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Abstract

Ebolaviruses pose a substantial threat to wildlife populations and to public health in Africa.

Evolutionary analyses of virus genome sequences can contribute significantly to elucidate

the origin of new outbreaks, which can help guide surveillance efforts. The reconstructed

between-outbreak evolutionary history of Zaire ebolavirus so far has been highly consistent.

By removing the confounding impact of population growth bursts during local outbreaks on

the free mixing assumption that underlies coalescent-based demographic reconstructions,

we find—contrary to what previous results indicated—that the circulation dynamics of Ebola

virus in its animal reservoir are highly uncertain. Our findings also accentuate the need for a

more fine-grained picture of the Ebola virus diversity in its reservoir to reliably infer the reser-

voir origin of outbreak lineages. In addition, the recent appearance of slower-evolving vari-

ants is in line with latency as a survival mechanism and with bats as the natural reservoir

host.

Author summary

Because of its implications for awareness, surveillance and risk assessment of EBOV trans-

mission to humans, the origin of emerging Zaire ebolavirus is investigated at each out-

break. To reliably do so requires a good understanding of the circulation dynamics of

Zaire ebolavirus in its reservoir, which has yet to be determined. Here, we analyzed avail-

able full-length Zaire ebolavirus genomes from past and current outbreaks to infer the

between-outbreak circulation dynamics while avoiding model misspecification by down-

sampling the data.
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Introduction

Ebola virus (EBV) is a filamentous, enveloped, and non-segmented negative-sense RNA

virus that belongs to the genus Ebolavirus in the family Filoviridae with a genome length of

18.9 kb encoding seven proteins. This genus consists of five distinct species recognized by

the International Committee on Taxonomy of Viruses (ICTV): Zaire ebolavirus (EBOV),

Sudan ebolavirus (SUDV), Bundibugyo ebolavirus (BDBV), Taï Forest ebolavirus (TAFV),

Reston ebolavirus (RESTV), with all but Reston ebolavirus causing disease in humans [1, 2].

Recently, a putative sixth species, Bombali ebolavirus (BOMV), has been discovered in free-

tailed bats in Sierra Leone [3]. The disease caused by Zaire ebolavirus is called Ebola virus

disease (EVD) and the EBOV strain circulates in sub-Saharan Africa with sporadic spill-

overs into human populations. The primary case of EVD can get infected from contact with

the natural reservoir host and/or by hunting or consuming ebolavirus-infected bush meat

[4, 5].

EVD is characterized by a severe and often lethal pathology. During the 2013–2016 EBOV

outbreak in West Africa, the most extensive Ebola virus outbreak recorded to date, over 11,000

of more than 28,000 infected individuals succumbed to the disease [6]. Between 2014 and

2018, the Democratic Republic of the Congo (DRC or COD) has been struck three times with

an EBOV outbreak: in July 2014 with 69 reported cases (49 deaths) near Boende town in the

Equateur province, in May 2017 with 8 confirmed cases (4 deaths) in the Likati health zone,

Bas-Uélé province, located in the north of the country and in May 2018 in the Equateur prov-

ince with 54 confirmed cases (33 deaths). The currently ongoing outbreak declared on August

1st, 2018 in the North Kivu province is now the second largest EBOV outbreak on record with

3,309 confirmed cases and 2,130 deaths according to the report of February 11, 2020 from the

DRCs’ Ministry of Health.

Evolutionary analysis of Ebola virus genome sequences remains of upmost importance

to identify the putative origin of emerging EBOV. To reliably do so, requires a good un-

derstanding of the circulation dynamics of EBOV in its reservoir. Despite being discovered

in 1976, the EBOV natural reservoir host is still not known with certainty, although a

number of bat species have been identified as the most likely reservoir hosts [7–11]. Yet,

much remains to be learned about the dynamics of its enzootic circulation [7, 12]. Previous

studies have shown that EVD outbreak lineages share a common ancestor very close in

time to its first detection in 1976 and that the virus has evolved rapidly over time [13, 14].

These inferences relied on coalescent models—a backwards-in-time process whereby line-

ages are merged going back in time as a function of the population size until only a single

lineage remains [15]—to infer the past population dynamics from the genealogical relation-

ships. Despite the wide use of coalescent models, only recently the possibly confounding

effects of non-random sampling—which invalidates the free mixing assumption—were

investigated [16–18] or model-wise accounted for [19–21]. For EBOV, for example, it has

been shown that using a model that more adequately captures the tree-generative process

by allowing for structure in the population can reduce estimation bias for the evolutionary

rate [22].

Here, we analyzed EBOV full genomes, including a newly generated full-length genome

sequence of the Likati EBOV outbreak (NCBI GenBank accession number MH481611) and

those from the most recent outbreaks in the DRC (data have been deposited in GenBank

under accession number MH733477 to MH733491, MK007329 to MK007344, and

MH898466) to infer the between-outbreak circulation dynamics while avoiding model misspe-

cification by downsampling the data.
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Materials and methods

Ethics statement

The Ebola virus genome sequences used originated from other studies and were publicly avail-

able. One patient sample from the 2017 Likati outbreak was sequenced in this study. Unfortu-

nately, the patient passed away a few days after sample collection. The data was analyzed

anonymously.

RNA extraction

RNA was extracted from a confirmed blood sample from the May 2017 Likati outbreak in

DRC using the QIAamp Viral RNA mini kit (Qiagen Benelux, Antwerp, Belgium) following

the manufacturer’s instructions with minor modifications. The sample was collected on 7 May

2017 and originated from a 22-year-old male (onset of disease 30 April 2017, deceased 8 May

2017). RNA was extracted from 50 μl whole blood diluted in 90 μl sterile water. Samples were

inactivated in a cat. 3 glove box by adding 560 μl of Buffer AVL and 560 μl of 96% ethanol

[23]. An extra washing step was performed by adding 500 μl of buffer AW2 to the spin column

followed by centrifugation at 20,000 x g for 3 minutes before the RNA was eluted in 60 μl of

buffer AVE.

RT-PCR, amplicon purification and MinION sequencing

Two primer pools specific for EBOV and kindly provided by the ARTIC project (http://artic.

network), were used to facilitate full genome sequencing by Oxford Nanopore Technologies

(ONT) MinION. The Qiagen OneStep RT-PCR kit (Qiagen Benelux) was used with each of

the EBOV-specific primer pools designed to generate and amplify overlapping amplicons,

which cover the EBOV genome. Briefly, 15 μl of viral RNA template was added to a total reac-

tion volume of 25 μl containing 5 μl 5X Qiagen OneStep RT-PCR buffer, 1 μl dNTP mix con-

taining 10 mM of each dNTP, 1 μl Qiagen OneStep RT-PCR enzyme mix, 3 μl of one of the

primer pools (0.015μM final concentration) and RNase-free water. The amplification profile

involved a reverse transcription step at 45˚C for 30 min, followed by PCR activation at 95˚C

for 15 min, 40 cycles of amplification (94˚C, 10 sec; 65˚C, 30 sec; 68˚C, 4 min 30 sec) and a

final extension of 10 min at 68˚C. Pooled amplicons were cleaned-up with AMPure XP beads

(New England Biolabs, Leiden, Netherlands), by washing 2 times with 70% ethanol and resus-

pended in 50 μl of RNase-free water. The purified DNA was quantified on a Qubit 1.0 fluorim-

eter (Thermo Fisher Scientific, Asse, Belgium) and libraries were prepared according to the

‘1D Genomic DNA by ligation (SQK-LSK108)’ kit and protocol supplied by ONT, Oxford,

UK. MinION sequencing was performed with MinKNOW v2.0 (version 18.03.1) using R9.4.1

flow cells (ONT). After sequencing, reads were based-called with Albacore v3.0.1 and subse-

quently quality, tag and primer trimmed with Porechop v0.2.3. To construct the consensus

sequence, a hybrid approach was used: de novo assembly was performed with Canu v1.7.0 and

reference mapping was done with MiniMap2 v.2.16. Both assemblies were joined and Nano-

polish v0.9.2 was used to refine the obtained draft consensus sequence. CLC Genomics Work-

bench v11.0 (Qiagen Benelux) was used to manually inspect and correct the obtained draft

consensus sequence.

Phylogenetic inference

PhyML v3.0 [24] was used to infer an unrooted phylogenetic tree from the available EBOV

near-complete genomes (> = 18654 nucleotides) using a general time-reversible (GTR)

nucleotide substitution model [25] and a discrete Γ distribution [26] to capture among-site
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rate heterogeneity. Time-calibrated evolutionary histories were estimated using BEAST

v1.10.4 [27]. A downsampled data set, from here on referred to as the EBOV2018 data set,

was created by selecting one sequence per outbreak for which full genome data are available

(Fig 1, orange highlight). This step is performed to avoid false positive test results when mea-

suring the strength of the temporal signal, which can arise when closely related sequences

are more likely to have been sampled at similar times [28, 29], as is the case for Ebola virus

genomes sampled close together in time during an outbreak (Fig 1). This downsampling also

prevents an impact of relatively brief periods of local virus population bursts during out-

breaks among humans on the coalescent-based EBOV reservoir population size estimates

[16, 22, 30].

As with previous analyses (e.g. [31, 32]), the alignment was divided into coding and non-

coding partitions. The substitution process was modelled independently for the coding and

non-coding partition according to the SDR06 [33] and HKY+Γ [26, 34] models, respectively.

The generalized stepping stone marginal likelihood estimator (GSS MLE) as implemented in

BEAST v1.10.4 [35] was used to compare the fit of an uncorrelated relaxed clock model with

rates drawn from an underlying lognormal distribution [36] to that of a strict clock model. A

CTMC Rate Reference prior was specified for the mean clock rate for both clock models [37].

Coalescent theory was used to infer the product of the effective population size Neff, which can

be thought of as the relative genetic diversity [38], and the generation time τ; for clarity we

refer to this product as the virus population size. As tests with the exponential growth model

showed that the growth rate was indistinguishable from zero (the 95% highest posterior den-

sity, HPD, interval of the exponential growth rate encompassed zero), the population size was

modelled using a constant population size model. The clock model and tree prior interact to

determine the divergence dating [39], and it is possible that with small data sets the prior

expectation on the population size is a non-negligible source of information. For this reason,

we assessed the fit of more or less diffuse prior specifications (also with the GSS MLE), which

were expressed as variations on the default proper prior on the constant population size hyper-

parameter (a lognormal distribution with mean 10 and standard deviation 100 in real space

[40]). Specifically, diffuse lognormal distributions with (in real space) a mean of 10 or 100 and

a standard deviation equal to the mean or equal to 10 times the mean were used. We provide

an overview of the a priori expected credibility intervals for the population size with the vari-

ous prior specifications in S1 Table.

Results and discussion

Slower evolution of particular EBOV lineages in the animal reservoir is in

line with bats as reservoir hosts

Under the assumption that long-term EBOV evolution happens at a fairly constant rate [13,

14], it is expected that lineages from successive Ebola outbreaks are progressively more diver-

gent from the EBOV most recent common ancestor. Hence, the noticeably small root-to-tip

distances—relative to their sampling times—from the viruses sampled during EBOV outbreaks

in the DRC since 2014 (Fig 1, grey boxes) challenge this assumption, and indicate that the

2017 and 2018 lineages, alike the 2014 Boende lineage [41], have been evolving in the reservoir

at a slower rate than could be expected. Several observations indicate that the marked variation

in EBOV evolutionary rates may be explained by the establishment of latent infections in its

animal host. Firstly, latency has been observed in humans [42–44], where it is associated with a

lower evolutionary rate [45]. Secondly, for Marburg virus, also a filovirus, it has been observed

that outbreaks can be caused by variants that are genetically quasi identical to viruses detected

in bats in previous years [46]. Hence, latency may be a survival strategy of filoviruses to
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overcome periods with reduced transmission opportunities, such as when host populations are

smaller and contact rates lower [41]. Of note, as latency implies an animal host with a long life

expectancy, this adds to the body of evidence [3, 7–9] pointing towards bats as the natural res-

ervoir host of Ebola virus.

Fig 1. Evolutionary history of EBOV estimated from the available full genomes. The tree is rooted with the Yambuku outbreak sequences as outgroup [13, 14, 49].

Numbers above branches indicate support values obtained with the approximate likelihood ratio test. The red arrow highlights the position of the newly obtained full

genome from the 2017 outbreak in Likati, COD. Representative sequences from each outbreak that were selected for further phylogenetic analyses are indicated in

orange. Grey rectangles indicate lineages from outbreaks in the COD as of 2014 that appear to have been evolving at a slower pace than expected. The scale bar is in units

of substitutions per site.

https://doi.org/10.1371/journal.pntd.0008117.g001
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The structured nature of EBOV outbreak sampling obfuscates between-

outbreak reconstructions under the panmixis assumption

The effects of sampling strategy on phylogenetic reconstructions has been identified as an

important challenge [47], and several works have investigated the potentially confounding

effects of sampling biases when panmixis is assumed [16–19, 30]. A consistent outcome of

these reports is that a temporal or geographic ascertainment bias can yield positively mislead-

ing results. Following their investigations into the impact of population structure on the tem-

poral variation in the relative genetic diversity, Hall, Woolhouse (16) provide a set of

guidelines, including the advice "against the disproportionate inclusion of a large amount of
sequence data from a single location, as this introduces false dynamics which should not be inter-
preted as a genuine decline in the size of viral populations". This follows from the observation

that an intense sampling of closely related sequences—such as during outbreaks—brings about

a rapid succession of coalescent events just before the samples were obtained, which is reminis-

cent of a panmictic population that is declining in size. In turn, this causes an upwards bias in

the evolutionary rate estimate and results in misleadingly recent tMRCAs [16]. Whereas Mol-

ler, du Plessis (22) show that allowing for population structure can account for this source of

bias in a well-sampled within-outbreak setting, the limited number and poor temporal spacing

of samples within outbreaks and concomitant lack of within-outbreak time signal make that a

structured coalescent approach for now remains out of reach to infer the between-outbreak

dynamics. Instead, we avoided an impact of relatively brief periods of local virus population

bursts during outbreaks among humans on the coalescent-based EBOV reservoir population

size estimates by selecting one representative sequence per outbreak (Fig 1).

To select the most appropriate model for inferring the between-outbreak evolutionary his-

tory from this data set, several combinations of clock models and prior expectations on the

EBOV relative genetic diversity in its reservoir were investigated. An initial exploration

revealed that only under the relaxed clock model and the population size prior with mean and

st.dev. equal to 10 the between-outbreak mean clock rate estimates frequently spiked to values

higher than the evolutionary rate estimate for the 2013–2016 outbreak [48] (S1 Fig). Such high

estimates are unexpected given that the rate of EBOV evolution between outbreaks, which

reflects long-term evolutionary processes, is generally anticipated to be lower than within out-

breaks (see Holmes, Dudas (48) for details). Furthermore, uncertainty on the degree of among

lineage rate variation under the latter model is high. This reflects in a bimodal coefficient of

variation (CoV, the scaled variance in evolutionary rate among lineages [3]) that, on average,

is almost twice as high as the CoV under the other models (.66 versus .35, .35 and .34).

Together, this indicates that the rate of evolution cannot be reliably inferred under this model.

Next, the relative fit was determined for all combinations of the three other population size

prior specifications and a strict or relaxed clock model (S2 Table). In line with the observations

from Fig 1, allowing for among branch rate heterogeneity decisively fits the data better than a

strict clock model. There was also a differentiation in the fit of the prior expectations on the

population size. The expectation with mean and st.dev. equal 100 provided the overall best fit.

While there is strong support of this model over the prior with mean 10 and st.dev. 100 (ln

(BF) = 3.01), the expectation with the same mean but a larger variance has a comparable fit (ln

(BF) = 0.85). We report the results based on the best fitting model.

Comparison of the posterior evolutionary rate estimate, obtained from correct sampling

times against the null distribution (obtained by randomly permuting the sampling dates),

allows to determine whether or not a data set exhibits a significant time structure. In practice,

this boils down to interpreting a continuous spectrum of possible extents of overlap between

the null distribution and the tip-date informed posterior clock rate estimate. As a general
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criterion, there is significant time-structure when the 95% credible interval of the rate estimate

obtained from correct sampling times does not overlap with that of the null distribution [28].

Such a date-randomization test shows that there is no overlap between the credible intervals,

yet the tails of both posterior densities overlap (Table 1 and S2 Fig). This indicates that the

EBOV2018 data possess a significant but not outspokenly strong temporal signal, which

reflects in the wide range of plausible time to the most recent common ancestor (tMRCA) esti-

mates (Table 1).

The inability to clearly inform the branch lengths comes with substantial uncertainty on the

branch root position. Whereas the root previously was confidently placed on the branch to the

Yambuku 1976 strain [13, 14, 49, 50], the support for this idea that all EBOV outbreaks are

caused by descendants of a strain that much resembles the 1976 Yambuku variant is now ~1%

(Fig 2). Rather, a topology that is compatible with the undetected endemic circulation of an

EBOV lineage in West Africa, independent from strains from Central Africa [51] is the most

plausible scenario. The second-best supported history is that the EBOV spillovers into the

human population in the past decades are from strains of two clades that co-circulate in the

EBOV reservoir.

To corroborate that the confounding between population structure and population size/

evolutionary rate underlies the differences with previous results, we investigated whether these

parameters are affected by the number of included samples per population (outbreak) as pre-

dicted when the populations indeed are highly structured. For this we used the best fitting evo-

lutionary model for the EBOV2018 data set but now include at most 2, 3, 5 or all sequences per

outbreak. As expected, we find an inverse relation between the maximal number of sequences

per outbreak and the estimated population size (S3 Fig), and an increasing evolutionary rate

with an increasing maximal number of sequences per outbreak (S4 Fig). In line with the obser-

vation by Baize, Pannetier (51), the between-outbreak topology varies with the evolutionary

rate, and the topology becomes more consistent with that from earlier reports [13, 14, 49, 50]

with the inclusion of increasing numbers of isolates per outbreak (S5 Fig).

To further investigate whether the high confidence in a root on the branch to the 1976 out-

break follows from using a coalescent model that assumes panmixis, the complete data set was

analysed with the same models as before except for the coalescent tree prior, which was

replaced by an uniform prior that constrained the age of the tree to a 15 year interval between

1976 and 1961. If the coalescent model indeed drives the rooting in which the Yambuku line-

age is an outgroup with respect to the other lineages, an uncertain rooting is expected in the

absence of the coalescent model. The result from this analysis is summarized in Fig 3, and

shows that the rooting indeed is highly uncertain under this condition.

There are indications that the frequently used uncorrelated relaxed clock models can be

misleading when all branch rates are drawn from the same distribution, where in reality there

may be multiple distributions with different means. A well-known example concerns the

reconstruction of the influenza A virus gene flow among different host species, where allowing

different host lineages to have independent rates of evolution is a prerequisite for reliable

Table 1. Substitution rate and time to the most recent common ancestor (tMRCA) estimates. The substitution

rate is expressed in substitutions/site/year. For the null estimate we averaged over all possible randomizations in a sin-

gle analysis [52]. The mean and corresponding 95% highest posterior density (HPD) boundaries are given for each

analysis.

substitution rate tMRCA

correct sampling dates randomized sampling dates

1.40�10−4 (4.73�10−5–2.45�10−4) 2.16�10−5 (9.10�10−6–3.67�10−5) 1860 (1735–1967)

https://doi.org/10.1371/journal.pntd.0008117.t001
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phylogenetic inference [21]. Latency may introduce such a rate variation effect, and there are

indications that explicitly modelling the rate slow-down on the branches that likely experi-

enced latency further increases the model fit and substantially reduces uncertainty on the

divergence datings (http://beast.community/ebov_local_clocks.html, blog posted on May 17,

2019 nearly two months after the submission of our manuscript to this journal and about a

year after the initial work was conducted). Allowing for latency in the clock model, however,

does not impact the conclusions of this work.

Fig 2. The between-outbreak epidemic history based on the EBOV2018 data set. Values next to branches represent their posterior probability. Bars show the 95%

HPD interval for the internal node heights. Branch root posterior probabilities were obtained with RootAnnotator [49]. Branch root positions with>1% posterior

probability are indicated in the phylogeny by colored circles and their support is given in the legend.

https://doi.org/10.1371/journal.pntd.0008117.g002
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Conclusion

In summary, we highlight the need to appropriately account for the limits of coalescent models

when reconstructing the EBOV between-outbreak evolutionary history, and that a broader

sample of EBOV reservoir genetic diversity is required to reliably formulate hypotheses about

the reservoir origins of outbreak variants. This can assist in identifying the factors that underlie

the apparently recent emergence of slower-evolving, likely latent, EBOV variants.

Prevention and rapid control form the cornerstone of EBOV outbreak management. Yet,

despite the potentially disastrous impact of an EBOV outbreak, vigilance for EBOV infection

in West Africa may wane over time in favor for more incident pathogens that cause symptoms

similar to those seen in EBOV infection (e.g. Lassa virus). This may be particularly true when

it is thought that the previous outbreak resulted from a chance exportation event. By showing

that the available virus genetic data are as yet unclear whether EBOV is endemic in West Africa

or not, our results may help keep awareness at the highest possible level.

Fig 3. Time-scaled between-outbreak EBOV evolutionary history inferred without coalescent prior, represented by the maximum clade credibility summary

phylogeny. Branch root posterior probabilities were obtained with RootAnnotator [49]. The 5 best supported branch root positions are indicated in the phylogeny by

colored circles and their support is given in the legend. Numbers next to branches indicate their posterior support.

https://doi.org/10.1371/journal.pntd.0008117.g003
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Supporting information

S1 Table. Expectations on the population size hyperparameter for the evaluated prior spec-

ifications. The mean and standard deviation of the lognormal distributions are given in real

space. The values in the last column refer to the lower and upper bound of the corresponding
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