
During 2020, the COVID-19 pandemic had a 
striking impact not only on healthcare systems, but 
also on social politics and welfares. Lombardy (Italy), 
one of the most populated regions in Europe, was 
among the first ones suffering the whirlwind effects 
of the pandemic in the Western world, with a burden 
of infections that overwhelmed the healthcare systems 
capacities (2). To contain the pandemic, governments 
worldwide applied different non-pharmaceutical 

Introduction

The novel severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), causative agent of corona-
virus disease 2019 (COVID-19), emerged in Wuhan 
(China) in December 2019. COVID-19 rapidly spread 
worldwide, reaching the epidemiological criteria to be 
declared a pandemic by the World Health Organiza-
tion (WHO) in March 2020 (1).
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Abstract. Restrictions to human mobility had a significant role in limiting SARS-CoV-2 spread. It has 
been suggested that seasonality might affect viral transmissibility. Our study retrospectively investigates 
the combined effect that seasonal environmental factors and human mobility played on transmissibility of 
SARS-CoV-2 in Lombardy, Italy, in 2020; Environmental data were collected from accredited open-source 
web services. Aggregated mobility data for different points of interests were collected from Google Com-
munity Reports. The Reproduction number (Rt), based on the weekly counts of confirmed symptomatic 
COVID-19, non-imported cases, was used as a proxy for SARS-CoV-2 transmissibility. Assuming a non- 
linear correlation between selected variables, we used a Generalized Additive Model (GAM) to investigate 
with univariate and multivariate analyses the association between seasonal environmental factors (UV-index, 
temperature, humidity, and atmospheric pressure), location-specific mobility indices, and Rt; UV-index was 
the most effective environmental variable in predicting Rt. An optimal two-week lag-effect between changes 
in explanatory variables and Rt was selected. The association between Rt variations and individually taken mo-
bility indices differed: Grocery & Pharmacy, Transit Station and Workplaces displayed the best performances 
in predicting Rt when individually added to the multivariate model together with UV-index, accounting for 
85.0%, 85.5% and 82.6% of Rt variance, respectively. According to our results, both seasonality and social 
interaction policies played a significant role in curbing the pandemic. Non-linear models including UV-index 
and location-specific mobility indices can predict a considerable amount of SARS-CoV-2 transmissibility in 
Lombardy during 2020, emphasizing the importance of social distancing policies to keep viral transmissibility 
under control, especially during colder months. (www.actabiomedica.it)

Key words: SARS-CoV-2, UV, environmental factors, transmissibility, GAM analysis



Acta Biomed 2022; Vol. 93, N. 4: e20222122

interventions in order to reduce SARS-CoV-2 trans-
missibility. In Lombardy, strict restrictions to mobility 
and social interaction were imposed, with aggregate 
mobility data displaying a relevant drop during spring 
(3). Several studies have already established the cru-
cial role that social distancing policies, restrictions to 
individuals mobility patterns, and non-pharmaceutical 
interventions as a whole have played in slowing the 
spreading of the virus (4–6).

During late spring 2020, many countries in the 
Northern hemisphere loosened these restrictions, 
due to a sustained reduction in viral transmissibility 
and a lower pressure on healthcare systems. This led 
some authors to question the eventuality of a “second 
wave” of the pandemic, during autumn (7). Direct, 
droplet-mediated, human-to-human transmission has 
been recognized as the main viral route of transmis-
sion. However, consistent evidence of susceptibility 
of SARS-CoV-2 to environmental factors, such as 
temperature, humidity, and simulated sunlight, has 
emerged from experimental data, proposing similari-
ties with other viruses with a lipidic envelope (8,9). 
SARS-CoV-2 has proven itself highly resilient in sa-
liva and other body fluids on surfaces outside the hu-
man body, making the putative role of environmental 
factors on its persistence potentially crucial in the 
transmission of the disease (10).

Some studies have already investigated the role of 
environmental factors such as temperature, humidity, 
and UV-index on SARS-CoV-2 virulence at different 
latitudes, achieving mixed and nonconclusive results.
(11–15) Most of these works have, however, some ma-
jor limitations: 1) data analyzed were mostly derived 
from the first “pandemic wave”, an early phase in which 
epidemic growth was unbalanced by low immunity, so 
that even strong environmental drivers were unlikely 
to affect transmissibility; 2) the reduction in social 
interactions determined by government-imposed 
non-pharmaceutical interventions worldwide has 
been rarely weighted alongside environmental drivers, 
therefore acting as a possible strong confounding fac-
tor; 3) testing and reporting of cases around the globe, 
and sometimes even inside the same country, has var-
ied significantly, so that country-specific limitations 
of data quality may support inconsistent inferences 
on evidences about the role of climatic factors (15). 

Now that the era of SARS-CoV-2 vaccines has begun, 
uncertainty about the duration of natural and vaccine-
induced immunity prompts new efforts in clarifying 
viral transmission dynamics. Indeed, the aim of the 
current study is to retrospectively investigate the ef-
fects of seasonal environmental factors and social in-
teraction data on transmissibility of SARS-CoV-2 in 
Lombardy, during 2020.

Methods

Data sources

In this retrospective study, we assessed data at 
regional level for Lombardy (Italy) during the period 
from May 18, 2020 to December 13, 2020. Epidemio-
logical data, including number of new confirmed cases 
and estimates of the reproduction number (Rt), were 
collected from the national deputed entity, Istituto 
Superiore di Sanità (ISS). Rt estimate is based on the 
weekly counts of confirmed symptomatic COVID-19, 
non-imported cases, referring to when symptoms de-
veloped. Rt represents the average number of secondary 
cases that would arise at a given time from a primary 
infected case if the conditions remained stable after 
that time.(16) Due to its calculation method, Rt relates 
to a subgroup of cases and to a rolling time window 
of around one week, which accounts for the reporting 
delay between symptom onset and case notification.
(17) Since daily transmissibility may be influenced by 
particular events or random daily variation, ISS reports 
the average Rt value of the previous week (seven days, 
corresponding to one generation time) (17).

Mean daily values for UV-index, provided in a 
time series format, were collected from the Tropo-
spheric Emission Monitoring Internet Service 
(TEMIS) archive, hosted by the Royal Netherlands 
Meteorological Institute (KNMI, http://www.temis.
nl/uvradiation/UVarchive.html) as part of a project of 
the European Space Agency (ESA). TEMIS provides 
validated near-real time satellite-based UV-index and 
UV dose timeseries for different UV locations around 
the globe (18). Ispra (45.8° N, 8.6° E, Lombardy, It-
aly) cloud-free erythemal UV-index time series was 
adopted for this study.
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Average temperature at 2 meters above ground 
surface, average atmospheric pressure at ground sur-
face, and average of relative humidity at 2 meters 
height were collected from the NASA Prediction Of 
Worldwide Energy Resources (POWER) Data Access 
Viewer (DAV, http://power.larc.nasa.gov). The param-
eters in POWER Release-8 are provided on a global 
grid with a spatial resolution of 0.5° latitude by 0.5° 
longitude.

Aggregate and anonymized mobility data fluc-
tuations were collected from Google Community 
Mobility Reports (https://www.google.com/covid19/
mobility/). These datasets describe relative variation 
in individual mobility dynamics, affecting selected 
categories of Points Of Interest (POIs), when com-
pared to “baseline-days”, which represent normal val-
ues for a specific day of the week, averaged from the 
five-week period ( Jan 3 – Feb 6, 2020). Changes are 
calculated using the same kind of aggregated and an-
onymized data used to show popular times for places 
in Google Maps. Google Community Mobility Re-
ports locations are grouped within six categories: 
Residential, Retail & Recreation, Grocery & Pharmacy, 
Parks, Transit Stations, Workplaces, and Residential Ar-
eas. Specific POIs for each mobility index are listed 
in Supplementary Table 1. Country- and region-wise 
data for each parameter are available on a daily basis 
(since Feb 15, 2020).

Data selection and processing

In accordance with Rt calculation method, we ag-
gregated daily environmental and mobility daily values 
on a weekly basis (Monday to Sunday) to account for 
the 30 weeks from May 18 to December 13, 2020.

Among mobility parameters provided by Google 
Community Mobility Reports, five were considered 
relevant to our analysis (Transit Stations, Retail & 
Recreation, Workplaces, Grocery & Pharmacies, Parks) as 
being specifically affected by the national government 
mobility restriction measures. Residential mobility was 
excluded, as positive variations in this index are actu-
ally indicative of decreased mobility, suggesting in-
stead increased activities in locations around the home 
environment.

Data analysis

Assuming a non-linear relation between the selected 
data, we used a Generalized Additive Model (GAM) to 
investigate with univariate and multivariate analyses the 
association between seasonality, mobility indices and Rt. 
Shapiro-Wilk test was performed in order to assess Rt 
values deviation from normal distribution. Rt frequency 
distribution is shown in Supplementary Figure 1. It has 
been demonstrated that Rt follows a negative binomial 
probability distribution, converging to the Poisson dis-
tribution for large value of the parameter k of the discrete 
probability distribution (19). For this reason, logarithm 
link function was selected for predictive GAM. The 
model applied to investigate a univariate association be-
tween variables and the Rt is described as follows:

log(Rti+lag) = α + f(xi, k = 8) + δ × log(Rti-1) (1)

where α is the intercept, f denotes the smoother 
function, based on the penalized smoothing splines, 
xi denotes the ith-week predictive variable, including 
environmental variables (temperature, UV-index, hu-
midity, and atmospheric pressure) and mobility in-
dexes. K represents the number of delimiting knots 
of predictor variable in the GAM model. The term  
(δ × log(Rti-1)) was used to correct the autocorrelation 

Table 1. Lag effect analysis of influences on Rt. Each variable 
was evaluated at different lag times to explore potential plau-
sible biological association with Rt. Numbers in boxes denote 
Akaike’s information criterion (AIC) for that model. Lowest 
values mean a better fitting model. Models fitting best for pos-
itive week lags (1 week, 2 weeks) mean that explanatory vari-
ables preceded homologous Rt fluctuations. * Represents the 
best fitting model for the selected variable.

0 week 1-week lag 2-week lag

UV-index -8.15 -9.23 -16.12*

Temperature -3.90* -0.54 0.37

Relative Humidity -3.25* -0.69 0.03

Atmospheric Pressure 0.85 -0.85 -1.07*

Retail & Recreation -0.02 -0.58 -0.69*

Grocery & Pharmacy -4.40 -16.75 -18.87*

Workplaces -3.63 -15.46* -12.01

Transit Stations -1.02 -3.11 -8.71*

Parks -8.09* -3.67 2.04
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Figure 1. Observed trends in Rt and explanatory variables

of Rt time series, as shown by the autocorrelation 
function (ACF) (Supplementary Figure 2). Differ-
ent lag-effects were evaluated for each variable to ex-
plore potential plausible biological association with 
Rt. Akaike’s information criterion (AIC) was used to 
compare different models.

Multivariate analysis of influences on Rt

Due to the high collinearity among mobility indi-
ces (Supplementary Table 2), the impact of each selected 
index was evaluated individually to avoid the risk of 
type I error due to concurvity in GAM. Each mobility 
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Table 2. Univariate analysis of influences on Rt: Each model is evaluated at the pre-determined 2-week lag. UV-index and Grocery & 
Pharmacy based models display the best performances in predicting Rt variations. Parks and Retail & Recreation based models result 
as statistically non-significant. Edf; effective degrees of freedom; Ref.df: reference degrees of freedom; Dev exp: percent of deviance 
explained; AdjR2: adjusted R-squared; AIC: Akaike’s information criterion.

Edf Ref.df F-value p-value Dev.exp AdjR2 AIC

UV-index 4.76 5.58 4.21 0.010 75.7 0.69 -13.40

Retail & Recreation 1.00 1.00 1.28 0.270 47.3 0.43 -0.69

Grocery & Pharmacy 4.46 5.25 6.39 0.001 79.5 0.74 -18.87

Workplaces 2.98 3.61 5.21 0.005 71.0 0.67 -12.01

Transit Stations 6.28 6.81 3.18 0.029 74.2 0.65 -8.71

Parks 1.00 1.00 0.04 0.850 44.7 0.40 2.04

index was individually added to GAM together with  
UV-index, considering a preselected two-week lag, in 
order to explore the potential role of each mobility in-
dex in predicting Rt, adjusted for a seasonal variation. 
The model used to investigate the multivariate associa-
tion between UV-index, mobility, and Rt is described 
as follows:

log(Rti+2) =  α + f1(Mi, k = 8) + f2(UVi,  
k = 8) + δ × log(Rti+1) (2)

where M represents the ith-week mobility index and 
UV the ith-week average of UV-index. AIC score mini-
mization was used to evaluate the impact of each mobility 
index in predicting Rt, keeping into account seasonality.

All statistical analyses in the study were per-
formed with R statistical package (R Foundation for 
Statistical Computing, Vienna, Austria), version 4.0.3.

Results

A 30-week period was included in the analysis. 
A total of 358 818 new confirmed cases were reported 
in the study period in Lombardy, accounting for the 
3.56% of the total population and for the 80.87% of 
all confirmed cases since the first documented case 
in Lombardy, in February 20, 2020. Rt ranged from 
0.52 [95% C.I.: 0.22–1.21] to 1.17 [0.86–1.48] for 
the entirety of summer; it steeply increased dur-
ing the transition to autumn and reached its peak at 
2.09 [1.77–2.30] in the third week of October 2020 
(Figure 1a). Mean weekly UV-index and temperatures 
ranged from 0.87 to 9.02 and from 0.70 °C to 25.04 
°C, respectively. UV-index reached its peak in the last 
week of June, four weeks before the highest weekly 
temperature recorded value (Figure 1b). Humidity and 
atmospheric pressure trends are displayed in Figure 1c.
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All mobility indices included in the analysis show 
a reduction when compared to baseline, except for 
Parks. In particular, Retail & Recreation and Transit 
Station ranged from -11.86% to -59.86% and from 
-21.57% to -60.71% respectively, with the downward 
peak reached in the second week of November. Work-
place and Grocery & Pharmacy ranged from -18.86% 
to -51.14% and from -5.86% to -27.57% respectively, 
with the downward peak reached on the second week 
of August, concurrently with holiday season. Parks 
ranged from +60.14% in the second week of Sep-
tember (the fact that baseline mobility was calculated 
in the month of January accounts for this result),  
to -44.57% in the last week of October. After the loos-
ening of mobility restrictions, following the end of the 
first pandemic wave, mobility curves kept a relatively 
stable profile during summer, except for a downward 
shift during holiday weeks in August. Mobility indices 
dropped again in October, as a consequence of gov-
ernmental social-distancing policies instituted for the 
second pandemic wave (Figure 1d). Using UV-index 
and mobility indices, we evaluated how seasonal fac-
tors and social distancing measures influenced the 
COVID-19 transmissibility, fitting a GAM model.

(A) Sampling of Rt values (95% C.I.) and trend 
during the 30 weeks of our observation period. (B) UV-
index (left axis) and temperature (°C, right axis) trends. 
(C) Atmospheric pressure (kPa, left axis) and humidity 
(%, right axis) trends. (D) Mobility indices trends in 
percent variation from baseline, considered individually. 
The red area between dashed vertical lines represents 
the introduction of “red zones” by the national govern-
ment, defined by stay-at-home orders and strict restric-
tions to mobility implemented on regional basis.

Lag-effect analysis

The effect of environmental and mobility indices 
variation on Rt was not straightforward, as shown in 
Table 1. A GAM model including UV-index and at-
mospheric pressure displayed the best predictive effect 
on Rt considering a lag-effect of two weeks, whereas 
temperature and humidity had the best predictive per-
formance with a biologically unconvincing zero-week 
lag. Temperature and UV-index both displayed a 
definite seasonal variation and a strong correlation 
between each other, considering a four-week lag for 
temperature (Pearson coefficient 0.97) (Figure 1b).

The lag-effect of mobility indices variation differed. 
GAM models assessing Retail & Recreation, Grocery 
& Pharmacy and Transit Stations performed the best 
considering a lag-effect of two weeks, while Workplaces 
shows optimal performance with a one-week lag. Parks 
was the only mobility index to display the best perfor-
mance considering an unconvincing zero-week lag.

Considering the AIC value (Table 1) and the 
predictable yearly dynamics of the UV-index, mak-
ing it the fittest proxy for seasonality, the two-week 
UV-index lag was adopted for the main analysis, re-
flecting both the biological time needed for an external 
factor to influence transmissibility and for incubation 
time, as already shown by previous studies (4,5).

Univariate analysis of influences on Rt

The regression model with cubic splines was used 
to analyze the influences of each individual explanatory 
variable on Rt and corresponding fitting degree of the 
model. According to our results, both seasonality and 
social distancing have a role in curbing the pandemic 
curve. The regression model used to analyze the influ-
ence of each individual mobility index on Rt highlights 
a significant association with both UV-index and some 
mobility trends; all estimates and significance levels 
are listed in Table 2. In particular, the GAM including 
UV-index as single predictor variable explains 75.7% 
of Rt deviance in Lombardy (adjusted R2 = 0.69;  
AIC = -13.40). Concerning mobility indices, the high-
est explained deviance is 79.5% for the Grocery & Phar-
macy (adjusted R2 = 0.74; AIC = -18.87). The lowest 
level of association was detected for Retail & Recrea-
tion and Parks, with a deviance explained of 47.3% (ad-
justed R2 = 0.43; AIC = -0.69) and 44.7% (adjusted R2 

= 0.40; AIC = 2.04), respectively; for these parameters, 
the p-value of the smoother resulted not significant.

Multivariate analysis of influences on Rt

Multivariate GAM models of Rt incorporating 
time-series correction, UV-index, and mobility indi-
ces taken individually, considering a predetermined 
lag-effect of two weeks, were applied. All estimates 
and significance levels are listed in Table 3.

In the aforementioned multivariate setting, Gro-
cery & Pharmacy displayed the best correlation with 
the response variable, with 85.0% deviance explained 
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regions during 2020 (20). The results inferred by our 
data might be helpful in evaluating the timing and 
stringency of future interventions.

Multiple factors may drive seasonal trends in 
respiratory viral infections, including change in so-
cial dynamics and intrinsic susceptibility of viruses to 
weather and environmental factors (21). Indeed, using 
publicly available empirical data, collected for one of 
the most hardly hit regions in Europe(2) we explored 
multiple variables as possible contributors to a seasonal 
trend in SARS-CoV-2 transmissibility, namely mobil-
ity indices, solar UV radiation, temperature, atmos-
pheric pressure, and humidity, assessing their effect 
with different time lags, in order to find the best fitting 
framework for our model. As already established by 
previous works, the biological effect carried out by ex-
ternal factors on case growth is not immediate (4,5,22). 
Among selected environmental variables, UV-index 
displayed the strongest and the most plausible biologi-
cal temporal correlation with Rt, making it the fittest 
to explain a putative environmental susceptibility of 
SARS-CoV-2.

According to our model, solar UV radiation, 
rather than temperature, might represent the key envi-
ronmental factor contributing to SARS-CoV-2 trans-
missibility, accounting for 75.7% of Rt deviance at the 
univariate analysis, holding a non-linear effect. The 
germicidal role of solar UV radiation (mainly UV-A 
and UV-B wavelengths) has already been explored, 
and recent experimental data suggests that solar UV 
exposure of a mid-latitude site during summer may 
lead to SARS-CoV-2 inactivation in the span of min-
utes (23,24). Solar UV exposure also plays a known 
and crucial role in the synthesis of vitamin D, which 

(adjusted R2 = 0.79; AIC = -23.75). A reduction 
in the AIC score was also recorded for Workplaces  
(adjusted R2 = 0.76; AIC = -19.88) and Transit Station 
(adjusted R2 = 0.78; AIC = -20.19).

GAM multivariate results are shown in (Figure 2a, 
2b, 2c) as the smoother components plot for UV-index 
and each mobility index taken individually. Our model 
displays a steep downward curb in Rt curve when 
Workplaces and Grocery & Pharmacy shift in the -20% 
to -30% and -5 to -15% interval, respectively, net of 
seasonality. Transit Station mobility index has a more 
complex association pattern, reflecting the degrees of 
freedom for the smoothing spline (= 6.46). However, a 
trend towards Rt reduction in the -20% to -60% inter-
val is still observable. All of the displayed models show 
a net effect of mobility indices in curbing Rt, despite 
seasonality. Our models contain only one mobility in-
dex per each, preventing us from evaluating the overall 
effect of UV-index on Rt, controlling for mobility.

A negative association between Workplaces 
(Fig.2A), Grocery & Pharmacy (Fig.2B), and Transit 
Stations (Fig. 2C) reduction and Rt (vertical axis)

Discussion

To the best of our knowledge, this is the first study 
to investigate the combined interplay of environmental 
and social interaction factors in SARS-CoV-2 trans-
missibility. In fact, one of the uncertainties regarding 
future reopening is the possibility for the pandemic to 
keep a near-stable seasonal profile, flattening in sum-
mer and exacerbating during the cold season, similarly 
to what has been observed in several mid-latitude 

Table 3. Multivariate analysis of influences on Rt: Each model is evaluated at the pre-determined +2-week lag, and consists of mo-
bility indices individually added to the model together with UV-index. Grocery & Pharmacy, Transit Stations and Workplaces based 
models confirms themselves to be the most impactful predictors of Rt variations, when weighted for seasonality. Edf; effective degrees 
of freedom; Ref df: reference degrees of freedom; Dev.exp: percent of deviance explained; AdjR2: adjusted R-squared; AIC: Akaike’s 
information criterion.

Edf Ref df F-Value p-Value Dev.exp AdjR2 AIC

UV-index 4.76 5.58 4.21 0.007 75.7 0.69 -13.40

Retail & Recreation 1.00 1.00 1.10 0.310 76.0 0.69 -12.60

Grocery & Pharmacy 4.37 5.15 6.66 0.001 85.0 0.79 -23.75

Workplaces 2.64 3.19 4.08 0.019 82.6 0.76 -19.88

Transit Stations 6.46 6.80 4.00 0.010 85.5 0.78 -20.19

Parks 1.00 1.00 1.65 0.210 77.4 0.70 -13.84
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correlation was even stronger when mobility indices 
and UV-index were both included in the model, ac-
counting for up to 85.5% of Rt variance, thus suggest-
ing their key role in transmissibility.

Our study has several limitations. First, due to 
the weekly calculation of Rt estimate, the examined 
period of 30 weeks might imply low sampled data, af-
fecting the model predictive value at the extremes of 
our curves, as shown by the large confidence inter-
vals (Supplementary Figure 3). Moreover, due to the 
cyclical nature of some of the selected variables, an 
eight-month period may have limited our observable 
range for these factors. However, considering UV-in-
dex, due to an observation period roughly covering the 
time span between both solstices, a broad estimate of 
its whole seasonal half-cycle is expected to be included 
in our analysis. Second, we performed our analysis on a 
relatively small scale, so that further studies are needed 
to evaluate its generalization on a national or global 
scale. However, small-scale analysis has the advantage 
to limit data heterogeneity. In fact, nation-scale data 
averages may hide parameter variations occurring lo-
cally; conversely, an extreme variation in a spatially dis-
tinct smaller subsection can disproportionately sway a 
larger region’s mean value. Third, the chosen mobility 
dataset has intrinsic limitations: it does not stratify for 
different demographics, missing a possible heteroge-
neity in viral susceptibility among different popula-
tions; it does not contain all POIs, in particular schools 
may be the great absentee from our dataset, being of-
ten debated as a source of infection spread; it does not 
consider inter-regional travels. However, due to the 
capillary diffusion of Google Maps and Location Ser-
vices among general population, Google Community 
Mobility Reports may represent the most meaningful 
and all-encompassing mobility data aggregator avail-
able to date; therefore, we expect our assumption based 
on this open-source service to hold robustly. Fourth, 
Rt has intrinsic limitations that must be acknowledged 
(30). However, since relatively few data are needed for 
its calculation and due to its general reliability, Rt is 
universally considered a reliable index for the measure-
ment of transmissibility in epidemics and was there-
fore adopted as our main response variable.

In conclusion, our results emphasize the im-
portance of social distancing policies to keep viral 

has a modulating effect on the immune response (25). 
At the same time, epidemiological data exist support-
ing a negative association between COVID-19 trans-
missibility, severity, and UV radiation (14,26,27).

On the other hand, social distancing policies 
have been implemented in many countries as the main 
countermeasure to the pandemic flood, and their as-
sociation with SARS-CoV-2 transmissibility has been 
already established in several studies, using different 
proxies for the estimate (4,5,28). In our study, we de-
cided to consider mobility data per se, instead of fo-
cusing on the deployment of the policies that drove 
the drop in aggregate mobility values. The effect of 
specific restrictive interventions, evaluated by previ-
ous studies, was not assessed in the present study. Our 
model confirms that mobility plays a fundamental role 
in SARS-CoV-2 transmissibility, independently from 
environmental factors. Google Community Mobility 
Reports provide open-source data and have already 
proved to be useful in predicting COVID-19 case in-
cidence (29).

According to our analysis, Grocery & Pharmacy, 
Transit Station and Workplaces predicted a consider-
able amount of Rt variance, when taken individually, 
and maintain their significance when coupled with 
UV-index in a multivariate analysis. Conversely, Parks 
showed little-to-no effect on viral transmissibility. 
Surprisingly enough, Retail & Recreation did not show 
a significant role in transmissibility either. This coun-
terintuitive result, despite a similar graphical pattern 
between Retail & Recreation and the aforementioned 
significant indices, may be due to an intrinsic feature 
of our dataset. In fact, similar relative changes in two 
indices may imply great differences in the absolute 
number of people actually involved, depending on the 
selected index. A small relative variation toward heavily 
frequented POIs may have a more meaningful impact 
on Rt when compared to a bigger relative variation of 
less frequented POIs. This result is particularly mean-
ingful in the light of the heavily implemented govern-
mental bans on social events, restaurants closures, and 
restriction to leisure activities in general.

Our model showed a strong correlation between 
social distancing policies (proxied by mobility patterns), 
seasonal environmental factors (proxied by UV-index), 
and fluctuation of SARS-CoV-2 transmissibility. This 
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8. Yap TF, Liu Z, Shveda RA, Preston DJ. A predictive model 
of the temperature-dependent inactivation of coronaviruses. 
Appl Phys Lett 2020;117(6):060601.

9. Schuit M, Ratnesar-Shumate S, Yolitz J, et al. Airborne 
SARS-CoV-2 Is Rapidly Inactivated by Simulated Sun-
light. J Infect Dis 2020;222(4):564–71.

10. Goh GK-M, Dunker AK, Foster JA, Uversky VN. 
Shell disorder analysis predicts greater resilience of the 
SARS-CoV-2 (COVID-19) outside the body and in body 
fluids. Microb Pathog 2020;144:104177.

11. Bashir MF, Ma B, Bilal, et al. Correlation between climate 
indicators and COVID-19 pandemic in New York, USA. 
Sci Total Environ 2020;728:138835.

12. Ma Y, Zhao Y, Liu J, et al. Effects of temperature variation 
and humidity on the death of COVID-19 in Wuhan, China. 
Sci Total Environ 2020;724:138226.

13. Tosepu R, Gunawan J, Effendy DS, et al. Correlation be-
tween weather and Covid-19 pandemic in Jakarta, Indone-
sia. Sci Total Environ 2020;725:138436.

14. Isaia G, Diémoz H, Maluta F, et al. Does solar ultraviolet 
radiation play a role in COVID-19 infection and deaths? 
An environmental ecological study in Italy. Sci Total Envi-
ron 2020; 757:143757.

15. Carlson CJ, Gomez ACR, Bansal S, Ryan SJ. Misconcep-
tions about weather and seasonality must not misguide 
COVID-19 response. Nat Commun 2020;11(1):4312.

16. Cori A, Ferguson NM, Fraser C, Cauchemez S. A New 
Framework and Software to Estimate Time-Varying Re-
production Numbers During Epidemics. Am J Epidemiol 
2013;178(9):1505–12.

17. Guzzetta G, Merler S. Stime della trasmissibilità di 
SARS-CoV-2 in Italia 2020. https://www.epicentro.iss.it/
coronavirus/open-data/rt.pdf

18. Zempila M-M, van Geffen JHGM, Taylor M, et al. TEMIS 
UV product validation using NILU-UV ground-based 
measurements in Thessaloniki, Greece. Atmos Chem Phys 
2017;17(11):7157–74.

19. The Royal Society. Reproduction number (R) and growth 
rate (r) of the COVID-19 epidemic in the UK: methods 
of estimation, data sources, causes of heterogeneity, and use 
as a guide in policy formulation. https://royalsociety.org/-/
media/policy/projects/set-c/set-covid-19-R-estimates.
pdf?la=en-GB&hash=FDFFC11968E5D247D8FF64193
0680BD6

20. The Johns Hopkins Coronavirus Resource Center (CRC). 
https://coronavirus.jhu.edu/map.html.

21. Mallapaty S. Why COVID outbreaks look set to worsen 
this winter. Nature 2020;586(7831):653–653.

22. Carleton T, Cornetet J, Huybers P, Meng KC, Proc-
tor J. Global evidence for ultraviolet radiation decreas-
ing COVID-19 growth rates. Proc Natl Acad Sci USA 
2021;118(1):e2012370118.

23. Herman J, Biegel B, Huang L. Inactivation times from 290 
to 315 nm UVB in sunlight for SARS coronaviruses CoV 
and CoV-2 using OMI satellite data for the sunlit Earth. 
Air Qual Atmos Health 2020; 1-17.

transmissibility under control, especially during colder 
months. According to our analysis, smart-working pol-
icies, online grocery shopping, and avoidance of pub-
lic transport overcrowding may be the most valuable 
measures to apply to contain case growth. UV-index 
displayed the best predictive value for SARS-CoV-2 
transmissibility among the investigated environmen-
tal factors. With the coming of summer, which may 
mitigate future case growth, relaxations on mobility 
restriction, especially now that a new vaccine era has 
begun, may be considered. Further studies are needed 
to confirm our results on a more extended time and 
geographical scale.
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SUPPLEMENTARY FILES 
 
 

 
Mobility index 

 
included Points Of Interest (POIs)  

 
Retail & Recreation Restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie 

theaters· 
 

Grocery & Pharmacy Grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, 
and pharmacies· 

 
Parks 

 
National parks, public beaches, marinas, dog parks, plazas, and public gardens· 

 
Transit Stations 

 
Public transport hubs such as subway, bus, and train stations 

 
Workplaces 

 
Places of work 

 
Residential Areas 

 
Places of residence 

 

Supplementary Table 1: Google mobility indices and corresponding Points Of Interests (POIs). Insights are based 
on data from users who have opted-in to Location History for their Google Account. 
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Supplementary figure 1: Histogram of Lombardy Rt frequency distribution. Available samplings display a non- 
normal, positively skewed distribution of Rt frequency. 
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Supplementary figure 2: Autocorrelation of Rt time series. Vertical lines represent autocorrelation at different time 
lags (weeks). Dashed lines represent level of significance at 95%. Autocorrelation function (ACF) displayed a 
significant correlation in Rt time series. 
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UV-index Retail & 

Recreation 
Grocery & 
Pharmacy Workplaces Transit 

Stations Parks 

UV-index 1·00 0·51* -0·35 0·61 0·21 0·84* 

Retail & Recreation ·· 1·00 0·55* 0·63* 0·92* 0·76* 

Grocery & Pharmacy ·· ·· 1·00 0·76* 0·74* -0·06 

Workplaces ·· ·· ·· 1·00 0·71 0·16 

Transit Stations ·· ·· ·· ·· 1·00 0·54* 

Parks ·· ·· ·· ·· ·· 1·00 

 

Supplementary Table 2: Comparison of R (Pearson correlation coefficient) among the explanatory 
variables. Asterisk (*) indicates significant correlation at the probability level of 0·01. 
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Supplementary figure 3: Smoothing component plots for log(Rt) associated with mobility indices, 
accounting for UV-index. The smooth terms for Workplaces (A), Grocery & Pharmacy (B), and Transit 
stations (C) show an effect of mobility indices reduction in curbing Rt, irrespective of environmental 
seasonality. Y-axis is the partial effect of the variable and shadow section is the standard-error confidence 
intervals. An apparent Rt increase is observable for extreme levels of reduction of Workplaces and Grocery 
& Pharmacy mobility indices. Left parts of the smoothing components plots were built by the model fitting 
on a small number of observations, limiting the predictive value of the models in these sections, as shown by 
the enlargement of confidence intervals. 
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