formatting
and metadata to allow others to reuse them. The standardization of protocols and metadata
collection, alongside a simple and straightforward process of data storage, accessibility and

https://github.com/pr2database/pr2database
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sharing, is vital for ensuring that microbiome data are findable, accessible, interoperable
and reusable (FAIR) [222].

Several research groups and consortiums have pioneered and coordinated the gen-
eration of community-driven standards for collecting and managing relevant contextual
information associated with genomic data. So far, the minimum information standards
(MIxS: minimum information about any (x) sequence) established by the Genomic Stan-
dards Consortium (GSC) [223] is the most accepted and adopted initiative by the public
genetic databases in order to provide rich information on the uploaded sequences [224].
The MIxS standards consist of checklists for describing minimum information about marker
genes (MIMARKS), genomes (MIGS) and metagenomes (MIMS), and of 15 different envi-
ronmental packages that can be used to specify the environmental context of a sequenced
microbial community, particularly for soil and plant-associated samples [225]. In paral-
lel, MIMARKS standards have been developed by GSC for reporting information about
metabarcoding studies [226], and the MIMARKS checklist is provided on the GSC web-
site (https://gensc.org/mixs/, accessed on 13 January 2021). The implementation of this
checklist alongside the sequencing data is fundamental to facilitate the ability to retrieve
appropriate contextual information for marker genes, frequently referred to as “metadata”,
enabling the reusability and sharing of the sequencing data to allow for reproducibility,
meta-analyses and cross-comparison among studies.

Although many efforts have been made to demonstrate and promote the importance of
having systematic reporting conventions and standards to accurately describe any chosen
workflow, a recent study on the deposited sequencing data of 26,927 microbial studies
published between January 2015 and March 2019 showed gaps in the availability and
reusability of these data [227]. The authors of this study identified the lack of metadata,
improper file formatting and data deposition to inappropriate repositories as the main
causes of data loss. In particular, the lack or the incorrect information reported in the
metadata, which includes all information concerning the description of the sample, sample
processing, experimental design, library creation and sequencing platform configuration,
represents a common issue that hinders the reusability of the sequencing data available in
genetic databases. In light of these findings, we would like to emphasize the importance
of improving data archiving practices to enhance the value of the sequencing data in
repurposing and better sharing of microbial datasets.

6. Future Perspective and Challenges

Within the past decade, metabarcoding has become the gold standard for the char-
acterization of complex microbial communities associated with environmental samples.
Although this approach may not successfully identify all the taxa in a sample, the output
generated by a proper metabarcoding workflow provides reliable information for ade-
quate biological inferences. However, generating accurate and verifiable data, such as
biodiversity estimates and taxonomic assignation, requires robust methods and generally
accepted standards [228]. So far, metabarcoding workflows have relied primarily on Illu-
mina sequencing technology, which constrains the length of the amplicons to a maximum
of 600 bp. This represents a considerable limitation in terms of taxonomic resolution for
many bacterial and fungal taxa, as the taxonomic assignment of short-reads at the species
or even genus level is often elusive. Third-generation sequencing technologies, such as the
MinION and PromethION platform from Oxford Nanopore Technologies (ONT) or PacBio
from Pacific Biosciences, are emerging as promising sequencing systems to overcome many
of the limitations of short-read sequencing. Considering that ONT technology allows for
the design of primers covering the whole length of the 16S rRNA gene or ITS region, it is
then plausible to conceive a better phylogenetic inference and higher taxonomic resolution
in microbial ecology studies. However, despite the apparent potential advantages of the
application of ONT technology in metabarcoding, there are still several factors limiting its
implementation in microbial ecology research. For instance, there is only a limited number
of bioinformatic tools and protocols designed for the specific analysis of long reads. Thus,

https://gensc.org/mixs/
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it is challenging to carry out a specialized taxonomic analysis compared with previous
sequencing technologies [229]. Another major drawback of this technology is the high
read error rates, which hampers accurate read classification [230]. Furthermore, it is a
relatively novel technology for which standards are still largely absent, thus complicating
the standardization and reproducibility of results [231].

Other methodological approaches can also be employed in the characterization of com-
plex microbiota from environmental samples. Metagenomics, or the shotgun sequencing
technique, which refers to the recovery and sequencing of the collective genomic material
in environmental samples, are largely used to investigate the functional complement of
the microbiota as a whole. Nonetheless, the data output generated by this approach can
also be utilized for taxonomic profiling. A significant advantage of metagenomics over
metabarcoding is that metagenomic approaches do not rely on the amplification of specific
genomic sequences, avoiding all the bias introduced by PCR procedures. However, im-
portant drawbacks are associated with shotgun sequencing in biodiversity studies. The
efficiency of shotgun metagenomics is mainly constrained to adequate read depths in order
to obtain accurate results, which can be difficult to achieve from complex samples like
soil. Hence, huge increases in sequencing power to acquire adequate sequencing depth
often result in prohibitive costs. Another main disadvantage associated with shotgun
metagenomics is the lack of curated reference databases of bacterial and fungal genomes.
Specifically, fungal and protist genome databases are rare at present and, in particular, com-
pared with bacterial genome databases [95,232]. As a result, the proportion of sequences
identified as fungal is low even in metagenomes with high fungal abundance, such as
topsoil metagenomes [233]. Lastly, challenges and difficulties frequently occur in analyzing
metagenomics datasets because of the extensive filtering that is required as a result of the
sequencing of all sampled DNA. This leads to datasets of significantly larger orders of
magnitude compared to the ones produced by metabarcoding approaches. Consequently,
analyses of shotgun metagenomics data take much longer to perform and require far more
computational power and expertise.

Capture by hybridization also represents a promising approach for the enrichment of
a target gene as an alternative to PCR amplification [234]. It has the advantage of allowing
the use of multiple probes annealing to the target gene and allows the conservation of
long DNA fragments, which is suitable for third-generation high-throughput sequencing.
This novel technique also has the potential to unravel new hidden diversity missed by the
traditional PCR approach [235].

In conclusion, DNA metabarcoding represents a powerful approach to explore the
microbial biodiversity of environmental samples. With further technological advances, pro-
cedure optimization and refinement, metabarcoding will likely emerge as a fundamental
tool for several scientific tasks not only in biodiversity monitoring in terrestrial environ-
ments but also in other research and application areas such as diet analysis, air, water and
food quality testing and monitoring [15]. Moreover, the future of DNA metabarcoding
deeply relies on the quality and completeness of reference sequence databases, which
should be also designed and further curated to allow efficient data mining and report
generation. Finally, we believe that the combination of different sequencing methodologies,
such as DNA metabarcoding and metagenomics, together with gene expression, including
metatranscriptomics, stable isotope labeling and canonical cultivation and enrichment
techniques, represents the best approach to open the soil black box in order to unravel the
complex dynamics of the soil–plant–microbe system and to get further insight into soil
microbial functions on the level of complex terrestrial microbiota.
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204. Balvočiūtė, M.; Huson, D.H. SILVA, RDP, Greengenes, NCBI and OTT—How do these taxonomies compare? BMC Genom. 2017,
18, 114. [CrossRef] [PubMed]

205. Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource
for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196.
[CrossRef]

206. Cole, J.R.; Wang, Q.; Cardenas, E.; Fish, J.; Chai, B.; Farris, R.J.; Kulam-Syed-Mohideen, A.S.; McGarrell, D.M.; Marsh, T.; Garrity,
G.M.; et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2008,
37, D141–D145. [CrossRef]

http://doi.org/10.7717/peerj.1420
http://doi.org/10.7717/peerj.593
http://www.ncbi.nlm.nih.gov/pubmed/25276506
http://doi.org/10.1126/science.1261605
http://doi.org/10.1038/ismej.2014.195
http://doi.org/10.1093/nar/gkz569
http://doi.org/10.1038/ismej.2017.119
http://doi.org/10.1371/journal.pone.0227434
http://doi.org/10.1002/cpbi.100
http://doi.org/10.1016/j.funeco.2019.03.005
http://doi.org/10.1128/mSystems.00163-18
http://doi.org/10.7717/peerj.5364
http://doi.org/10.1126/sciadv.aau4578
http://doi.org/10.1186/s40168-020-00833-w
http://www.ncbi.nlm.nih.gov/pubmed/32305066
http://doi.org/10.1093/femsec/fiz205
http://doi.org/10.1073/pnas.1717617115
http://doi.org/10.3389/fmicb.2018.03272
http://doi.org/10.1016/j.funeco.2020.100987
http://doi.org/10.1128/mSphere.00148-18
http://www.ncbi.nlm.nih.gov/pubmed/30021874
http://doi.org/10.1111/1462-2920.14764
http://doi.org/10.1038/s41467-017-01312-x
http://www.ncbi.nlm.nih.gov/pubmed/29084957
http://doi.org/10.1093/femsre/fuw017
http://doi.org/10.1016/j.funeco.2014.08.006
http://doi.org/10.1186/s12864-017-3501-4
http://www.ncbi.nlm.nih.gov/pubmed/28361695
http://doi.org/10.1093/nar/gkm864
http://doi.org/10.1093/nar/gkn879


Microorganisms 2021, 9, 361 27 of 28

207. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.
Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006,
72, 5069–5072. [CrossRef]

208. Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 2011, 40, D136–D143. [CrossRef]
209. Abarenkov, K.; Henrik Nilsson, R.; Larsson, K.-H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.;

Pennanen, T.; et al. The UNITE database for molecular identification of fungi—Recent updates and future perspectives. New
Phytol. 2010, 186, 281–285. [CrossRef]

210. Guillou, L.; Bachar, D.; Audic, S.; Bass, D.; Berney, C.; Bittner, L.; Boutte, C.; Burgaud, G.; de Vargas, C.; Decelle, J.; et al. The
Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated
taxonomy. Nucleic Acids Res. 2012, 41, D597–D604. [CrossRef]

211. Leinonen, R.; Akhtar, R.; Birney, E.; Bower, L.; Cerdeno-Tárraga, A.; Cheng, Y.; Cleland, I.; Faruque, N.; Goodgame, N.; Gibson,
R.; et al. The European Nucleotide Archive. Nucleic Acids Res. 2010, 39, D28–D31. [CrossRef]

212. Nakamura, Y.; Cochrane, G.; Karsch-Mizrachi, I. The International Nucleotide Sequence Database Collaboration. Nucleic Acids
Res. 2012, 41, D21–D24. [CrossRef]

213. Benson, D.A.; Karsch-Mizrachi, I.; Clark, K.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2011, 40, D48–D53.
[CrossRef] [PubMed]

214. Deshpande, V.; Wang, Q.; Greenfield, P.; Charleston, M.; Porras-Alfaro, A.; Kuske, C.R.; Cole, J.R.; Midgley, D.J.; Tran-Dinh, N.
Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia
2016, 108, 1–5. [CrossRef]

215. Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.;
Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277.
[CrossRef]

216. Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glöckner,
F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic
classifications. Nucleic Acids Res. 2018, 47, D259–D264. [CrossRef]

217. Santamaria, M.; Fosso, B.; Licciulli, F.; Balech, B.; Larini, I.; Grillo, G.; De Caro, G.; Liuni, S.; Pesole, G. ITSoneDB: A comprehensive
collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences. Nucleic Acids Res. 2018, 46, D127–D132.
[CrossRef]

218. Ankenbrand, M.J.; Keller, A.; Wolf, M.; Schultz, J.; Förster, F. ITS2 Database V: Twice as Much. Mol. Biol. Evol. 2015, 32, 3030–3032.
[CrossRef] [PubMed]

219. Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, Ü.; Zobel, M. The online database MaarjAM reveals
global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241.
[CrossRef] [PubMed]

220. Martorelli, I.; Helwerda, L.S.; Kerkvliet, J.; Gomes, S.I.F.; Nuytinck, J.; Werff, C.R.A.v.d.; Ramackers, G.J.; Gultyaev, A.P.; Merckx,
V.S.F.T.; Verbeek, F.J. Fungal metabarcoding data integration framework for the MycoDiversity DataBase (MDDB). J. Integr.
Bioinform. 2020, 17, 20190046. [CrossRef]

221. Kodama, Y.; Shumway, M.; Leinonen, R.; on behalf of the International Nucleotide Sequence Database, C. The sequence read
archive: Explosive growth of sequencing data. Nucleic Acids Res. 2012, 40, D54–D56. [CrossRef]

222. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos,
L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018.
[CrossRef]

223. Yilmaz, P.; Gilbert, J.A.; Knight, R.; Amaral-Zettler, L.; Karsch-Mizrachi, I.; Cochrane, G.; Nakamura, Y.; Sansone, S.-A.; Glöckner,
F.O.; Field, D. The genomic standards consortium: Bringing standards to life for microbial ecology. ISME J. 2011, 5, 1565–1567.
[CrossRef] [PubMed]

224. ten Hoopen, P.; Finn, R.D.; Bongo, L.A.; Corre, E.; Fosso, B.; Meyer, F.; Mitchell, A.; Pelletier, E.; Pesole, G.; Santamaria, M.; et al.
The metagenomic data life-cycle: Standards and best practices. GigaScience 2017, 6, gix047. [CrossRef] [PubMed]

225. Glass, E.M.; Dribinsky, Y.; Yilmaz, P.; Levin, H.; Van Pelt, R.; Wendel, D.; Wilke, A.; Eisen, J.A.; Huse, S.; Shipanova, A.; et al.
MIxS-BE: A MIxS extension defining a minimum information standard for sequence data from the built environment. ISME J.
2014, 8, 1–3. [CrossRef]

226. Yilmaz, P.; Kottmann, R.; Field, D.; Knight, R.; Cole, J.R.; Amaral-Zettler, L.; Gilbert, J.A.; Karsch-Mizrachi, I.; Johnston, A.;
Cochrane, G.; et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x)
sequence (MIxS) specifications. Nat. Biotechnol. 2011, 29, 415–420. [CrossRef]

227. Jurburg, S.D.; Konzack, M.; Eisenhauer, N.; Heintz-Buschart, A. The archives are half-empty: An assessment of the availability of
microbial community sequencing data. Commun. Biol. 2020, 3, 474. [CrossRef]

228. Cristescu, M.E. From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to
the study of global biodiversity. Trends Ecol. Evol. 2014, 29, 566–571. [CrossRef]

229. Santos, A.; van Aerle, R.; Barrientos, L.; Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using
Nanopore sequencing data. Comput. Struct. Biotechnol. J. 2020, 18, 296–305. [CrossRef]

http://doi.org/10.1128/AEM.03006-05
http://doi.org/10.1093/nar/gkr1178
http://doi.org/10.1111/j.1469-8137.2009.03160.x
http://doi.org/10.1093/nar/gks1160
http://doi.org/10.1093/nar/gkq967
http://doi.org/10.1093/nar/gks1084
http://doi.org/10.1093/nar/gkr1202
http://www.ncbi.nlm.nih.gov/pubmed/22144687
http://doi.org/10.3852/14-293
http://doi.org/10.1111/mec.12481
http://doi.org/10.1093/nar/gky1022
http://doi.org/10.1093/nar/gkx855
http://doi.org/10.1093/molbev/msv174
http://www.ncbi.nlm.nih.gov/pubmed/26248563
http://doi.org/10.1111/j.1469-8137.2010.03334.x
http://www.ncbi.nlm.nih.gov/pubmed/20561207
http://doi.org/10.1515/jib-2019-0046
http://doi.org/10.1093/nar/gkr854
http://doi.org/10.1038/sdata.2016.18
http://doi.org/10.1038/ismej.2011.39
http://www.ncbi.nlm.nih.gov/pubmed/21472015
http://doi.org/10.1093/gigascience/gix047
http://www.ncbi.nlm.nih.gov/pubmed/28637310
http://doi.org/10.1038/ismej.2013.176
http://doi.org/10.1038/nbt.1823
http://doi.org/10.1038/s42003-020-01204-9
http://doi.org/10.1016/j.tree.2014.08.001
http://doi.org/10.1016/j.csbj.2020.01.005


Microorganisms 2021, 9, 361 28 of 28

230. Nicholls, S.M.; Quick, J.C.; Tang, S.; Loman, N.J. Ultra-deep, long-read nanopore sequencing of mock microbial community
standards. GigaScience 2019, 8, giz043. [CrossRef]

231. Winand, R.; Bogaerts, B.; Hoffman, S.; Lefevre, L.; Delvoye, M.; Braekel, J.V.; Fu, Q.; Roosens, N.H.; Keersmaecker, S.C.D.;
Vanneste, K. argeting the 16S rRNA Gene for Bacterial Identification in Complex Mixed Samples: Comparative Evaluation of
Second (Illumina) and Third (Oxford Nanopore Technologies) Generation Sequencing Technologies. Int. J. Mol. Sci. 2019, 21, 298.
[CrossRef]

232. Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.-P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.;
et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039–1048. [CrossRef]

233. Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.;
Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [CrossRef]

234. Ribière, C.; Beugnot, R.; Parisot, N.; Gasc, C.; Defois, C.; Denonfoux, J.; Boucher, D.; Peyretaillade, E.; Peyret, P. Targeted Gene
Capture by Hybridization to Illuminate Ecosystem Functioning. In Microbial Environmental Genomics (MEG); Martin, F., Uroz, S.,
Eds.; Springer: New York, NY, USA, 2016; pp. 167–182. [CrossRef]

235. Gasc, C.; Peyret, P. Hybridization capture reveals microbial diversity missed using current profiling methods. Microbiome 2018,
6, 61. [CrossRef]

http://doi.org/10.1093/gigascience/giz043
http://doi.org/10.3390/ijms21010298
http://doi.org/10.1136/gutjnl-2015-310746
http://doi.org/10.1038/s41586-018-0386-6
http://doi.org/10.1007/978-1-4939-3369-3_10
http://doi.org/10.1186/s40168-018-0442-3

	Introduction 
	DNA Extraction Procedure 
	Amplicon Library Preparation 
	DNA Quality and Quantity 
	Amplification of a Target Marker Gene 
	Identification of Prokaryotes from Environmental Samples 
	Identification of Fungi from Environmental Samples 
	Identification of Protists from Environmental Samples 

	Further Recommendations for Library Preparation 

	Bioinformatic Processing 
	Pre-Processing of the Metabarcoding Dataset 
	Taxonomic Profiling 

	Importance of Metadata Standards and Archiving Practices 
	Future Perspective and Challenges 
	References

