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Abstract

Developing an accurate and reliable injury predictor is central to the biomechanical studies

of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics

based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific

brain region of interest. They could suffer from loss of information. A single training dataset

has also been used to evaluate performance but without cross-validation. In this study, we

developed a deep learning approach for concussion classification using implicit features of

the entire voxel-wise white matter fiber strains. Using reconstructed American National

Football League (NFL) injury cases, leave-one-out cross-validation was employed to objec-

tively compare injury prediction performances against two baseline machine learning classi-

fiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via

univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage mea-

sure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber

strain in the CC). Feature-based machine learning classifiers including deep learning, SVM,

and RF consistently outperformed all scalar injury metrics across all performance categories

(e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–

0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy,

sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of

deep learning in concussion prediction and suggest its promise for future applications in bio-

mechanical investigations of traumatic brain injury.

Introduction

Traumatic brain injury (TBI) resulting from blunt head impact is a leading cause of morbidity

and mortality in the United States [1]. The recent heightened public awareness of TBI, espe-

cially of sports-related concussion [2,3], has prompted the Institute of Medicine and National

Research Council of the National Academies to recommend immediate attention to address
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the biomechanical determinants of injury risk and to identify effective concussion diagnostic

metrics and biomarkers, among others [4].

Impact kinematics such as linear and rotational accelerations are convenient ways to char-

acterize impact severity. Naturally, these simple kinematic variables and their more sophisti-

cated variants have been used to assess the risk of brain injury. As head rotation is thought to

be the primary mechanism for mild TBI (mTBI) including sports-related concussion, most

kinematics metrics include rotational acceleration or velocity, either solely (e.g., rotational

injury criterion (RIC), power rotational head injury criterion (PRHIC) [5], brain injury crite-

rion (BrIC) [6], and rotational velocity change index (RVCI) [7]) or in combination with liner

acceleration [8].

Kinematic variables, alone, do not provide regional brain mechanical responses thought to

cause injury [9]. Validated computational models of the human head are, in general, believed

to serve as an important bridge between external impact and tissue mechanical responses.

Model-estimated, response-based injury metrics are desirable, as they can be directly related to

tissue injury tolerances. Commonly used tissue response metrics include peak maximum prin-

cipal strain and cumulative strain damage measure (CSDM; [10]) for the whole brain. More

recently, white matter (WM) fiber strain [11–14] is also being explored as a potential improve-

ment. There is growing interest in utilizing model-simulated responses to benchmark the per-

formance of other kinematic injury metrics [6,15–17].

Regardless of these injury prediction approaches (kinematic or response-based), they share

some important common characteristics. First, they have utilized a single injury dataset for

“training” and performance evaluation. Often, this was performed by fitting a univariate logis-

tic regression model to report the area (AUC) under the receiver operating curve (ROC)

[8,12,13,18]. However, without cross-validation using a separate “testing dataset”, there could

be uncertainty how the metrics perform when they are, presumably, deployed to predict injury

on fresh, unmet impact cases [12,19]. This is an important issue seemingly under-appreciated,

given that AUC especially from a single training dataset provides an average or aggregated per-

formance of a procedure but does not directly govern how a clinical decision, in this case,

injury vs. non-injury diagnosis, is made.

Second, an explicit, pre-defined kinematic or response metric is necessary for injury predic-

tion. While candidate injury metrics are typically from known or hypothesized injury mecha-

nisms (e.g., strain), they are derived empirically. For response-based injury metrics, they are

also pre-defined in a specific brain region of interest (ROI) such as the corpus callosum (CC)

and brainstem. However, they do not consider other anatomical regions or functionally

important neural pathways. The commonly used peak maximum principal strain and CSDM

describe the peak response in a single element or the volume fraction of regions above a given

strain threshold, respectively. However, they do not (and cannot) inform the location or distri-

bution of brain strains that are likely critical for concussion, given the widespread neuroimag-

ing alterations [20] and a diverse spectrum of clinical signs and symptoms [21] observed in the

clinic.

Consequently, even when using the same reconstructed American National Football League

(NFL) head impacts, studies have found inconsistent “optimal” injury predictors (e.g., maxi-

mum shear stress in the brainstem [22], strain in the gray matter and CSDM0.1 (using a strain

threshold of 0.1) in the WM [18], peak axonal strain within the brainstem [13], or tract-wise

injury susceptibilities in the superior longitudinal fasciculus [14]). Most of these efforts are

essentially “trial-and-error” in nature as they attempt to pinpoint a specific variable in a partic-

ular ROI for injury prediction. However, no consensus has reached on the most injury dis-

criminative metric or ROI. Without accounting for the location and distribution of brain

responses that are likely critical to concussion, critical information is lost.

Concussion classification via deep learning
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Injury prediction is a binary classification. Besides the baseline univariate logistic regres-

sion, there have been numerous algorithmic advances in classification, including feature-based

machine learning and, more recently, deep learning [23,24]. Instead of relying on a single,

explicit scalar metric that could suffer from loss of information, feature-based machine/deep

learning techniques employs multiple features to perform classification. However, despite

their successes [23,24], application of feature-based machine/deep learning in TBI biomechan-

ics for injury diagnosis is extremely limited or even non-existent at present. A recent study uti-

lized SVM to predict concussion [25]. However, it was limited to kinematic variables (vs. brain

responses) and two injury cases, which did not allow for cross-validation.

Conventional machine learning classifiers such as support vector machine (SVM) and ran-

dom forest (RF) have been widely used in medical imaging [26,27] and computer vision [28]

applications. Deep learning is the most recent advancement in feature-based classification,

and it has achieved remarkable success in a wide array of science domains (see [23] for a recent

review). This technique has already been successfully applied in numerous neuroimaging anal-

yses, including registration [29], segmentation [30], and WM fiber clustering based on learned

shape features [31]. For neurological disease classification, applications include the use of deep

Convolutional Neural Network (CNN) for Alzheimer’s detection (as reviewed in [32]), and

fully connected Restricted Boltzmann Machine to detect mTBI categories based on diffusion

tensor imaging (DTI) parameters [33]. However, this technique has not been employed for

TBI prediction using brain tissue mechanical responses such as WM fiber strain (i.e., stretch

along WM fiber directions). Unlike conventional neuroimages where tissue boundaries readily

serve as image features for segmentation and registration, fiber strain responses as a result of

mTBI are diffuse [20,34]. This makes it difficult to directly employ CNN-based techniques that

are often built on local spatial filters (e.g., 3D CNN designed for tumor segmentation and mea-

surement [35]).

Deep learning techniques are advancing rapidly. Instead of applying the most recent neural

network architectures that are still under active development [31,32,36,37], here we chose a

more conventional approach to first introduce this important research tool into the TBI bio-

mechanics research field. Implicit features of the entire voxel-wise WM fiber strains were gen-

erated from reconstructed head impacts for concussion classification. Performances of the

deep learning classifier were compared against baseline machine learning and univariate

logistic regression methods in a leave-one-out cross-validation framework. This was impor-

tant to ensure an objective comparison and to maximize rigor, which has often been over-

looked in other biomechanical studies that only reported AUC from a single training dataset

[8,12,13,18]. These injury prediction strategies are important extensions to previous efforts,

which may provide important fresh insight into how best to objectively predict concussion in

the future.

Materials and methods

The Worcester Head Injury Model (WHIM) and WM fiber strain

We used the Worcester Head Injury Model (WHIM; Fig 1 [11,34]) to simulate the recon-

structed NFL head impacts [38,39]. Descriptions of the WHIM development, material prop-

erty and boundary condition assignment, and quantitative assessment of the mesh geometrical

accuracy and model validation performances have been published previously. Briefly, the

WHIM was created based on high resolution T1-weighted MRI of an individual athlete. DTI

of the same individual provided averaged fiber orientations at each WM voxel location [11].

The 58 reconstructed head impacts include 25 concussions and 33 non-injury cases. Identi-

cal to previous studies [14,18,39,40], head impact linear and rotational accelerations were

Concussion classification via deep learning
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preprocessed before applying to the WHIM head center of gravity (CG) for brain response

simulation. The skull and facial components were simplified as rigid-bodies as they did not

influence brain responses.

Peak WM fiber strain, regardless of the time of occurrence during impact, was computed at

each DTI WM voxel (N = 64272; [34]). For voxels not corresponding to WM, their values

were padded with zeroes. This led to a full 3D image volume encoded with peak WM fiber

strains (with surface rendering of the segmented WM shown in Fig 1C). They served as classi-

fication features for deep neural network training and concussion prediction. The choice of

fiber strain instead of more commonly used maximum principal strain was because of its

potentially improved injury prediction performance [12,13,34]. As no neuroimages were avail-

able for the 58 impact cases, injury detection using a previous deep learning technique based

on DTI parameters [33] was not applicable in this study.

Deep learning: Background

Deep learning has dramatically improved the state-of-the-art in numerous research domains

(see a recent review in Nature Methods [23]). However, its application in TBI biomechanics is

nonexistent at present. This technique allows models composed of multiple processing layers

to learn representations of data with multiple levels of abstraction [23]. A deep learning neural

network uses a collection of logical units and their activation statuses to simulate brain func-

tion. It employs an efficient supervised update method [41] or an unsupervised network train-

ing strategy [42]. This makes it feasible to train a “deep” (e.g., more than 3 layers) neural

network, which is ideal for learning large scale and high dimensional data.

For a deep learning neural network, the l-th layer transforms an input vector from its lower

layer, al−1, into an output vector, al, through the following forward transformation:

xl ¼Wlal� 1 þ bl ð1Þ

al ¼ slðxlÞ ð2Þ

where matrix Wl is a linear transform describing the unit-to-unit connection between two

adjacent, l-th and (l-1)-th, layers, and bl is a bias offset vector. Their dimensions are configured

to produce the desired dimensionality of the input and output, with the raw input data repre-

sented by x0 (Fig 2). The nonlinear normalization or activation function, σl, can be defined as

Fig 1. The Worcester Head Injury Model (WHIM). Shown are the head exterior (a) and intracranial components (b),

along with peak fiber strain-encoded rendering of the segmented WM outer surface (c). The x-, y-, and z-axes of the

model coordinate system correspond to the posterior–anterior, right–left, and inferior–superior direction, respectively.

The strain image volume, which was used to generate the rendering within the co-registered head model for illustrative

purposes, directly served as input signals for deep learning network training and concussion classification (see Fig 2).

https://doi.org/10.1371/journal.pone.0197992.g001
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either a Sigmoid or a TanH function [43], or Rectified Linear Units (ReLU) [44] in order to

suppress the output values for discriminant enhancement [45] and for achieving non-linear

approximation [46]. Upon network training convergence, the optimized parameters, W =

{Wl} and b = {bl}, are used to produce predictions of the cross-validation dataset. More details

on the mathematics behind and procedures of deep network training are provided in the

Appendix.

Deep learning: Network design and implementation

A systematic approach to designing an “optimal” deep learning network is still an active

research topic [47]. As a clear rule is currently lacking, trial-and-error is often used to deter-

mine the appropriate number of layers and the numbers of connecting units in each layer.

Here, we empirically developed a network structure composed of five fully connected layers

(i.e., each unit in a layer was connected to all units in its adjacent layers; Fig 2), similarly to that

used before [48]. The number of network layers was chosen to balance the trade-off between

network structure nonlinearity and regularity.

The numbers of connecting units in each layer or the network dimension also followed a

popular pyramid structure [48] to sequentially halve the number of connecting units in subse-

quent layers (i.e., a structure of 2000-1000-500-250 units for layers 1 to 4; Fig 2). Each layer

performed feature condensation transform (Eqs 1 and 2) independently. The final feature vec-

tor, x5, served as the input for injury classification. Table 1 summarizes the dimensions of the

Fig 2. Structure of the deep learning network. The network contained five fully connected layers to progressively compress the fiber-strain-encoded image features,

and ultimately, into a two-unit feature vector for concussion classification.

https://doi.org/10.1371/journal.pone.0197992.g002

Table 1. Summary of the dimensions of the weights and offset parameters, along with the normalization func-

tions used to define the deep learning network. See Appendix for details regarding the normalization functions.

Parameter Definition

Wl: 2D matrix W1: 2000×64272;W2: 1000×2000;W3: 500×1000; W4: 250×500;W5: 20×250

bl: 1D vector b1: 2000 dim; b2: 1000 dim; b3: 500 dim; b4: 250 dim; b5: 2 dim

σl: normalization

function

σ1: ReLU + batch normalization; σ2: ReLU; σ3: ReLU; σ4: Sigmoid; σ5: no normalization

(i.e., using an identity matrix)

https://doi.org/10.1371/journal.pone.0197992.t001
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weights, Wl, and offset vectors, bl, as well as the normalization functions, σl, used to define the

deep network. In total, the network contained over 1.31×108 independent parameters.

For the first three layers (i.e., layers 1 to 3 in Fig 2), ReLU were used that provided a sparser

activation than TanH and Signmoid functions to allow faster and more effective training [44].

A batch normalization technique was also used to avoid internal co-variate shift as a result of

non-normal distributions of the input and output values. This enhanced the network robust-

ness [49]. In contrast, the last layer prior to classification (layer 4 in Fig 2) adopted a Sigmoid

function to normalize output values to [0, 1], which was necessary to facilitate the Softmax

classification [50].

Upon training convergence, the initial high dimensional feature vector was condensed into

a more compact representation. A Softmax function, S (Eq A1 in Appendix), transformed the

input feature vector, y, into a final output vector, (p1,p2). The corresponding vector values rep-

resented the probability of concussion (p1) and non-injury (p2), respectively, where p1 + p2 = 1,

by necessity. Concussion was said to occur when p1� 0.5.

The network was trained via an ADAM optimization [51] in Caffe [52]. A number of

hyper-parameters needed to be optimized to achieve a satisfactory performance. With trial

and error, we selected a gradient descent step size or learning rate of 2×10−8 for all network

layers, and the gradient descent momentum (i.e., the weight to multiply the gradient from the

previous step in order to augment the gradient update in the current step) was set to 0.5. The

default parameter values, β1 = 0.9, β2 = 0.999 and ε = 10−8, were used to prevent the weights

from growing too fast. The training dataset was divided into a batch size of 5 for training (ran-

domly resampled cases were added when the remaining batch was fewer than 5). The maxi-

mum number of epochs was 5000 (an epoch is a complete pass of the full training dataset

through the neural network).

Early stopping for optimal training

An optimal number of training epochs achieves the best cross-validation accuracy at the mini-

mum computational cost. However, this is not feasible to determine for fresh, unmet cases.

Here, we monitored the validation accuracy of the training dataset to empirically determine a

stopping criterion. Specifically, three training trials (in a leave-one-out cross-validation frame-

work, see below) were generated to observe the convergence behaviors of the training and vali-

dation error functions (internally, 10% of the training dataset were used for validation within

the deep learning training iterations; Eq A4 in Appendix; Fig 3). The training error function

asymptotically decreased with the increase in the number of epochs. The validation error func-

tion initially decreased, as expected, but started to increase after sufficient epochs, indicating

overfitting has occurred.

These observations suggested the use of an “early stopping criterion” [50] to ensure suffi-

cient training with a minimum number of epochs. Initially, 300 training epochs were empiri-

cally used to monitor the validation error convergence behavior [53]. If validation error did

not decrease, the network training was considered as failed due to a poor initialization and the

training would terminate. With the chosen learning rate 2×10−8, we found that the network

always converged within [1000, 5000] epochs, which was set as an admissible range of epochs.

Concussion classification and performance evaluation

An objective evaluation of the concussion classification performances was important. Previ-

ously, a repeated random subsampling framework was employed to split the injury cases into

independent and non-overlapping training and testing datasets [14]. Given the relatively small

sample size (N = 58), here we adopted a leave-one-out cross-validation for performance

Concussion classification via deep learning
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evaluation. This maximized the training dataset so that to allow mimicking a real-world injury

prediction scenario by potentially optimizing the prediction on a fresh, unmet head impact.

Performance comparison against baseline machine learning classifiers

Conventional SVM and RF were selected as baseline classifiers to benchmark the performance

of deep learning. Typically, a machine learning classifier requires an explicit feature selection

to reduce input dimensionality and remove redundant, irrelevant, and noisy features from the

input data in order to improve performance [54]. However, there is no standard approach for

feature selection. For example, while the F-score approach is common for SVM [55], RF offers

feature selection by itself [56]. In contrast, an explicit feature selection is not necessary in deep

learning [57] as this is automatic during the optimization to maximize the input-output corre-

lation. For completeness, here we conducted classification first without feature selection using

the entire dataset as input to provide a reference performance for each classifier. After feature

selection, they were compared in a more typical scenario for the two baseline machine learning

techniques.

To avoid the classical feature selection bias problem [58], independent feature selections

were performed for each leave-one-out cross-validation trial. Specifically, only the training

dataset (N = 57), excluding the testing data point, were used for feature selection, with either

the F-score or RF-based approach. Using the recommended strategy [55], the F-score ap-

proach retained approximately 4% of features (N = 2566; empirically determined to yield the

highest cross-validation accuracy for SVM). For the RF-based method, a simplified variant of

the conventional “gini” importance ranking approach [56] was used. A total of 5000 randomly

initialized runs of RF were first conducted so that all of the voxels had a chance to serve as an

important feature. After each run, the top 1% highest ranked features were retained to vote on

Fig 3. Illustration of the training and validation error functions and the corresponding validation accuracy.

(Top): Error functions from three deep learning training trials; (Bottom): the corresponding validation accuracy

(based on the 10% training dataset used for validation internally), vs. training epochs for three randomly generated

trials. Maximum validation accuracies based on validation datasets were achieved using an early-stopping criterion

after 2000 epochs.

https://doi.org/10.1371/journal.pone.0197992.g003
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a voxel-wise basis. The top 1% most frequently voted voxels (N = 643) among all of the runs

were finally selected. The “top 1% criteria” were similarly determined empirically to yield the

highest cross-validation accuracy for RF. After the 58 independent feature selections, a proba-

bility map was generated based on the frequency of each WM voxel selected as an important

feature for classification.

A linear kernel was used for SVM [55]. For RF, the numbers of decision trees and depths

were determined empirically to maximize cross-validation accuracy. They were 45 and 64

without feature selection, and 75 and 8, or 75 and 12, respectively, when using the F-score or

RF for feature selection. As RF depended on a random initialization, 100 RF trials were con-

ducted for each training/injury prediction. For deep learning with feature selection, a smaller

neural network with 5 fully connected layers of dimensions of 500-250-125-60-2 was designed

to accommodate the substantially reduced feature size, which resulted in 4.85×105 indepen-

dent parameters. The learning rate was adjusted to 1×10−6. Other hyper-parameters remained

unchanged.

Performance comparison against scalar injury metrics

In TBI biomechanics research, univariate logistic regression is the most commonly used

method to report the AUC of a single training dataset [5,6,8,13,22]. They rely on a scalar

response metric which is essentially a single, pre-defined feature. The following four injury

metrics were used for further performance comparison: Brain Injury Criteria (BrIC [6]; a kine-

matic metric found to correlate the best with strain-based metrics in diverse automotive

impacts [15]), CSDM [10] for the whole brain (CSDM-WB) and the CC (CSDM-CC) based on

maximum principal strain, as well as peak WM fiber strain in the corpus callosum (Peak-CC;

[13,14]). The critical angular velocities for BrIC depend on the model used. For WHIM, they

were 30.4 rad/s, 35.6 rad/s, and 23.5 rad/s along the three major axes, respectively [16]. For

CSDM, an “optimal” strain threshold of 0.2 was used, which was to maximize the significance

of injury risk-response relationship for the group of 50 deep WM regions using the same

reconstructed NFL injury dataset [14].

Upon training convergence or after fitting, all classifiers generated a probability score for

each of the impact case in the training and testing datasets. For deep learning, this was p1 in

Fig 2 (Eq A1 in Appendix), which allowed constructing an ROC to report AUC (perfcurve.m
in Matlab). For each classifier, an AUC for each training dataset was calculated based on 57

impact cases for each of the 58 independent injury predictions (as necessitated by the leave-

one-out cross-validation framework). An average AUC was then reported. In contrast, a single

AUC value for the testing dataset was obtained based on the probability scores of the 58 inde-

pendent predictions.

Data analysis

Simulating each head impact of 100 ms duration in Abaqus/Explicit (Version 2016; Dassault

Systèmes, France) required ~50 min on a 12-CPU Linux cluster (Intel Xeon E5-2680v2, 2.80

GHz, 128 GB memory) with a temporal resolution of 1 ms. An additional 9 min was needed to

obtain element-wise cumulative strains (single threaded). The classification framework was

implemented on Windows (Xeon E5-2630 v3, 8 cores, 16 GB memory) with GPU acceleration

(NVidia Titan X Pascal, 12 GB memory). Training each deep neural network typically required

~15 min and ~7 min for the two deep networks, respectively, but subsequent injury prediction

was real-time (<0.01 sec).

For all the concussion classifiers, their performances were compared in terms of leave-one-

out cross-validation accuracy, sensitivity, and specificity, as well as AUCs for both the training

Concussion classification via deep learning
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and testing datasets. In addition, results from bootstrapped samples were further provided to

account for the variation in prediction as compared with the traditional leave-one-out proce-

dure [58]. All data analyses were conducted in MATLAB (R2017b; Mathworks, Natick, MA).

Results

Strain-encoded whole-brain image volume

Fig 4 illustrates and compares peak WM fiber-strain-encoded images on three orthogonal

planes for a pair of striking and struck (non-injured and concussed, respectively) athletes

involved in the same head collision. Without feature selection, deep learning directly utilized

all of the strain-encoded WM image features for training and concussion classification.

Deep learning vs. SVM and RF

Without an explicit feature selection, deep learning outperformed both SVM and RF in accu-

racy and specificity, with sensitivity slightly lower than that of RF (Table 2). SVM performed

the worst in all categories. Feature selection improved the performances of both SVM and RF

in all categories, regardless of the specific feature selection approach. However, only RF-based

feature selection slightly improved the accuracy over deep learning, at the cost of slightly

poorer specificity (Table 3). Fig 5 shows the probability maps indicating the frequency of each

WM voxel serving as an important feature for classification using either the F-score or RF-

based approach. Features identified by the former was more substantial because 4% of all WM

voxels were selected from each trial, vs. only 1% for the latter method. For the RF-based

Fig 4. Cumulative WM fiber strains on representative orthogonal planes for a pair of striking (non-injury) and

struck (concussed) athletes.

https://doi.org/10.1371/journal.pone.0197992.g004

Table 2. Summary of results. Shown are leave-one-out cross-validation accuracy, sensitivity, and specificity based on

the testing dataset for the three feature-based machine learning classifiers. No feature selection was conducted and

WM voxels of the entire brain were used for classification. For RF, the 95% confidence intervals (CI) were also reported

based on the 100 random trials.

Deep learning SVM RF

Accuracy 0.845 0.724 0.810 (0.759–0.862)

Sensitivity 0.760 0.640 0.800 (0.699–0.880)

Specificity 0.909 0.788 0.818 (0.772–0.879)

https://doi.org/10.1371/journal.pone.0197992.t002
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method, the right superior longitudinal fasciculus (SLF-R) and left external capsule (EC_L)

were two dominant regions often selected for classification.

Feature-based machine learning vs. scalar injury metrics using univariate

logistic regression

The best performing deep learning, SVM and RF classifiers in terms of accuracy were obtained

with RF-based feature selection (Table 4). They all had significantly higher performances in all

categories than the scalar injury metrics from univariate logistic regression. Deep learning

continued to perform the best among all classifiers in AUC using the testing dataset. With the

leave-one-out scheme, ROCs were produced for each classifier based on the testing dataset

(Fig 6). Two additional ROCs corresponding to the best and worst AUCs, respectively, were

also produced for each classifier from the training datasets, as were typically reported in TBI

biomechanical studies ([8,12,13,18]; Fig 7).

The classifiers were further compared using an out-of-bootstrap approach [59] based on

100 individual bootstrapped samples (Table 5), where unselected samples in each trial served

as testing dataset for validation. Deep learning had the best accuracy and AUC, along with the

smallest .632+ error [58].

Finally, all classifiers were further evaluated by re-running the training/testing using ran-

domized concussion/non-concussion labels. For each classifier based on 50 individual trials,

none of the resulting mean accuracy, sensitivity, or specificity was significantly different from

0.5 (p>0.05 via two-tailed t-tests). This indicated all classifiers had reliable prediction power,

no selection bias was likely, and that they indeed captured features important for classification

[60].

Table 3. Performance summary. Shown are accuracy, sensitivity, and specificity of the three feature-based classifiers when using either the F-score or RF-based approach

for feature selection prior to classification (95% CI for RF in parentheses).

Deep learning SVM RF

F-score RF-feat F-score RF-feat F-score RF-feat

Accuracy 0.845 0.862 0.828 0.828 0.828 (0.793–0.862) 0.842 (0.810–0.862)

Sensitivity 0.880 0.840 0.800 0.760 0.768 (0.720–0.831) 0.787 (0.760–0.840)

Specificity 0.818 0.879 0.848 0.879 0.873 (0.848–0.909) 0.883 (0.849–0.909)

https://doi.org/10.1371/journal.pone.0197992.t003

Fig 5. Probability maps for WM voxels selected. (a and b): using the F-score or (c and d) RF-based approach based on 58 independent feature selections. In each trial,

the two approaches selected 4% and 1%, respectively, of the WM voxels as features. To improve visualization, only voxels with a probability greater than 50% (i.e.,

selected by at least 29 times) are shown. For the RF-based approach, SLF-R and EC-L were two dominant regions often selected for classification. See Matlab figure (S1

Fig) in the supplementary for interactive visualization.

https://doi.org/10.1371/journal.pone.0197992.g005
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Discussion

Developing an accurate and reliable injury predictor is one of the cornerstones in TBI biome-

chanics research for decades. Much of the work has so far focused on developing a single, sca-

lar metric to describe impact severity and to predict injury. Numerous kinematics and model-

estimated response variables have been proposed. Nonetheless, an “optimal” injury metric

remains elusive and does not yet exist. However, a single scalar metric may not be sufficient

for mTBI, including concussion, given the widespread neuroimaging alterations [20] and a

diverse spectrum of clinical signs and symptoms [61] observed in the clinic. In this study,

instead of similarly attempting to pinpoint an explicit response measure pre-defined in a spe-

cific ROI, we employed voxel-wise WM fiber strains from the entire brain as implicit features

for injury prediction. The classical injury prediction was formulated into a supervised classifi-

cation. Deep learning automatically distilled the most discriminative features from the strain-

encoded image volumes for concussion classification. This was in sharp contrast to the current

common approach in which a pre-defined scalar feature was essentially “hand-picked” to fit a

univariate logistic regression for classification.

Table 4. Performance summary of the best performing feature-based classifiers (all with RF feature selection) as well as of the four scalar metrics from univariate

logistic regression. Accuracy, sensitivity, specificity and AUC were reported based on the 58 separate injury predictions in the leave-one-out cross-validation framework.

The average AUC measures (and 95% CI) for the training datasets were also reported.

Deep learning SVM RF (95% CI) BrIC CSDM-WB CSDM-CC Peak-CC

Accuracy 0.862 0.828 0.842 (0.810–0.862) 0.776 0.741 0.776 0.690

Sensitivity 0.840 0.760 0.787 (0.760–0.840) 0.640 0.640 0.760 0.600

Specificity 0.879 0.879 0.883 (0.849–0.909) 0.879 0.818 0.788 0.758

AUC-Testing 0.892 0.872 0.856 0.781 0.786 0.771 0.737

AUC-Training

average

(95% CI)

0.967

(0.933,

0.978)

0.963 (0.951,

0.981)

1.000

(1.000, 1.000)

0.805 (0.797, 0.831) 0.838

(0.831, 0.860)

0.815

(0.807,

0.843)

0.770

(0.760,

0.791)

https://doi.org/10.1371/journal.pone.0197992.t004

Fig 6. Comparisons of ROCs based on the testing dataset for the total of 7 classifiers.

https://doi.org/10.1371/journal.pone.0197992.g006
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Our results demonstrated that all of the injury metrics evaluated here were able to capture

important features in the data to inform classification, based on the randomized label tests.

However, the feature-based machine learning, including deep learning, significantly outper-

formed all of the scalar injury metrics selected here, in nearly all of the performance categories

with either the leave-one-out (Table 4) or bootstrapped cross-validation approach (Table 5).

Only BrIC had a better specificity using the bootstrapped cross-validation (Table 5). Among

the feature-based classifiers, deep learning also outperformed the other two baseline

approaches in cross-validation accuracy regardless of whether features were first selected

(Tables 2–5). Both the F-score and RF-based approaches improved the performances of SVM

and RF. However, the latter was more effective for the RF classifier with increased accuracy,

sensitivity and specificity (Table 3). The RF-based feature selection also improved the accuracy

and sensitivity for the deep learning classifier, but at a cost of lowering specificity (Tables 2

and 3). In terms of the improved .632+ error rate, feature-based metrics continued to outper-

form other scalar metrics, with deep learning being the best (Table 5).

In terms of AUC that is widely used in current TBI biomechanics research [8,12,13,18], the

training dataset consistently generated larger scores than their counterparts using the testing

dataset (Table 4), with RF even achieving a perfect AUC score of 1.0 (Fig 7). All feature-based

Fig 7. Comparisons of ROCs based on the training datasets. For the deep/machine learning techniques, only results from those with the RF-based feature selection are

shown. The two ROCs correspond to the best and worst AUC, respectively.

https://doi.org/10.1371/journal.pone.0197992.g007

Table 5. Summary of results. Shown are out-of-bootstrap accuracy, sensitivity, specificity, and AUC (mean and 95% CI [59]), along with .632+ error [58] based on 100

bootstrapped trials using the best performing feature-based classifiers (all with RF feature selection) as well as those of the scalar metrics from univariate logistic regression.

Deep learning SVM RF BrIC CSDM-WB CSDM-CC Peak-CC

Accuracy 0.800 (0.650–0.915) 0.767 (0.614–0.903) 0.784 (0.628–0.903) 0.781 (0.636–0.950) 0.75 (0.600–0.882) 0.754 (0.583–0.882) 0.678 (0.522–0.833)

Sensitivity 0.766 (0.414–1.000) 0.713 (0.308–1.000) 0.769 (0.348–1.000) 0.665 (0.333–1.000) 0.671 (0.375–1.000) 0.734 (0.300–1.000) 0.588 (0.250–1.000)

Specificity 0.835 (0.617–1.000) 0.820 (0.554–1.000) 0.806 (0.565–1.000) 0.878 (0.667–1.000) 0.816 (0.600–1.000) 0.784 (0.500–1.000) 0.763 (0.533–1.000)

AUC-Testing 0.850 (0.729–0.979) 0.846 (0.714–0.977) 0.847 (0.712–0.986) 0.803 (0.643–0.974) 0.835 (0.664–1.000) 0.818 (0.600–0.967) 0.778 (0.568–0.926)

.632+ error 0.148 0.176 0.163 0.207 0.246 0.227 0.292

https://doi.org/10.1371/journal.pone.0197992.t005
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classifiers significantly outperformed the scalar metrics using either the testing (Fig 6) or train-

ing (Fig 7) dataset (average AUC of 0.873 vs. 0.769 for the testing dataset, vs. AUC of 0.977 and

0.807 for the training dataset, respectively). However, deep learning achieved the highest AUC

based on testing dataset (Table 4 and Fig 6).

The highest AUC from a single training dataset using the latest KTH model (of 0.9655,

when using peak WM fiber strain in the brainstem serving as the predictor [13]) was compara-

ble to that of the three feature-based predictors reported here (range of 0.963–1.000; Table 4).

However, no objective performance comparison can be made here as no cross-validation was

performed in that study.

Feature selection

Deep learning does not typically require an explicit feature selection [57], as it is performed

implicitly during the iterative training process. However, feature selection was important for

both SVM and RF, without which SVM had a rather poor performance. This was likely a typi-

cal “curse of dimensionality” due to the small sample size that led to data overfitting [55], espe-

cially since a simple linear kernel was used for classification. Both feature selection methods

were effective in improving performance. The RF-based approach consistently identified

regions in SLF-R and EC-L as important features (Fig 5). Incidentally, SLF-R was also found to

be one of the most injury discriminative ROIs based on injury susceptibility measures via

logistic regression [14]. The consistency here suggested concordance between the different

classification approaches based on the same dataset. However, caution must be exercised when

attempting to extrapolate this finding to other subject groups, particularly given that neuroi-

mages corresponding to a single subject were used here for the group of subjects that did not

account for individual variability. A subject-specific study would be desirable to address these

limitations in the future, which was not feasible here.

Feature-based classifiers vs. scalar injury metrics

Feature-based machine/deep learning classifiers utilized multiple features for classification.

It started from the entire voxel-wise WM fiber strains. With data-driven feature-selection

aimed at reducing redundant information in the input and to avoid data overfitting, multiple

features were retained for subsequent classification to maximize performance. In contrast,

scalar injury metrics relied on a single response variable often empirically pre-defined. Kine-

matic injury metrics, including BrIC, are typically constructed by using the peak magnitudes

of linear/rotational acceleration or velocity, and their variants. They characterize impact sever-

ity to the whole brain, but are unable to provide tissue response directly. While a head FE

model estimates tissue responses throughout the brain, only the peak response magnitude of a

single element in a pre-defined ROI (e.g., peak-CC) or a dichotomous volume fraction above a

certain threshold (e.g., CSDM-WB and CSDM-CC) is used for injury prediction. Similar to

kinematic injury metrics, critical information is lost on the location or distribution of peak

brain responses, even though such information is already available. Because of these inherent

limitations with scalar injury metrics, it was not surprising that all of the feature-based classifi-

ers significantly outperformed all of the scalar injury metrics, regardless of the performance

category.

Compared with scalar injury metrics, deep learning was the extreme opposite as it utilized

information from all of the WM voxels of the entire brain as input for classification. The

technique has also been successfully applied to three-dimensional neuroimages for injury

and severity detection [33]. Conceivably, this may enable a multi-modal injury prediction

combining both biomechanical responses (e.g., strain-encoded image volume in Fig 4) and
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corresponding neuroimages such as DTI of the same subjects to improve injury prediction

performance. This is beyond the capabilities of any kinematic or strain-based injury metrics

currently in use.

In addition, a strain threshold was necessary to dichotomize the brain ROI volumes for

CSDM measures. An “optimal” strain threshold of 0.2 was previously determined by maximiz-

ing the significance of risk-response relationship for the group of 50 deep WM ROIs [14].

While adjusting the strain threshold could provide additional fitting flexibility to further

improve the injury prediction performances of the scalar injury metrics, it may also lead to

inconsistencies in threshold when each individual ROIs were used for injury prediction. Simi-

larly to the ill-advised effort in reaching the absolute “best” performance with deep learning,

this is undesirable, as the strain threshold is related to the physical injury tolerance found from

actual in vivo/in vitro injury experiments. Importantly, deep learning and the two baseline

machine learning classifiers have consistently outperformed all scalar injury metrics using uni-

variate logistic regression. Therefore, this suggests strong motivation for further investigation

into the use of the more advanced feature-based concussion classifiers in the future.

Comparison with previous findings

With the same injury dataset, Zhao and co-workers analyzed the injury susceptibilities and

vulnerabilities of the entire deep WM ROIs and neural tracts [14]. A univariate logistic regres-

sion of each individual ROI/neural tract was conducted to report accuracy, sensitivity, specific-

ity, and training AUC averaged from 100 trials in a repeated random subsampling cross-

validation framework. A direct comparison was not feasible here because a leave-one-out

cross-validation scheme was adopted in this study instead. Nevertheless, deep learning contin-

ued to outperform or at least to be comparable to the performances of each individual ROI/

neural tract (e.g., accuracy of 0.862 with deep learning vs. 0.852 using point-wise injury suscep-

tibility in SLF-R). However, unlike the previous study that required registering the FE model

to a WM atlas to identify ROIs/neural tracts, no registration or segmentation was necessary

with deep/machine learning that used the entire WM voxels as input. In addition, the previous

study relied on dichotomized injury susceptibilities, which depended on a strain threshold

similarly to the CSDM metrics selected here. This was unnecessary with deep/machine

learning.

Another study identified Peak-CC to considerably outperform BrIC in AUC using all of the

reconstructed NFL impacts as a single training dataset (0.9488 vs. 0.8629 [13]). Here we

reported the opposite (average AUC of 0.770 vs. 0.805 for Peak-CC and BrIC in the training

dataset, respectively; Table 4). This suggested disparities between the two head injury models

and their analysis approaches. Perhaps most notably, the two models differ in material proper-

ties (isotropic, homogeneous vs. anisotropic for the WM). In addition, they have different

brain-skull boundary conditions (nodal sharing via a soft layer CSF vs. frictional sliding),

mesh resolution (average size of 3.2 mm vs. 5.8 mm), method to calculate fiber strain (projec-

tion of a strain tensor vs. assigning averaged fiber directions directly to FE elements), and even

segmentation of the CC [11].

Nevertheless, improving a model’s injury predictive power is a constant process. Together

with more well-documented real-world injury cases, further comparison of injury prediction

performances across models is important to understand how best to improve. A high AUC in

a training dataset does not necessarily indicate the same high level of AUC or other perfor-

mance categories using the testing dataset. For example, CSDM-WB had a higher AUC in

training (average value of 0.838, vs. 0.805 and 0.815 for BrIC and CSDM-CC; Table 4), but it

performed worse in cross-validation accuracy (0.714 with CSDM-WB vs. 0.776 for BrIC and
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CSDM-CC). Therefore, it is important that future studies utilize cross-validation, rather than

training or fitting, performances for objective evaluation and comparison.

Limitations

The superior performances of the deep learning and baseline machine learning classifiers were

encouraging. However, it must be recognized that only one head FE model and a single injury

dataset were employed here for performance evaluation and comparison. As even validated

head models could produce discordant brain responses [62], it is important to further evaluate

whether similar performance gains are possible with estimated brain responses from other

head injury models. In addition, errors in the reconstructed head impact kinematics [38] are

well-known, and the resulting uncertainties in model results, and implications in injury pre-

diction due to under-sampling of non-injury cases [13,18,22] have been extensively discussed.

Further, this dataset does not consider the cumulative effects from repetitive sub-concussive

head impacts, the importance of which is becoming realized. Therefore, the deep learning clas-

sifier trained here may not be readily applicable to other injury datasets and a fresh training is

necessary.

Importantly, a feature-based deep learning classifier has not been applied to TBI biome-

chanics before, despite its numerous recent successes across a wide array of scientific domains

[23]. The deep learning approach and cross-validation framework established here may set the

stage for continual development and optimization of a response-based injury predictor in the

future. With further cross-validation using more independent injury datasets, the value of

deep learning in TBI biomechanical investigations will be better studied.

Nevertheless, limitations with deep learning and its challenges in brain injury biomechanical

studies are also noted. First, empirical experience is often necessary to design the network struc-

ture, as a clear guideline is lacking. The fact that RF with feature selection outperformed deep

learning in sensitivity (when no features were explicitly selected) may indicate that the deep

neural network architecture may not be optimal, and there could still be room for improve-

ment. Second, unlike scalar injury metrics relying on explicit features, deep learning behaves

much like a “black box” without an obvious physical interpretation of the its internal decision

mechanism. Therefore, although an explicit feature selection was not necessary with deep learn-

ing, it may still be valuable to provide insight into the most injury discriminative features.

Third, the rather small dataset available in our study (58 cases) also placed a practical chal-

lenge in adopting some more advanced network architectures that often require a large dataset.

This was especially true as we used strain-encoded neuromimages rather than conventional

MRI for classification. For example, most conventional neuroimage-based disease classifica-

tions utilize structural MRI from the large Alzheimers Disease Neuroimaging Initiative

(ADNI) database for training and testing, with data sample size typically of hundreds or thou-

sands [32]. For neural network-based classifiers, often they employ various deep CNNs aug-

mented by a convolutional autoencoder [63], a transfer learning technique from a pretrained

network [64] such as a modified VGG network [65], a 3D CNN architecture [32], or multi-

modal stacked deep polynomial networks [66]. Deep neural networks could also be applied to

small datasets, e.g., by using transfer learning from pretrained, related tasks [67]. However,

pretrained tasks based on strain-encoded neuroimages do not currently exist, and it merits fur-

ther exploration whether knowledge from pretrained, unrelated tasks from other image

modalities can be applied to strain neuroimages. Regardless, our work may serve as a starting

baseline to motivate further development of advanced deep neural networks appropriate for

concussion classification using strain neuroimages, either alone or in combination with other

neuroimage modalities [32,33,66].
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Finally, the limitation of WHIM using isotropic, homogeneous material properties of the

brain was discussed [34]. In addition, a generic head model and the corresponding neuroi-

mages of one individual, rather than subject-specific head models and individualized neuroi-

mages, were used to study a group of athletes. Inter-subject variation in neuroimaging and

uncertainty in strain responses on an individual basis could not be evaluated. Nevertheless, a

generic model is a critical steppingstone towards developing individualized models and to cou-

ple with their own neuroimages for more personalized investigations in the future. This is

analogous to the typical 50th percentile head models currently in use that do not yet directly

correspond to detailed neuroimages [14].

Conclusion

We introduced a deep learning classifier into biomechanical investigations of traumatic brain

injury. The technique utilized voxel-wise white matter fiber strains of the entire brain as input

for concussion prediction. Based on reconstructed NFL head impacts, we showed that feature-

based classifiers, including deep learning and two baseline machine learning classifiers, outper-

formed all of the four selected scalar injury metrics in all performance categories in a leave-

one-out cross-validation framework. Deep learning also achieved higher performances than

the two baseline machine learning techniques in cross-validation accuracy, sensitivity, and

AUC. The deep neural network developed here was by no means optimal or was ready for

deployment in a more typical, general population. Nevertheless, the superior performances of

deep learning and conventional feature-based machine learning in concussion prediction,

especially relative to the commonly used scalar injury metrics via univariate logistic regression,

suggest its promise for future applications in biomechanical investigations of traumatic brain

injury.

Supporting information

S1 Fig. A Matlab figure showing the probability maps of selected white matter voxels

(above 50% probability) using either the F-score or RF-based approach.
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Appendix

Deep learning backpropagation for supervised training

An objective error function from the previous network layer (see Fig 2) can be used to maxi-

mize the input-output correlation either in an unsupervised [68] or a supervised [69] manner

to minimize training error. Here, we used a supervised method for concussion classification,

as supported by Caffe [52]. A Softmax classifier [50] based on condensed feature vector was

adopted. Mathematically, this classifier is defined as:

Sx jð Þ ¼
exðjÞ
P

kexðkÞ
ðA1Þ
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where x(j) and x(k) are the j-th and k-th element of the feature vector, x, respectively, obtained

from the trained network (output from the final layer). The classifier was trained by minimiz-

ing the Cross-Entropy error function relative to the known data label, t(k), of either 0 or 1 (rep-

resenting concussion or non-injury, respectively, in our study) for a training dataset, x, and its

corresponding classifier output, Sx [70]:

EðxÞ ¼ �
P

k½tðkÞlogSxðkÞ þ ð1 � tðkÞÞlogð1 � SxðkÞÞ� ðA2Þ

The total error, E = ∑xE(x), for the training dataset served as the objective function for train-

ing via a backpropagation algorithm, as described below.

For a deep learning network with parameters, W = {Wl} and b = {bl}, the error function in

Eq A2 can be represented as E(W,b), which quantifies the classification error between the pre-

dicted and ground-truth labels. Deep network training is to optimize W and b in order to min-

imize the error, E. An efficient approach is through a backpropagation algorithm [69]. First,

the network performs a forward propagation (Eqs 1 and 2) to produce classification and the

error function value. For a network of L layers, the gradient of the error function with respect

to xl at the l-th layer (l� L), dl ¼ rxl
E, can be iteratively computed via the following backpro-

pagation:

dL ¼ raL
E
K

s0LðxLÞ ðA3Þ

dl ¼W
T
lþ1

dlþ1

K
s0 lðxlÞ ðA4Þ

where
J

is the element-wise product. These gradients are used to minimize E via a gradient

descent algorithm. Eqs A3 and A4 are derived by the chain rule in calculus, and the mathemat-

ical details can be found in standard neural network textbook (e.g., [50] Chap. 4.7). After com-

puting δl, the gradients with respect to W and b are finally obtained:

rbl
E ¼ dl ðA5Þ

rWl
E ¼ dl 
 a

T
l� 1

ðA6Þ

where
 represents the tensor product. The following pseudo algorithm describes the training

process for a network of L layers.

1. Input training set X;

2. For each training sample x in X:

a. Compute the forward transformations (Eqs 1 and 2) from layer 2 to L

b. Compute the error, δL(x), (Eq A3) for layer L

c. Compute backpropagation, δL(x), (Eq A4) from layer L to 2

3. Gradient descent (for a given step size, λ>0):

a. Update W:Wl  Wl �
l

jXj

P
xdlðxÞ 
 a

T
l� 1
ðxÞ from Layer L to 2

b. Update b: bl  bl � l

jXj

P
xdlðxÞ from Layer L to 2

The training continues until the network is converged to generate optimized network

parameters, W and b, which are then fixed to perform classification on the cross-validation

dataset.
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