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We propose a novel method that uses associative classification and odds ratios to predict

in-hospital mortality in emergency and critical care. Manual mortality risk scores have

previously been used to assess the care needed for each patient and their need for

palliative measures. Automated approaches allow providers to get a quick and objective

estimation based on electronic health records. We use association rule mining to find

relevant patterns in the dataset. The odds ratio is used instead of classical association

rule mining metrics as a quality measure to analyze association instead of frequency. The

resulting measures are used to estimate the in-hospital mortality risk. We compare two

prediction models: one minimal model with socio-demographic factors that are available

at the time of admission and can be provided by the patients themselves, namely gender,

ethnicity, type of insurance, language, andmarital status, and a full model that additionally

includes clinical information like diagnoses, medication, and procedures. The method

was tested and validated on MIMIC-IV, a publicly available clinical dataset. The minimal

prediction model achieved an area under the receiver operating characteristic curve value

of 0.69, while the full prediction model achieved a value of 0.98. The models serve

different purposes. The minimal model can be used as a first risk assessment based on

patient-reported information. The full model expands on this and provides an updated

risk assessment each time a new variable occurs in the clinical case. In addition, the rules

in the models allow us to analyze the dataset based on data-backed rules. We provide

several examples of interesting rules, including rules that hint at errors in the underlying

data, rules that correspond to existing epidemiological research, and rules that were

previously unknown and can serve as starting points for future studies.
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1. INTRODUCTION

The term in-hospital mortality defines the death of a patient
during their stay at the hospital. Especially in emergency and
critical care, many patients die in the hospital. While not all of
these deaths can be prevented, early knowledge of a patient’s in-
hospital mortality risk can be used to assess the patient’s status
and necessary adjustments to this patient’s care, reducing missed
care and decreasing mortality rates (1). Apart from individual
changes like the start of palliative care, organizational changes
like a different allocation of nurse time or other resources can
be informed by such risk scores. In-hospital mortality rates have
also been used in the assessment of hospital care quality, as is the
case in the United Kingdom (2).

In-hospital mortality risks are commonly determined
manually (3). Manual scoring systems are built upon expert
knowledge and have gone through significant development
time. Another approach is Machine Learning (ML), which uses
data and statistical methods to build a predictive model (4).
Several methods for ML-based methods have been developed
in recent years (5–7). While these approaches offer data-based
evidence that is independent of expert knowledge, they face
two challenges.

First, they often lack interpretability. As critical care is a life-
and-death situation, providers need to be able to understand
why a patient’s status is assessed the way it is. Interpretability in
Machine Learning is a broad field. Two distinctions to be made
are local vs. global interpretability, i.e., whether the interpretation
concerns one observation or the whole population, and model-
specific vs. model-agnostic interpretability, i.e., whether the
interpretation comes from within a specific model or is built
on top of an existing model (8). We consider global model-
specific interpretability. This offers two decisive advantages. First,
global interpretability allows us to not only make predictions
based on data, but also to explore the complex and heterogeneous
data underlying our prediction model. Second, model-specific
interpretability allows us to explain the reasoning behind our
model and its inner workings to providers. Interpretability in in-
hospital mortality risk estimation has previously been discussed
(6, 9) and a trade-off between a predictionmodel’s interpretability
and predictive performance has been identified. Among the
commonly used algorithms, Decision Trees (10) often offer high
predictive performance while being highly interpretable (6).

The second challenge arises from the high number of possible
variables in in-hospital mortality risk estimation. As critical
care is complex, many variables can potentially play a role in
estimating a patient’s in-hospital mortality risk. This renders
many common ML algorithms challenging to use and increases
models’ complexity, further hindering interpretability. Manual
methods use expert knowledge from years of scientific research
to identify which variables to include. Variables that were
previously not considered but are readily available could play
a role in in-hospital mortality risk estimation because they are
highly correlated.

Association rulemining (ARM) is often used to detect patterns
in high-dimensional data (11). This data miningmethod analyzes
a given dataset for rules of the form “A ⇒ B,” where A

and B are sets of items, which in our case describe variable-
value pairs. Such a rule denotes that in an observation in the
dataset in which the items in A occur, the items in B will also
likely occur. This algorithm produces a set of rules that fulfill
pre-configured quality constraints. In the neighboring field of
associative classification (AC), this class of algorithms is used to
mine rules that help in the classification task at hand (12). AC
algorithms first mine rules in which the right-hand side is the
outcome of interest and then build a classifier based on these
rules, e.g., by using the best rule that applies to an observation
or by aggregating all applying rules (12). This leads to predictive
models that are easy to interpret and offer a human-readable,
model-specific, and global interpretation. Additionally, the rules
in the model can be used to analyze the dataset itself due to their
statistical nature. This helps detect interesting patterns in the data
that correspond to correlations between clinical variables and the
outcome of interest.

AC methods have previously been used in various fields of
healthcare, including the prediction of outcomes and adverse
events (13–16), the prediction of diseases and wellness (17–20),
as well as biochemistry and genetics (21–25). AC methods have
also been used in the field of in-hospital mortality risk estimation
using the results of 12 lab tests (26). This shows the feasibility of
AC methods in in-hospital mortality risk estimation.

We aim to improve automated, ML-based in-hospital
mortality risk estimation methods by including heterogeneous
variables as well as more variables in general. ARMmethods, and
thus also AC models, can incorporate large numbers of variables
of different types, which is why we analyze the feasibility of AC
models for in-hospital mortality risk estimation. We propose to
use AC models to estimate the risk for in-hospital mortality risk
estimation in critical and intensive care. The goal of the present
study is 1) to analyze whether this approach is feasible and 2)
which kind of rules are found to by such methods and which
variables play a role in the prediction. This expands our previous
work (27) in major ways. First, we present two models to analyze
the temporal evolution of the prediction. Second, we expand our
analysis of the resulting rules. Third, we compare our models to
Decision Tree models. Lastly, we add more experiments to gain
more insight into the model size.

2. MATERIALS AND METHODS

The method presented in this section was developed in the
programming language C#. The overall concept of the proposed
method, as well as a comparison to Decision Trees, can be seen
in Figure 1. Based on a publicly available clinical dataset, we
first mine association rules from the data. The resulting rules
are then combined into a prediction model that can be applied
to previously unseen cases. Finally, we test and validate the
proposed method using experiments.

2.1. Dataset
We used data from the MIMIC-IV project, version 0.4 (28).
MIMIC-IV is a collection of around 525,000 emergency
department and intensive care unit cases, collected between
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FIGURE 1 | The overall concept of the method in comparison to decision trees.

TABLE 1 | A list of all variables from MIMIC-IV that were used in this study.

Variable type Minimal model? Description # variables

Diagnosis Diagnoses (coded as ICD) 86,751

Ethnicity X White, Asian, Black/African American etc. 8

Gender X Binary: male/female 2

Insurance type X Medicare, Medicaid, or Other 3

Language X Binary: English/other 2

Marital status X Single, married, divorced, widowed, or missing 5

Prescription Drugs described to a patient 10,259

Procedure Procedures (coded as ICD) 82,763

Service Clinical services: neonatal, psychological etc. 21

Ward Clinical wards: intensive care unit, surgery etc. 43

Overall 5 of 10 179,857

The table includes the name of the variable type, whether it is part of the minimal model, a description, as well as the number of variables. ICD International Classification of Diseases.

2008 and 2019 at the Beth Israel Deaconess Medical Center
in Boston, Massachusetts, United States of America. Recorded
variables include diagnoses, procedures, drug prescriptions,
socio-demographic factors like gender, insurance type, and
marital status, and organizational information like diagnosis-
related groups (DRGs), wards, and services.

Table 1 lists all types of variables used in this study. We
included all categorical information that can be assumed to be
available inmost clinical contexts. This excludes rapidly changing
information like vital parameters as well as textual notes. Not all
of this information is available at the beginning of a clinical case.
Some information, like diagnoses, is recorded later in the case.
We thus divided the variable types into two classes. In the first
class, only variables that are available at the beginning of the cases
are considered. These will be used to build a minimal model to
estimate the in-hospital mortality risk right at the beginning of

the case. The second class contains all variable types and is used
to build a full model based on all available information.

All cases have been transformed into a set of items to enable
ARM. This was done by adding all variables that occurred during
a case to the case’s itemset. We did not exclude any case in order
to get a general in-hospital mortality risk estimation model.

This results in 179,857 clinical variables and 524,520 cases, in
9,369 (1.79%) of which the patient died during their stay in the
hospital. This in-hospital mortality rate is comparable to similar
populations like England (2).

2.2. Rule Mining
Due to the presence of rare diseases or smaller patient subgroups,
infrequent rules can be of interest in healthcare. This is why we
do not use the classical ARMmetrics like support and confidence
(11) that focus on frequency, but instead epidemiological metrics
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TABLE 2 | A fictional contingency table to show how the OR is calculated.

Died Survived

Items in A occurred a = 100 b = 200

Items in A did not occur c = 300 d = 400

that are widely used to measure associations between clinical
variables and outcomes. We use the odds ratio (OR) as the
primary metric to measure this association. Odds ratios have
previously been used in ARM in healthcare (13). Starting from
a contingency table like the one in Table 2, the OR can be
calculated as

OR =
ad

bc
=

100 · 400

200 · 300
=

4

6
= 0.6̄, (1)

indicating that there is a negative association between the items
inA and in-hospital mortality. The setA can contain one or more
items of one or more different types. This flexibility makes ARM
techniques easy to use with large, heterogeneous data. ORs range
from 0 to +∞. An OR of 1.0 denotes no classification, while an
OR ≤ 1.0 denotes a positive or negative association, respectively.
The higher (in the case OR > 1.0) or lower (OR < 1.0), the
stronger the association.

The mining process consists of two steps. In the first step, a
contingency table like the one in Table 2 is constructed for each
variable by counting the cases with and without the variable as
well as with and without in-hospital mortality. From this table,
the odds ratio is calculated according to Equation (1). Note that
this also includes ORs lower than 1.0, which denotes a negative
association. ORs of 0 or ∞ are discarded. This corresponds to
one of the cell entries a, b, c and d being 0.

In the second step, the model size is reduced by applying
a filter to the rules constructed in the first step. As an OR of
1.0 denotes no association, we use a statistical hypothesis test to
ensure that the calculated OR differs significantly from 1.0. The
normal approximation of the log odds ratio (29) is used. The null
hypothesis is “OR = 1.0,” and the test returns a two-sided p-
value. Only ORs with a p-value below a configurable value pmax

are kept. As this method results inmany tests on the same dataset,
Bonferroni correction (30) can be used. This procedure divides
pmax by the number of tests to be executed and uses this quotient
as the threshold value instead of pmax. All rules of the form
“variable ⇒ in-hospital mortality,” together with their OR, that
are left after this filtering step then form the prediction model.

2.3. Prediction
Given a new observation, the prediction model can be used to
estimate the corresponding patient’s in-hospital mortality risk
using the model’s rules. First, all the rules that apply to the model
are determined. The remaining rules do not play a role in this
observation’s prediction. The ORs of these applying rules are
then aggregated by calculating their average value. A decision
boundary δ is used to decide which average OR leads to the
prediction of high in-hospital mortality risk. If ORp is the average

OR of all rules that apply to observation p, then the prediction
model’s decision function f (p) is

f (p) =

{

high in-hospital mortality risk, if ORp ≥ δ,

low in-hospital mortality risk, if ORp < δ.
(2)

2.4. Experiments
The following hyperparameters were used. The p-value threshold
pmax decides which rules are kept in the filtering step.We used the
thresholds 10−n for n in {0, 1, . . . , 10} as well as the commonly
used value 0.05. All of these thresholds were used with and
without Bonferroni correction. Additionally, a value of 0 was
used to only keep ORs with a p-value of exactly 0. This was
possible due to the high number of observations. As computers
use finite representations of floating-point numbers, this should
be understood to be exactly zero after internal rounding. This
resulted in 13 · 2 = 26 experiments. Each experiment was
repeated ten times. Each time, the dataset was randomly split
into 90% training set and 10% test set. The primary metric of
interest was the area under the receiver operating characteristic
curve (AUC) (31). The AUC values were calculated using the
Accord Framework, version 3.8.0 (32). All metrics have been
calculated both on the training and the test set to analyze possible
overfitting. The experiments were executed for both the full
model and the minimal model.

3. RESULTS

The AUC values achieved by the proposed method can be seen
in Figure 2. For the full model, the mean AUC values on the test
set range from 0.977 to 0.980, which shows that the filtering step
has a minor impact on the predictive performance. With a range
of 0.687 to 0.690, this is also true for the minimal model. In both
cases, the difference to the training set is low, indicating that the
method does not suffer from overfitting. The largest deviation in
mean AUC values was 0.001 for the full model, pmax = 1 and no
Bonferroni correction.

Figure 3 shows the number of rules in both models. In the
minimal model, the number of rules is almost constant. This can
be explained by the small number of variables, as only 20 variables
are considered. In the full model, on the other hand, almost
180,000 variables can be included in the model. The number of
rules grows exponentially, with Bonferroni correction slowing
the growth down considerably. Still, the number of rules reaches
into the thousands. As such a large number of rules is hard to
handle, a strict p-value filter is advisable if interpretability is of
interest. As the performance stays almost the same with lower
pmax values, but the number of rules is considerably lower, we
can deduce that the statistical significance test is an effective filter
that greatly reduces the size of the prediction model without
compromising the predictive performance. Still, around 1,220
rules remain even for the full model with pmax = 0. As can be
seen in Figure 4, this is due to the complexity of the problem.
In-hospital mortality can be caused and influenced by many
factors. Per observation, however, only around 22 to 36 rules
apply when using the full model, depending on pmax and the use
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FIGURE 2 | The AUC values of the full model (top) and the minimal model (bottom). Error bars show one standard deviation, the color indicates whether the test or

the training set was used. The left panel is without, the right panel with Bonferroni correction. The x-axis shows different p-values used in the filtering step. The

leftmost dot denotes the p-value zero. The full model clearly outperforms the minimal model. Both models are very stable with respect to both the p-value threshold

and Bonferroni correction.

of Bonferroni correction. On average, around 4 to 5 rules apply
when using minimal model.

In the remainder of this study, we further analyze small
prediction models, as they are easier to manage and interpret
and have a comparable predictive performance. For both the full
model and the minimal model, the lowest threshold pmax = 0
was used. In this case, Bonferroni correctionmakes no difference.

This results in a full model with 1,217 rules and an AUC
of 0.98 and a minimal model with 13 rules and an AUC
of 0.69.

The full model clearly outperforms the minimal model. This
is to be expected, as the minimal model only contains very
limited data. The variable types ethnicity, gender, insurance type,
language, and marital status contain no information that could
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FIGURE 3 | The number of rules the full model (left) and the minimal model (right). Error bars (which are very small) show one standard deviation, the color indicates

whether Bonferroni correction was used. The x-axis shows different p-values used in the filtering step. The leftmost dot denotes the p-value zero. The number of rules

increases exponentially in the full model, while this effect is much smaller in the minimal model. The minimal model has fewer rules than the full model.

help determine the cause of the clinical stay or the patient’s health
status. However, it is noteworthy that the minimal model still
achieves an AUC of 0.69 with this limited information. As all
this information is readily available and patient-reported, the
model can be used as a first assessment before any provider
encounter. The corresponding receiver operating characteristic
(ROC) curve can be seen in Figure 5. To choose a decision
boundary, we searched for the highest Youden index (33), which
is equivalent to optimizing the sum of sensitivity and specificity.
The corresponding minimal model uses a decision boundary of
1.015, which results in an accuracy of 63%, a sensitivity of 66%,
and a specificity of 63%. Other decision boundaries are possible,
depending on the context in which they are used. Varying the
decision boundary will affect both sensitivity and specificity of
the model.

This additional information in the full model improves the
predictive performance considerably. With an AUC of 0.98, the
model can almost perfectly predict the in-hospital mortality risk.
The corresponding ROC curve can be seen in Figure 6. With an
optimal decision boundary of 5.306, this results in an accuracy of
93%, a sensitivity of 95%, and a specificity of 93%.

All analyses were done in the R programming language (34),
using the tidyverse packages (35). The rules of both models can
be found in the Supplementary Materials.

3.1. Analysis of Rules
Apart from their predictive qualities, the rules in the models
also allow us to analyze the algorithm’s reasoning. The 13 rules
in the minimal model span all five included variable types.
These rules indicate that male patients die more often than
female patients (ORs 1.25 vs. 0.80), that English speakers are
more likely to survive than others (0.73 vs. 1.36), and that
Medicare patients are more likely to die than Medicaid and other
patients (2.40 vs. 0.57 vs. 0.50). The ethnicities ‘Hispanic/Latino’
and ‘Black/African American’ are negatively associated with in-
hospital mortality (0.47 and 0.58), while ‘unknown’ and ‘unable
to obtain’ have higher ORs (4.59 and 2.25). The marital status
‘widowed’ is positively associated with in-hospital mortality
(2.05), while being single is negatively associated with in-hospital
mortality (0.50).

From the five variable types in theminimal model, the same 13
rules are in the full model. The remaining 1,204 rules span over
the five other variable types with 602 diagnosis, 445 prescription,
131 procedure, nine service, and 17 ward rules.

Only five diagnosis rules are negative associations, namely
three diagnoses on single liveborn infants (0.08-0.16), encounters
for immunizations (0.06), and unspecified chest pain (0.11).
The remaining 597 rules can be categorized into various
groups of rules that describe variants of the same pattern.
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FIGURE 4 | The number of rules that apply to an average case in the full model (left) and the minimal model (right). Error bars (which are very small) show one

standard deviation, the color indicates whether Bonferroni correction was used. The x-axis shows different p-values used in the filtering step. The leftmost dot denotes

the p-value zero. Only a small fraction of all rules apply to an individual case, making it easy to interpret the model and its decisions.

FIGURE 5 | The receiver operating characteristic of the minimal model.

Examples include alcohol abuse and its consequences (2.34–
11.69), anemia (1.67–4.56), various forms of hemorrhage
(3.32–582.13), neoplasms (3.50–13.66), pneumonia (6.27–18.49),

FIGURE 6 | The receiver operating characteristic of the full model.

pressure ulcers (5.29–17.96), sepsis and septicemia (4.15–33.18),
and diabetes (1.56–13.20). Some doubling occurs due to two
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TABLE 3 | A list of rules that apply to a fictional patient.

Variable type Description OR Minimal model?

Ethnicity Black/African American 0.58 X

Gender Female 0.80 X

Insurance type Medicaid 0.57 X

Language English 0.73 X

Marital status Single 0.50 X

Diagnosis Acidosis 10.96

Diagnosis Anuria and oliguria 17.27

Prescription Sodium Bicarbonate 11.54

Prescription Furosemide 5.00

This is also how the applying rules could be shown to providers.

versions of the International Classification of Diseases being used
in the dataset.

This also concerns the 131 procedure rules. Here, examples
of groups of rules are catheterizations (2.59–21.11), drainages
(5.53–22.06), ventilation (2.44–26.02), and transfusions (3.66–
13.51). No procedure rule has an OR below 1.0.

Only 17 out of 445 prescription rules are negative. As some
drugs are recorded with slightly different names, different doses
or different mode of administration, some doubling occurs.
One extreme example is sodium chloride with 20 rules. The
rules “0.45% Sodium Chloride” and “0.45 % Sodium Chloride”
(note the space) have ORs of 2.11 and 94.94, respectively. The
difference in ORs can be explained by the unequal distribution
across units. While 18 of the 23 (78%) cases with “0.45 %
Sodium Chloride” in MIMIC-IV were in at least one Intensive
Care Unit, only 3375 of the 15,180 (22%) cases with “0.45%
Sodium Chloride” were in at least one Intensive Care Unit.
This indicates that there are some unexpected inconsistencies in
the data. With almost 180,000 variables, it would be impossible
to check all variables manually for inconsistencies due to
variations in practice. Other prescription rule groups with high
variation include Heparin (2.10–68.58), vaccines (0.01–2.82), and
lidocaine (2.10–15.55).

Three service rules are negative, namely obstetrics (0.01),
newborn (0.17), and orthopedic (0.19). The positive rules
include four medical services (1.64–2.62), trauma (2.39),
and neurologic surgical (2.73).

Finally, five out of 17 ward rules are negative, with three
being at least partially about childbirth (0.02–0.48). The six rules
with the highest ORs (7.55–13.25) are all the intensive care units
in the dataset. Both the service and ward rules reflect different
patient populations with different reasons for the clinical stay.
The in-hospital mortality risk is vastly different between pregnant
women and traffic accident victims that need intensive care,
for example.

Overall, only 37 of 1,217 rules are negative. The five rules with
the lowest ORs are about childbirth (0.00–0.04) and a Hepatitis
B vaccine (0.01), the five highest ORs are medications used in
palliative care (Morphine and Angiotensin II, 856.26 and 332.77),
subdural hemorrhage (582.14), and two rules on brain death
(413.38 and 668.41). These last two rules are unexpected. Brain

death should always co-occur with in-hospital mortality, which
would exclude this OR of∞. Their occurrence hints at an error in
the data. Braindead patients who are organ donors are recorded
as having died, but then another case is opened for them with the
diagnosis of brain death, but it is recorded that they survived this
second case. This leads to more inconsistent data contained in
MIMIC-IV, which can now be seen in the prediction model.

3.2. Interpretability
To study the proposed method’s interpretability, we give a
fictional example of how the prediction model can be used.
Table 3 shows the rules that apply to a fictional patient in the
emergency department. This list of rules is how the prediction
model’s decision could be shown to providers. Apart from the
decision, the rules also explain what the case is about. The items
in the minimal model give us a first assessment. The patient is
female, Black/African American, single, insured under Medicaid,
and speaks English. This results in an average OR of 0.64, which
is below the decision boundary of 1.015. This tells us that, based
on the minimal model, our patient is low-risk.

In the full model, more information becomes available. For
example, suppose that the following information has become
available after 20 min in the emergency department. We now
know that acidosis and anuria or oliguria was diagnosed. The
patient was given Sodium Bicarbonate and Furosemide and is
currently in the emergency department. While this is not much
information due to the short length of stay, it allows us to update
our risk estimation.With an average OR of 5.328, which is greater
than the full model’s decision boundary of 5.306, we conclude
that the patient currently has a high in-hospital mortality risk,
but she is close to the decision boundary. We see that not only
are the models interpretable, but they can also be used to get a
quick overview of the case at hand.

3.3. Comparison to Decision Trees
We compared our models to Decision Trees models, which
are the state of the art in interpretable machine learning for
in-hospital mortality as they show the best trade-off between
performance and interpretability (6).

We trained Decision Tree classifiers using scikit-learn, version
0.24.2 (36), with varying maximal depths. As the dataset is highly
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FIGURE 7 | Various metrics on the Decision Tree models. The left panels are the full model, while the right panels are the minimal model. The color denotes whether

the training or the test set was used to produce these metrics. On the x-axis, various maximal tree depths were analyzed. For the full model, there is major overfitting.

The test set sensitivity quickly drop below the training set sensitivity for higher maximal tree depths. For the minimal model, the sensitivity also drops below the training

set’s sensitivity.

imbalanced, with over 98% of patients surviving, we used the
balanced class weight option to give more weight to the rarer
class. These experiments were executed for both the full and the
minimal model.

The results are visualized in Figure 7. For the minimal model,
the results are very similar to our proposed method. Above a
maximal tree depth of five, the metrics are stable, with only
small deviations in the sensitivities of the training and test set.

Figure 8 shows the number of leaves in the trees, which can
be understood as the number of possible paths in the tree and
thus as the number of rules that can be extracted from such a
tree. The number of leaves in the minimal Decision Tree model
grows quickly to around 433. The growth stops at a maximal tree
depth of around 15, and the model’s size stays relatively stable. A
maximal depth of at least six is needed to achieve a stable model
with low standard deviations and satisfactory metrics, at which
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FIGURE 8 | The number of leaves in the Decision Tree models. The full model

increases exponentially. The minimal model’s size is constant above a depth of

around 15.

point the model already contains around 60 leaves. Our proposed
method’s minimal model only needs 13 rules for comparable
performance. We thus see that while the predictive performance
is similar to our proposed minimal model, the complexity of the
model is higher.

The full Decision Tree model suffers from major overfitting,
as can be seen in the sensitivity values of the test set, which
drop below the training set sensitivity for maximal tree depth
values above five. With the highest sensitivity of 90%, Decision
Trees cannot outperform our proposed method’s full model in
terms of detecting high-risk cases. On the other hand, decision
Trees achieve a slightly higher specificity of 97% and thus
detect low-risk cases more reliably. Note that the choice of a
decision boundary impacts both sensitivity and specificity of the
proposed method, and another decision boundary for the full
model (namely 6.081) leads to almost the same metrics as the full
Decision Treemodel (namely a sensitivity of 90% and a specificity
of 96%). In this way, the higher specificity at the cost of a lower
sensitivity can also be achieved with the full model.

As can be seen in Figure 8, the number of leaves grows
exponentially in the full model, just as the number of rules does.
In comparison to Figure 3, there are more rules in our proposed
method then leaves in the Decision Tree methods. With Decision
Trees, however, the paths are muchmore complex, as their length
can go up to the maximal tree depth. We provide one example
full Decision Tree model with a maximal tree depth of seven in
the Supplementary Materials. At this depth, the Decision Tree
model does not yet suffer from major overfitting, resulting in a
test accuracy of 93%, sensitivity of 90%, and specificity of 94%.
The tree contains 103 leaves and 204 decision nodes.

Following the first chain in the tree, the model decides
that the patient is low-risk due to the variables “5% Dextrose,”
“Morphine Sulfate,” “Encounter for palliative care,” “Insertion
of endotracheal tube,” “Encounter for palliative care,” and
“Vasopressin” being absent in the case. If the diagnosis “Less than
24 completed weeks of gestation” were present, the model would
decide that the patient is high-risk. This means that the variables’
influence is combined into a chain of yes-no choices, and one
change in the decision chain can alter the model’s decision.
This hides each variable’s influence on the decision as it could
occur multiple times in the tree, but each patient only activates
one chain. Our proposed method separates all the variables into
one-to-one rules, making it easier to identify each variable’s
importance individually. The combination of the variables into
one decision takes place during the prediction, where the whole
context of the case is taken into account and we get an overview
of the case.

Another challenge in the interpretation of decision tree
models is the combination of variables in each chain. The variable
“Encounter for palliative care” occurs twice in the same chain
due to two International Classification of Diseases versions being
used. Additionally, the variable “Less than 24 completed weeks of
gestation” does not match the palliative care diagnoses. The tree
structure does not allow us to get an overview of the case at hand
as it also highlights variables that did not occur during the case,
obfuscating what actually happened. Our full model shows which
rules apply to the case and thus give us an explanation of what
happened during the case. Building the decision on top of this
knowledge helps providers understand the model’s decision.

In summary, Decision Tree models do not offer performance
improvements and show limited interpretability compared to our
proposed model. This is due to the fact that more complexity
in the Decision Tree Models is needed to achieve a comparable
predictive performance and because Decision Trees combine
various variables in chains of yes-no-choices. Additionally,
Decision Treemodels introduce order to the variables, as the tree-
like structure divides the dataset sequentially. On the other hand,
our model treats every variable individually, independent of the
other variables, making it easier to analyze each variable’s effect.

4. DISCUSSION

Associative classification based on ORs is a feasible method
for in-hospital mortality risk estimation. Apart from the high
predictive quality of the full model, the proposed method also
allowed us to analyze the dataset based on the rules contained
in the prediction model. The proposed method is not prone to
overfitting and generalizes well.

While the AUCs of the minimal model are much lower, its
predictive qualities are relatively high. Only socio-demographic
information that can be provided by the patient is added, there
is no information on the case at hand. This hints at underlying
structural differences. The information what its effects are on
individual patients can be valuable information for providers.

The fictional patient described above is an example of how
the prediction models can be easily explained to providers. This
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interpretability also helps us understand the clinical data and
discover patterns and inconsistencies in the data. As shown in
the examples of brain death and sodium chloride, inconsistencies
in the data show up as unexpected rules or rules with similar
variables but vastly different ORs.

Other rules can serve as starting points for future studies.
One example are the language rules. The evidence in support of
an effect of primary language on in-hospital mortality is limited
(37, 38). Nevertheless, our rules suggest some underlying effect
exists with ORs of 0.73 for English speakers and 1.36 for others.
Further research is needed to analyze the differences in these
groups and whether this effect is due to documentation practice.

The majority of rules reproduce known associations or
associations that are evident and explainable with expert
knowledge. Examples for the latter include the higher
mortality in intensive care units due to the higher number
of critical cases, the low mortality in childbirth rules, the high
mortality in Medicare patients due to confounding by age,
and various diagnoses that are either indicative of palliative
care (like Morphine or Angiotensin II) or of low-risk cases
like immunizations.

Some of the rules for which previous research exists include
the following. Diabetes insipidus (13.20) has previously been
identified as a potential cause of missed care and increased
mortality (39, 40). Alkalosis (5.39–8.10) is associated with
increased mortality (41). Alcohol dependence (2.34-11.69) can
lead to various health problems of cognitive, cardiovascular, and
gastrointestinal nature, among others (42). Each of these, in turn,
can contribute to increased mortality and emergencies that lead
to increased in-hospital mortality.

4.1. Limitations and Outlook
The present study has major limitations. First, only categorical
data that changes slowly is considered. This excludes other
interesting data like vital parameters and many biomarkers. Due
to the rule-based approach, quantitative data have to be grouped
into bins. Quickly changing data could easily be added to the
method, but this would require analysis on a higher temporal
resolution. Timestamps for all of the variables in the underlying
dataset would help get more information from each case.

A second limitation is the lack of causal explanations. All the
rules in both models are correlations between the variable and
in-hospital mortality. They do not explain why this correlation
exists. Future work is needed to introduce causal inference
mechanisms into the presented approach.

There are several further possibilities for future work.
While the inconsistencies encountered in the dataset do not

harm the proposed method’s predictive performance, it might
be helpful to remove them. However, it requires efforts to fix
potential inconsistencies in thousands of clinical variables. Future
research is needed to assess the consequences of resolving the
inconsistencies as well as the potential for automated solutions
to do so.

Longer rules, i.e., rules with more than one item on the
left-hand side, can be created using ORs. This has not been
analyzed in this study for two reasons. First, the predictive
qualities are very good as-is, so more complex rules are not
expected to bring much improvement. Second, more complex

rules hinder interpretability. In the present form, the rules
separate all variables and make them analyzable in isolation. This
sets the proposed approach apart from Decision Trees, where
many variables are merged into more complex rules, lowering the
method’s interpretability.

The proposed method was tested and validated using in-
hospital mortality as an example. Other variables in MIMIC-IV
could be used as the outcome of interest without changes to the
model. This, of course, results in other sets of rules and different
predictive performance, but the interpretable nature of the model
remains the same.

One open question is the usability of the proposed method
in clinics and hospitals. A usability study could be used to
assess whether the proposed method is helpful to providers in
realistic scenarios and whether it can replace or complement
existing manual scoring methods. This is expected to highlight
potential challenges in and benefits from the implementation of
the proposed method.

5. CONCLUSION

Weproposed a novel associative classificationmethod to estimate
a patient’s in-hospital mortality risk. With a minimal model
that uses patient-reported information that is quickly available
and a full model that uses more information that is available
at a later point in time, providers can objectively track a
patient’s in-hospital mortality risk. Apart from the high predictive
performance, the rule-based nature of the proposed method
allowed us to analyze which among around 180,000 variables play
a role in the estimation of in-hospital mortality risk, resulting in
a model with around 1,200 variables.
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