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Over 105 million dengue infections are estimated to occur annually. Under-
standing the disease dynamics of dengue is often difficult due to multiple
strains circulating within a population. Interactions between dengue serotype
dynamics may result in complex cross-immunity dynamics at the population
level and create difficulties in terms of formulating intervention strategies for
the disease. In this study, a nationally representative 16-year time series with
over 43 000 serotyped dengue infections was used to infer the long-run
effects of between andwithin strain interactions and their impacts on past out-
breaks. We used a novel identification strategy incorporating sign-identified
Bayesian vector autoregressions, using structural impulse responses,
historical decompositions and counterfactual analysis to conduct inference
on dengue dynamics post-estimation. We found that on the population
level: (i) across-serotype interactions on the population level were highly per-
sistent, with a one time increase in any other serotype associated with long
run decreases in the serotype of interest (range: 0.5–2.5 years) and (ii) over
38.7% of dengue cases of any serotype were associated with across-serotype
interactions. The findings in this paper will substantially impact public
health policy interventions with respect to dengue.
1. Introduction
Dengue is a multi-serotype pathogen responsible for over 105 million infections
globally a year [1]. Serotype dynamics play a crucial role in the persistent
burden of dengue worldwide. Immune response after infection with one sero-
type confers temporary cross-immunity against other serotypes of the same
pathogen as evidenced from laboratory [2] and cohort studies [3], but in the
longer term when cross-immunity wanes, secondary infection may be possibly
more severe. While there is substantial empirical evidence of short-term cross-
immunity, the duration of cross-immunity remains difficult to establish [4], and
its corresponding impacts on dengue transmission at the population level are
also less widely studied. In the case of dengue, secondary infection can lead
to potentially life-threatening conditions, such as dengue hemorrhagic syn-
drome and/or dengue shock syndrome [5]. Owing to the hyperendemic
nature of dengue in many regions, where multiple serotypes of dengue are in
active circulation [1], sustained reinfection remains a constant threat to individ-
uals. On the population level, temporary cross protection and the forward risk
of secondary infections in hyperendemic regions result in complex temporal
dynamics where it is difficult to infer the underlying epidemiological factors
giving rise to dengue outbreaks [4].

Multi-strain dynamics are a posited cause of dengue outbreaks. Cyclical epi-
demics are observed to comprise alternating serotypes in many localities where
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dengue is hyperendemic [6]. There is evidence that switches
between serotypes and/or the displacement of the predomi-
nant serotype may serve as warnings for looming outbreaks
[6] and establishment of multiple genotypes over time
causes selection of genotypes of higher fitness, which may
increase the risk of outbreaks even under conditions where
vector breeding potential is low [7]. Prior work has however
suggested that waning cross immunity is a necessary con-
dition for large outbreaks to occur in multi-annual cycles
[8]. Therefore, it is crucial to account for multi-strain
dynamics in order to understand the underlying epidemic
process of dengue.

The increased worldwide burden of dengue, coupled
with the importation and establishment of new serotypes
has led to dengue hyperendemicity in an increasing number
of localities [1]. On the population level, this makes the efficacy
of recently developed vaccines difficult to establish, due to (i)
the co-circulation of multiple serotypes and/or (ii) low sero-
prevalence of dengue. As temporal changes in cross-
protection create challenges in epidemiological studies, vac-
cine trials face substantial inferential headwinds that make it
difficult to infer vaccine efficacy when deployed on the popu-
lation level, especially if individuals were infected a varying
number of times to a varying number of serotypes [4]. Varying
seroprevalence rates especially among younger age groups
also make the application of vaccines potentially problematic
[5,9]. A detailed understanding of the transmission dynamics
of dengue on the population level would thus be necessary, to
formulate possible intervention strategies to stave the onward
transmission of dengue virus.

For the past three decades in Singapore, dengue is hyper-
endemic with four serotypes in active circulation. Epidemics
occur in multi-annual cycles, where increasingly larger
surges in the number of dengue cases in 2012–2015, 2015–
2016 and 2020 have been reported [10]. Prior studies have
also attributed these outbreaks to the low sero-prevalence
of dengue among younger age groups, due to successful
vector control practices, as well as dengue hyperendemicity
[11]. While virological studies have qualitatively described
that these outbreaks are pre-empted by a switch in the pre-
dominant serotype [6] or fitter genotypes [7], the explicit
impacts of hyperendemicity on dengue burden have not
been quantified directly.

There are a large number of dengue modelling studies
under the setting of multiple co-circulating serotypes. These
include multi-strain compartmental models which found
that cross-immunity is necessary to generate persistent
cycles of dengue epidemics [8], as well as other generaliz-
ations to allow for time varying transmission potential and
incorporation of vital dynamics [12]. One advantage of com-
partmental models is having a convenient interpretation of
the underlying biological process. However, calibrating
these models may be cumbersome for multi-strain, vector
borne diseases such as dengue—requiring many assumptions
such as the renewal rate of the disease vector and seasonality.

The vector autoregression (VAR) approach, where the
dynamics for multiple time series can be taken into account
within the regression structure [13] is one potential solution
for inferring underlying multi-strain disease processes. It
requires less explicit assumptions of the underlying disease
process and is computationally straightforward to estimate
the underlying parameters of interest. Past work has
employed this technique to infer underlying ecological
processes [14] as well as the spatio-temporal spread of dis-
eases [15], but no work has attempted to employ this class
of models for inferring hyperendemic disease dynamics on
the population level.

In this study, we investigate the dynamic signature of
dengue in dengue hyperendemic Singapore as our key
study example. In particular, we wish to understand how
interactions within and across dengue serotypes on the popu-
lation level are responsible for transmission persistence and
elevated disease burden. Weekly case counts consisting of
serotype-specific, laboratory confirmed dengue illness from
2006 to 2020 in Singapore were analysed, using a novel infer-
ence strategy incorporating Bayesian VARs (BVARs) and sign
restrictions. We propose three approaches using the identified
VAR model to understand dengue dynamics across multiple
serotypes, namely through sign-restricted structural impulse
responses, historical decompositions and counterfactual
analysis of past outbreaks.
2. Method
2.1. Data requirements
The circulating DENV populations were monitored through a
virus surveillance programme jointly conducted by the Ministry
of Health, Singapore and National Environmental Agency, Singa-
pore. Blood samples from suspected dengue patients who sought
treatment at general practitioners, public/private hospitals and
polyclinics were tested for the evidence of DENV by using
either NS1 antigen or polymerase chain reaction (PCR) assays.
Serotype and genotype analyses were performed on a weekly
basis. DENV-positive sera were further analysed to determine
the serotype of DENV by using a real time reverse-transcription
PCR (RT-PCR) assay [16]. At Environmental Health Institute, one
of the public health laboratories in Singapore, all DENV-positive
sera that failed serotype screening by the real time RT-PCR assay
were subjected to a modified semi-nested conventional PCR
assay [16]. For our analysis, we used weekly dengue case
counts consisting of serotype-specific, laboratory confirmed
dengue illness for 14 years, from epidemiological week 1
(EW-1) 2006 through EW-52 2020.

2.2. Identification strategy
In summary, our approach to identifying hyperendemic disease
dynamics is through first estimating the reduced-form BVAR
and then recovering the BVAR structural parameters through
biologically motivated sign restrictions [17].

The dynamics of dengue were considered in the following
4-variate reduced-form VAR(p) model, where p refers to the
maximum number of autoregressive lags. The 4-variate form cor-
responds to the four serotypes which are in active circulation
in Singapore:

yt ¼ vþ A1yt�1 þ A2yt�2 þ � � � þ Apyt�p þ ut, ð2:1Þ
for t = 1,…, T, where ut �iidN ð04�1, SuÞ. Here yt is the contempora-
neous vector of 4 × 1 time series, v4×1 the intercept term, Ai,4×1 the
autoregressive terms. ut is the zero mean normally distributed
error term with variance covariance matrix Su,4�4. Estimated par-
ameters consist of the autoregressive terms and the variance–
covariance matrix, which was conducted through a direct
samplingMarkov chainMonte Carlo approach as described expli-
citly in electronic supplementary material, appendix A.

However, the variance covariance matrix Su,4�4 consists of
contemporaneously correlated errors which cannot provide
clear interpretations of how one serotype independently affects
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the others across time on the population level. The primary goal
of this analysis is thus recovering the structural BVAR, with
mutually uncorrelated errors as follows:

B0yt ¼ B1yt�1 þ � � � þ Bpyt�p þ wt, ð2:2Þ

where Bi is the structural autoregressive matrix of dimension 4 ×
4. wt �iidð04�1, SwÞ denotes the white noise vector of dimension 4 ×
1. The framework is structural as elements of wt are mutually
uncorrelated and have clear interpretations in terms of under-
lying multi-strain disease dynamics. The model is expressed in
reduced form by left multiplying (2.2) by B�1

0 such that

yt ¼ B�1
0 B1yt�1 þ � � � þ B�1

0 Bpyt�p þ B�1
0 wt

¼ A1yt�1 þ � � � þ Apyt�p þ ut:

Recovering the structural representation thus requires knowl-
edge of B0 or B�1

0 , the matrix expressing contemporaneous
relationships among the model’s endogenous variables. We have
thus adapted the sign restriction identification strategy of [18] to
search for candidate solutions for B0, so that inference can be con-
ducted. The sign restrictions used in the paper were biologically
motivated from prior work on clinical studies [2] and population
level dengue dynamics [4], where there is substantial evidence
that infected individuals are known to be ascribed short-term
cross immunity to other serotypes of dengue. These sign restric-
tions were allowed to hold for 100 weeks, corresponding to the
median duration of prior estimates of cross-immunity in individ-
uals [2,4]. In terms of sign restrictions, this implies that a
positive increase in case counts (+) for a specific serotype would
lead to contemporaneous negative (−) decreases in all other
serotypes in the structural impact multiplier matrix:

ut ;

udenv�1
udenv�2
udenv�3
udenv�4

0
BB@

1
CCA ;

þ � � �
� þ � �
� � þ �
� � � þ

2
664

3
775

wdenv�1
wdenv�2
wdenv�3
wdenv�4

0
BB@

1
CCA

; B�1
0 wt: ð2:3Þ

To elaborate, a positive increase in serotype 1 (wdenv−1, +) is
known and will lead to negative responses on serotypes 2
(wdenv−2,−), 3 (wdenv−3,−) and 4 (wdenv−4,−). An efficient
search strategy, which nests estimation of both reduced form
and structural BVAR parameters is explicitly delineated in
electronic supplementary material, appendix A.
2.3. Inference strategy
We used structural impulse responses and historical decompo-
sitions as inference strategies for the BVAR. The structural
impulse response is the response of each serotype to a one-time
impulse in the structural errors. A unit shock on some serotype
and the subsequent impulse response value on other serotypes
can be thought of as the corresponding impact of an independent
increase in the case counts of a shocked serotype on case counts
of the other serotypes over time. This shock could be taken as a
rise in case counts for a particular serotype, induced by exogen-
ous factors, such as favourable climate conditions and increases
in vector population. Whereas the historical decomposition
further quantifies how much a given structural shock explains
the historically observed fluctuations in the VAR variables.
That is, know the cumulative effect of a given structural shock
on each variable at every given point in time. In the case of
dengue, this gives us valuable information on how prior large
increases or decreases in a particular serotype contribute to
historical outbreaks.

Historical counterfactuals can also be computed given the
historical decomposition, to indicate how each serotype of inter-
est would have evolved, had one replaced all realizations of
shock j by zero, while preserving the remaining structural
shocks in the model:

ykt � ŷ jk,t:

If the counterfactual exceeds ykt, this means that structural
shock to variable j lowers ykt. A counterfactual below the
observed ykt means that the shock of interest raised ykt. The
difference between the actual ykt and the counterfactual tells us
how much shock j affected ykt at time t. Following Uhlig [18],
we report our results using 68% credible intervals.

2.4. Model assessment
Gewecke convergence diagnostic tests [19] and visual assessment
of trace plots [20] were used to determine convergence of Markov
chain Monte Carlo procedures. The number of lags for our model
was selected post-estimation, by sequentially increasing the
number of lags for our model specification and visual inspection
of residual autocorrelation in all time series after [21]. Model
diagnostic summary statistics include the mean-square error, R2

and Bayes factor, to determine model fit and evidence [20].
Quantile–quantile plots and posterior predictive checks were
used to determine whether the proposed BVAR model character-
ized the distribution of data across serotypes appropriately [13].
Results for model assessment are reported in electronic
supplementary material, appendix A.
3. Results
3.1. Persistence in within and across serotype

interactions on the population level
Impulse responses as computed from the model can be inter-
preted as the independent, population level effect of a
hypothetical increase/decrease in any serotype on every ser-
otype accounted for within the model. Our analysis using
impulse responses indicate that in general, for an indepen-
dent increase in any serotype of interest within a
population, there were long run increases on the serotype
of interest and long run decreases on all other serotypes
within a population. These magnitudes vary across serotypes
as we will elaborate below.

A hypothetical increase in DENV-1 within the population
took the longest to reduce to zero. This was indicated by 68%
credible interval values for the impulse response of DENV-1
on itself which did not approach 0 even after 50 weeks from
the initial increase. However, for DENV-2, DENV-3 and
DENV-4, the 68% credible intervals for impulse responses
all approached 0 before 30 weeks. When looking at the
increases applied to each serotype on itself, there was a ten-
dency for increases in DENV-1, DENV-2, DENV-3 and
DENV-4 to persist the longest to shortest, respectively
(figure 1).

Impulse responses also provide the independent effect of
an increase in the serotype of interest on another serotype.
Our results indicate that a positive increase in DENV-1 and
DENV-4 created the longest run negative impact on all
other serotypes. An increase in DENV-1 led to long run
decreases on all other serotypes. In particular, these decreases
had 68% credible intervals which lasted for 60, 65 and more
than 100 weeks for DENV-4, DENV-3 and DENV-2 respect-
ively. For a positive increase in DENV-4, decreases on all
other serotypes have 68% credible intervals approaching
zero only at greater than 100 weeks, except for DENV-3,
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where 68% credible intervals approached zero at around
20 weeks from the initial increase (figure 1).

Notably, the independent effect of an increase in DENV-3
which had led to a corresponding decrease in DENV-2
was also relatively persistent, with 68% credible intervals
approaching 0 at only more than 100 weeks. In comparison,
the independent effect of an increase in DENV-3 on DENV-1
and -4 is less persistent, with 68% credible intervals approach-
ing 0 before 40 weeks. Lastly, the independent effect of an
increase in DENV-2 had the shortest corresponding decreases
in all other serotypes, with decreases on all other serotypes
having 68% credible intervals which approached zero before
greater than 40 weeks (figure 1).
3.2. Outbreak size attributable to hyperendemicity
Historical decompositions allow us to delineate how past out-
breaks were the result of all past within- and across-serotype
interactions on the population level. From 2006 to 2020, there
were three notable outbreaks: a large, sustained 2-year
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Figure 2. (a) Time series plot of DENV-1 case counts with historical decompositions of DENV-1 and all other serotypes. (b) Summary of weekly case contribution
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DENV-1 outbreak in 2013–2014, where weekly case counts
surpassed their observed historical number at 891, a DENV-
2 outbreak in 2015–2016, where weekly reported DENV-2
case counts gradually increased to over 350 and a DENV-
2/3/4 outbreak in 2020. Notably, in these periods, there
had also been an elevated number of DENV-3 case counts
(figure 2).
Using historical decomposition analysis for the DENV-1
2012–2015 outbreak, for the period of epidemiological week
(EW) 1, 2013 to EW 52, 2014, a total of 267, 71 and 704
DENV-1 case counts can be attributed to past changes in
DENV-2, 3 and 4, respectively, which correspond to 0.95%,
1.33% and 2.5% of DENV-1 case counts in that same
period. Counterfactually removing all other serotypes
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would have approximately reduced the size of the DENV-1
outbreak by 4.8%, by an absolute number of 1343 reported
DENV-1 cases. Whereas for the DENV-2 2015–2016 outbreak,
for the period of EW 1, 2015 to EW 52, 2016, a total of 2179,
1032 and −330 DENV-2 case counts can be attributed to past
changes in DENV-1, 3 and 4 respectively, which correspond
to 18.7%, 8.8% and –2.8% of case counts in that same
period. Counterfactually removing all other serotypes
would have approximately reduced the size of the DENV-2
epidemic by 24.7%, by an absolute number of 2881 reported
DENV-2 cases. Lastly, for the DENV-2/3/4 outbreak for the
period of EW 1, 2020 to EW 52, 2020, we found that more
than 57.8%, 26.8% and 81.4% of DENV-2/3/4 cases can be
attributed to past changes in all other serotypes respectively,
corresponding to 9478, 3543 and 3452 additional DENV-2/3/
4 cases in this period (figures 2 and 3).

The severity of dengue outbreaks is most attributed to
changes in other serotypes (with respect to the serotype of
interest) in the DENV-2/3/4 outbreak of 2020, followed by
DENV-2 outbreak in 2015–2016 and the DENV-1 outbreak
of 2013–2014—where a majority of cases are linked to past
changes in DENV-1 itself. In terms of the overall impacts of
across-serotype interactions, historical decompositions indi-
cate that over 38.7% of reported case counts of all serotypes
are attributed to contributions from another serotype. In par-
ticular, 64%, 81.7%, 17.9% and −10.6% of DENV-1,2,3,4 case
counts were due to past patterns in their respective serotype
and around 36.0%, 18.3%, 82.1% and 110.6% of DENV-1,2,3,4
case counts were attributed to past patterns across other ser-
otypes. We found that the historically predominant DENV-2
contributed the most to case counts of DENV-1,3,4, at 20.5%,
85.2% and 90.7%, respectively, from 2006 to early 2021
(figures 2 and 3).
4. Discussion
A large body of work has been published on the potential
causes for persistent dengue transmission. Some of these
include population renewal [22] and spatio-temporal hetero-
geneity which may lead to source–sink dynamics on the
national [23] and regional scale [15]. Vector dynamics and
immunological interactions [4,24] are also posited as drivers
of multi-annual cycles of outbreaks. Our analysis explicitly
revealed the persistence of dengue transmission for each
specific serotype, as well as the persistence of across serotype
dynamics. An independent increase in the number of cases
for every serotype was found to only reach zero in at least
10 weeks, with the greatest level of persistence found in
DENV-1, lasting more than 60 weeks. These results demon-
strate that dengue transmission is likely to continue over
time, despite the impacts of interactions across serotypes on
the population level.

The seminal studies by Sabin [2] and Reich [4] showed
evidence of short-term cross-immunity to other serotypes of
dengue, once an individual is infected with a specific sero-
type, but in the long term, secondary infections may lead to
severe illness due to antibody dependent enhancement.
Our analysis differs from previous work inferring how
cross-immunity functions between individuals. Rather, we
are concerned with how increases in the transmission of
one serotype lead to changes in the transmission of other
serotypes on the population level through impulse response
analysis. Yet, parallels could be drawn on the duration of
cross-immunity within an individual and the duration of
across serotype interactions on the population level. Across-
serotype interactions were estimated to be negatively persist-
ent for up to 60 weeks, and cross-immunity in individuals
was estimated to be from 6 months up to 3 years [2,4]. We
note that the proposed sign-restriction framework preserves
an agnostic view on the magnitude and duration of inter-
actions between serotypes on the population level, although
estimates from [2,4] were used to inform contemporaneous
cross-immunity in the population (i.e. a rise in the number
of dengue cases for one serotype should lead to decreases
in number of cases for another serotype).

Our results showed the waning effects of interactions
across serotypes after an independent rise of each serotype
on the population level. Across serotypes, temporal effects
last far longer compared to within serotype interactions,
with an independent increase in cases for the serotype of
interest leading to long run decreases in all other serotypes.
Across-serotype interactions on the population level were
found to last at least 30 weeks, with the shortest being the
impact of a rise/fall in DENV-2 on DENV-1 and the longest
being the impact of a rise/fall in DENV-1 on DENV-3 trans-
mission. However, these results can also be inverted and
viewed as the independent impact of a decrease in one sero-
type leading to a persistent rise in cases in all other serotypes.
Possible explanations include waning cross-immunity on the
population level to one serotype after an outbreak leading to
another serotype possibly emerging as the predominant
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serotype and seed a new epidemic on the population level
leading to multi-year epidemic cycles [4,6].

While impulse response analysis identifies the impact of
an independent rise of each serotype on every other serotype,
a rise in transmission of one dengue serotype may or may not
be an independent event, due to other extrinsic factors such
as vector population and climate. In Singapore, past studies
have documented the switch between DENV-1 and DENV-
2 and showed evidence that this may be a driving factor of
outbreaks and may serve as a warning signal for the future
occurrence of an outbreak [6,7]. Historical decomposition
analysis in this study similarly revealed that a sizeable por-
tion of reported case counts for the predominant serotypes
during the 2013–2015 DENV-1, 2015–2016 DENV-2 and
2020 DENV-2/3/4 outbreaks are attributable to past inter-
actions with other serotypes. Counterfactual analysis
reveals that without these across serotype dynamics, the
respective epidemics may be substantially smaller in size.

Historical decomposition analysis revealed the elevated
burden of dengue due to hyperendemicity and correspond-
ingly, dengue burden is highest in Southeast Asia—this
may be partly attributable to hyperendemicity [1]. However,
humans are the primary reservoir of the dengue virus [5],
making it virtually impossible to remove any one serotype
from active circulation. Most other regions, such as those in
temperate regions and Latin America have isolated outbreaks
of usually 1 and/or 2 serotypes [25]. In regions where dengue
is not hyperendemic, public health officials should reduce the
possibility for other serotypes to gain a foothold and enter
active circulation. This can be conducted crucially with viro-
logical surveillance as well as vector control measures.
Optimistically, reducing the number of serotypes in active cir-
culation can reduce the magnitude of outbreaks for already
predominant serotypes in the longer term and allow easier
management and mitigation of future dengue epidemics
within said regions.

Historical decompositions of past outbreaks also showed
that not all case counts may be attributable to interactions
across serotypes alone. The favourable equatorial climatic
conditions [26,27], coupled with a large degree of urbaniz-
ation [28] allow year-round vector breeding in Singapore.
Paradoxically, successful vector control has also reduced the
level of herd immunity in Singapore, which causes new out-
breaks to occur, even as the vector breeding index remains
relatively low [11]. Baseline risk factors, while subsumed in
the intercept term for the VAR specification, cannot be
accounted for in historical decomposition analysis and may
have contributed to less than ideal approximations of the
decomposition.

In terms of model building, the VAR is by nature not par-
simonious due to its multivariate structure. Additional lag
terms or covariates would substantially increase the
number of parameters to be estimated, depending on the
number of endogenous variables which are of interest. How-
ever, a major strength is that the proposed VAR framework is
generalizable to many multi-strain diseases, such as influ-
enza. One only needs to have prior biological knowledge
on the direction of short term cross-immunity between differ-
ent strains of the same pathogen as well as recorded case
counts across time for each strain, in order to understand
across strain interactions on the population level. This
allows easy construction of restrictions to sign-identify a
VAR. Our study primarily focused on dengue in Singapore;
future work should examine whether these findings are
different in other dengue settings.
5. Conclusion
Our work revealed the long run persistence of across-serotype
dynamics and how these dynamics contribute to past out-
breaks. Counterfactual analysis revealed that dengue
hyperendemicity substantially elevates the severity of past
outbreaks. Public health officials should aim to reduce the
possibility for other dengue serotypes to gain a foothold and
enter active circulation to reduce dengue burdens. Future
work can also incorporate biological knowledge on the dur-
ation of cross-immunity into the sign-restriction framework
to more accurately triangulate the impacts of interactions
between serotypes on population level transmission.
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