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Abstract: With the downscaling in device sizes, process-induced parameter variation has emerged as
one of the most serious problems. In particular, the parameter fluctuation of the dynamic random
access memory (DRAM) sense amplifiers causes an offset voltage, leading to sensing failure. Previous
studies indicate that the threshold voltage mismatch between the paired transistors of a sense
amplifier is the most critical factor. In this study, virtual wafers were generated, including statistical
VT variation. Then, we numerically investigate the prediction accuracy and reliability of the offset
voltage of DRAM wafers using test point measurement for the first time. We expect that this study will
be helpful in strengthening the in-line controllability of wafers to secure the DRAM sensing margin.

Keywords: dynamic random access memory; sense amplifier; sensitivity; offset voltage; variation;
threshold voltage mismatch

1. Introduction

Artificial intelligence (AI) and 5G networks are emerging as major topics in infor-
mation technology (IT). These applications require high-density and low-power memory.
Dynamic random access memory (DRAM) can play an important role, owing to its fast
switching speed, low bit cost, and high memory density [1]. Figure 1a shows a schematic
of a DRAM cell connected to a sense amplifier (SA). The cell part consists of a cell tran-
sistor acting as a switch and a cell capacitor storing charge. The cell plate voltage (VCP)
is connected to half-VDD to optimize the leakage current of the cell capacitor. An SA is a
complementary metal-oxide-semiconductor (CMOS) latch using the half-VDD precharge-
sensing method [2]. The basic operating mechanism of read ‘1’ is as follows: In the standby
mode, the bit-line (BL) pair voltage is precharged to half-VDD. When the word-line (WL)
voltage is raised to the ‘high’ level, the charge stored in the cell capacitors is transferred to
the BLs. Then, the BL voltage deviates from half-VDD, and a small voltage difference (VS)
between BL and BL/ is generated as follows:

VS =
VDD/2

1 + CBL/CC
(1)

where CBL and CC are the BL capacitance and the cell capacitance, respectively. With SA
activation, the BL voltage is amplified up to VDD by the positive feedback of the latched
inverters of the SA, and data ‘1’ is read. However, accurate data sensing is feasible only
when VS exceeds the SA offset voltage, as shown in Figure 1b. Therefore, if VS becomes
lower than the SA offset voltage, the sensed data read inaccurately.
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With advances in DRAM generation, both VDD and CC are being scaled down [3,4], 
thereby reducing the VS. This reduction in cell transistor size also increases the threshold 
voltage (VT) variation [5], resulting in a larger offset voltage. Thus, the offset voltage 
characterization becomes more important in SA sensitivity improvement. 

 
Figure 1. (a) Schematic illustration of DRAM, which consists of a cell and an SA. (b) Voltage dia-
gram of the sensing margin. VS must be larger than the relevant offset voltage for correct sensing; 
otherwise, the opposite data value will be read. 

R. Kraus et al. derived the offset voltage theoretically by using differential equa-
tions, confirming that simultaneous sensing was more advantageous than one-delayed 
sensing [6]. R. Sarpeshkar et al. derived a rigorous formula considering various parame-
ter mismatches and showed a good agreement compared with HSPICE simulation re-
sults [7]. Among the various sources of offset voltage, including parasitic capacitance 
and β and VT variation, VT mismatch (ΔVT) of the SA transistors has been considered as 
the most dominant factor [7–9]. At the chip (die) level, offset voltage is calculated by sta-
tistically measuring many SAs in a die. S. M. Kim et al. [10] investigated the SA sensing 
failure percentage in a die according to the VDD, the VT variation, and the channel width 
ratio of NMOS and PMOS using a Monte Carlo simulation. Because the VT in a die fol-
lows the Gaussian distribution [11], the offset voltage also is assumed to follow the same 
distribution. Thus, the VT standard deviation can be a good indicator of estimating the 
die offset voltage. S. H. Woo et al. [12] proposed an offset voltage variance estimation 
model considering the secondary effects such as drain-induced barrier lowering (DIBL), 
differential charge injection (DCI), and stack effects. Y. Li et al. [13] investigated the 
DRAM-SA mismatch analytically using small-signal analysis and optimized the result to 
obtain the minimum offset voltage variance. Then, they derived a linear model consider-
ing the sensing delay of SAs and confirmed that simultaneous sensing minimized the 
die level offset voltage. However, to the best of our knowledge, no study has been at-
tempted to cover the offset voltage at a wafer level. 

In this study, virtual wafers are generated based on the global and local variation 
theory, and the statistical simulation results of the offset voltage distribution at the die 
and wafer levels are obtained using test point measurement, which is widely used for 
wafer property identification. Finally, we numerically analyze the offset voltage predic-
tion accuracy and probability of DRAM wafers for the first time. We expect that this 
study can be used as important information in the DRAM process line and consequently 
help secure the sensing margin of the DRAM. 

The remainder of this study is organized as follows: in Section 2, the VT variation 
theory is explained. Then, the assumption of generating virtual wafers and the method-

Figure 1. (a) Schematic illustration of DRAM, which consists of a cell and an SA. (b) Voltage diagram
of the sensing margin. VS must be larger than the relevant offset voltage for correct sensing; otherwise,
the opposite data value will be read.

With advances in DRAM generation, both VDD and CC are being scaled down [3,4],
thereby reducing the VS. This reduction in cell transistor size also increases the threshold
voltage (VT) variation [5], resulting in a larger offset voltage. Thus, the offset voltage
characterization becomes more important in SA sensitivity improvement.

R. Kraus et al. derived the offset voltage theoretically by using differential equations,
confirming that simultaneous sensing was more advantageous than one-delayed sensing [6].
R. Sarpeshkar et al. derived a rigorous formula considering various parameter mismatches
and showed a good agreement compared with HSPICE simulation results [7]. Among the
various sources of offset voltage, including parasitic capacitance and β and VT variation,
VT mismatch (∆VT) of the SA transistors has been considered as the most dominant
factor [7–9]. At the chip (die) level, offset voltage is calculated by statistically measuring
many SAs in a die. S. M. Kim et al. [10] investigated the SA sensing failure percentage
in a die according to the VDD, the VT variation, and the channel width ratio of NMOS
and PMOS using a Monte Carlo simulation. Because the VT in a die follows the Gaussian
distribution [11], the offset voltage also is assumed to follow the same distribution. Thus,
the VT standard deviation can be a good indicator of estimating the die offset voltage.
S. H. Woo et al. [12] proposed an offset voltage variance estimation model considering
the secondary effects such as drain-induced barrier lowering (DIBL), differential charge
injection (DCI), and stack effects. Y. Li et al. [13] investigated the DRAM-SA mismatch
analytically using small-signal analysis and optimized the result to obtain the minimum
offset voltage variance. Then, they derived a linear model considering the sensing delay
of SAs and confirmed that simultaneous sensing minimized the die level offset voltage.
However, to the best of our knowledge, no study has been attempted to cover the offset
voltage at a wafer level.

In this study, virtual wafers are generated based on the global and local variation
theory, and the statistical simulation results of the offset voltage distribution at the die
and wafer levels are obtained using test point measurement, which is widely used for
wafer property identification. Finally, we numerically analyze the offset voltage prediction
accuracy and probability of DRAM wafers for the first time. We expect that this study can
be used as important information in the DRAM process line and consequently help secure
the sensing margin of the DRAM.

The remainder of this study is organized as follows: in Section 2, the VT variation the-
ory is explained. Then, the assumption of generating virtual wafers and the methodology
of extracting data is described in Section 3. Finally, the results are discussed in Section 4.
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2. VT Variation

With the reduction in device sizes, the device parameter fluctuations and short-channel
effects need a thorough investigation [14]. It is widely known that the process variations,
including random dopant fluctuation (RDF), line edge roughness (LER), and work function
variation (WFV), affect nonuniform VT distribution [5,15–17]. Especially, process variation
was classified into two categories: global and local variations [18].

First, the global variation includes lot-to-lot variation (LTLV, Figure 2a), wafer-to-
wafer variation (WTWV, Figure 2b), and die-to-die variation (DTDV, Figure 2c). Because
global variation is location-dependent, it can be characterized by wafer maps. For a
simple and concise discussion, a Gaussian distribution was applied to global variation, as
shown in Figure 3a.
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Second, the local variation includes the within-die variation (WIDV) shown in
Figure 2d. Within a die, VT follows a Gaussian distribution with a certain mean (mean(VT))
and standard deviation (σ(VT)) independent of location (random distribution). In this
study, VT of the SA’s transistors is assumed to follow a Gaussian distribution and the VTs
of the transistor pair sharing the same SA follow the same Gaussian distribution, as shown
in Figure 3b.
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3. Simulation Methodology

First, we modeled the offset voltage distribution of one die by referring to [13], which
statistically investigated the offset voltage using small-signal analysis and showed good
agreement with simulation results. According to [13], the variance of offset voltage of
simultaneously latched CMOS SAs in one die is expressed as follows:

σ2(VOS) =
2σ2(∆VTP)σ

2(∆VTN)

σ2(∆VTP) + mσ2(∆VTN)
(2)

where VOS is the offset voltage of one SA in a die. Moreover, ∆VTN and ∆VTP represent the
VT mismatch of paired NMOS and PMOS in a SA, respectively. The constant m is expressed
as follows:

m =
VDD − (2 + (1/α))VTN + (1/α)|VTP|

VDD−|VTP|−VTN
(3)

where α is expressed in terms of VDD and VT:

α =
VDD − 2|VTP|
VDD − 2VTN

(4)

In this article, VDD is assumed to be 1.2 V. In addition, the average VTN and VTP are
assumed to be 0.423 V and −0.365 V, respectively. Accordingly, α and m are calculated as
1.328 and 0.7534, respectively.

As the offset voltage of a die (VOS,die) is statistically defined, we choose the 4σ value
of the single SA offset voltage distribution, which is calculated by using Equation (5):

VOS,die = 4σ(VOS) (5)

Then, the offset voltage map according to σ(∆VTN) and σ(∆VTP) is plotted as shown
in Figure 4. It is observed that VOS,die increases as σ(∆VTN) or σ(∆VTP) increases.
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Next, we made a virtual wafer including 1000 DRAM dies. Additionally, for a simple
and concise discussion, we assumed that each DRAM die had 10,000 SAs, since a desirable
Gaussian distribution can be formed with just that number. As a result, the VTs of SAs
in a die follow a Gaussian distribution. Because it has been proven by previous studies
that the major factor that affects the offset voltage is ∆VT, we considered only σ(VT) and
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σ(∆VT) for the concise discussion. Thus, the average values of σ(VTN) and σ(VTP) of dies in
a virtual wafer are assumed to be 19.7 mV and 12.8 mV, respectively [11], which is shown
in Figure 5. Then, to calculate the average offset voltage of dies in a wafer, we can apply
a simple statistical equation to derive σ(∆VT) from σ(VT). Since we assume WIDV as a
random variation, the VT of each SA transistor pair is independent of each other. Therefore,
the relationship between the variance of ∆VT (σ2(∆VT)) and that of VT (σ2(VT)) is given by
the following equation [14]:

σ2(VT1 −VT2) = σ2(∆VT) = 2σ2(VT) (6)

Accordingly, the σ(∆VT) can be expressed as follows:

σ(∆VT) =
√

2σ(VT) (7)

Micromachines 2021, 12, x  5 of 10 
 

 

Next, we made a virtual wafer including 1000 DRAM dies. Additionally, for a sim-
ple and concise discussion, we assumed that each DRAM die had 10,000 SAs, since a de-
sirable Gaussian distribution can be formed with just that number. As a result, the VTs of 
SAs in a die follow a Gaussian distribution. Because it has been proven by previous 
studies that the major factor that affects the offset voltage is ΔVT, we considered only 
σ(VT) and σ(ΔVT) for the concise discussion. Thus, the average values of σ(VTN) and 
σ(VTP) of dies in a virtual wafer are assumed to be 19.7 mV and 12.8 mV, respectively 
[11], which is shown in Figure 5. Then, to calculate the average offset voltage of dies in a 
wafer, we can apply a simple statistical equation to derive σ(ΔVT) from σ(VT). Since we 
assume WIDV as a random variation, the VT of each SA transistor pair is independent of 
each other. Therefore, the relationship between the variance of ΔVT (σ2(ΔVT)) and that of 
VT (σ2(VT)) is given by the following equation [14]: σଶ(𝑉 ଵ − 𝑉 ଶ) = σଶ(Δ𝑉 ) = 2σଶ(𝑉 ) (6)

Accordingly, the σ(ΔVT) can be expressed as follows: σ(Δ𝑉 ) = √2σ(𝑉 ) (7)

As a consequence, when σ(VTN) is 19.7 mV, σ(ΔVTN) is calculated as 27.86 mV, and 
when σ(VTP) is 12.8 mV, σ(ΔVTP) is calculated as 18.01 mV, respectively. From σ(ΔVTN), 
σ(ΔVTP) and Equation (2), the average offset voltage of dies in a wafer is analytically cal-
culated as 94.44 mV. 

Here, we explain the offset voltage prediction method. The average offset voltage of 
dies in a wafer is predicted as follows. First, 10 test points that can represent the whole 
wafer are selected, as shown in Figure 5. Then, ΔVTN and ΔVTP are extracted from that 
point. Afterward, σ(ΔVTN) and σ(ΔVTP) are calculated from these 10 ΔVTN and ΔVTP. 
Then, these values would be used to predict the offset voltage. The results of prediction 
and analysis of accuracy will be discussed in the latter part of this paper. 

 
Figure 5. Assumption of virtual wafer in this work. One wafer includes 1000 DRAM dies. It is as-
sumed that the average σ(VTN) and σ(VTP) of dies in wafer are 19.7 mV and 12.8 mV, respectively. 
There are 10,000 SAs in 1 DRAM die, and their characteristics follow the Gaussian distribution. 
Red dots on a wafer indicate the 10 test points. 

4. Results and Discussion 
For intuitive comparison, simulation results are pointed with an analytical point 

which is shown in Figure 6. The orange point in Figure 6a,b indicates the analytical point 
(27.86 mV, 18.01 mV), and the offset voltage at this analytical point is 94.44 mV. Black 
points in Figure 6b indicate the predicted points using the 10-point measurement. Each 
black point in Figure 6b was extracted from one of the 25 identical wafers. As shown in 
Figure 6b, the 10-point prediction is not trending and has a wide distribution, which is 

Figure 5. Assumption of virtual wafer in this work. One wafer includes 1000 DRAM dies. It is
assumed that the average σ(VTN) and σ(VTP) of dies in wafer are 19.7 mV and 12.8 mV, respectively.
There are 10,000 SAs in 1 DRAM die, and their characteristics follow the Gaussian distribution. Red
dots on a wafer indicate the 10 test points.

As a consequence, when σ(VTN) is 19.7 mV, σ(∆VTN) is calculated as 27.86 mV, and
when σ(VTP) is 12.8 mV, σ(∆VTP) is calculated as 18.01 mV, respectively. From σ(∆VTN),
σ(∆VTP) and Equation (2), the average offset voltage of dies in a wafer is analytically
calculated as 94.44 mV.

Here, we explain the offset voltage prediction method. The average offset voltage of
dies in a wafer is predicted as follows. First, 10 test points that can represent the whole
wafer are selected, as shown in Figure 5. Then, ∆VTN and ∆VTP are extracted from that
point. Afterward, σ(∆VTN) and σ(∆VTP) are calculated from these 10 ∆VTN and ∆VTP.
Then, these values would be used to predict the offset voltage. The results of prediction
and analysis of accuracy will be discussed in the latter part of this paper.

4. Results and Discussion

For intuitive comparison, simulation results are pointed with an analytical point
which is shown in Figure 6. The orange point in Figure 6a,b indicates the analytical point
(27.86 mV, 18.01 mV), and the offset voltage at this analytical point is 94.44 mV. Black
points in Figure 6b indicate the predicted points using the 10-point measurement. Each
black point in Figure 6b was extracted from one of the 25 identical wafers. As shown in
Figure 6b, the 10-point prediction is not trending and has a wide distribution, which is
estimated to be an insufficient number of samples, which were not enough to accurately
predict the offset voltage of a wafer. Furthermore, the maximum distance in Figure 6b
between the analytical point and predicted a point is calculated as 24.58. However, since
the distance from the analytical point does not have a linear correlation with the error (see
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Figure 6a), we calculate the error between the offset voltage at the analytical point and at
the predicted point to clarify the accuracy of the prediction. Figure 7 shows the predicted
offset voltage (Figure 7a) and error (Figure 7b) of the 25 wafers. As shown in Figure 7,
the overall predicted offset voltage is distributed far from the analytical value, and the
maximum error and the average error are estimated to be 38 mV and 15 mV, respectively.
The ratio of the average error, 15 mV, to the analytical offset voltage is a somewhat large
value, which is equivalent to 16% and needs to be decreased for more accurate prediction.
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Hence, we increased the number of test points to strengthen the prediction accuracy
and verify how much the accuracy is improved according to the number of test points.
Besides 10-points measurements, 30, 50, 100, and 150 points were selected, and data
were extracted in the same way. Figure 8 shows the results with various numbers of test
points. As expected, it appears that the predicted points are moving toward the analytical
point as the number of test points increases to 100 points. However, there seems to be
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little difference between the prediction results of 100-points measurements and 150-points
measurements. To further analyze the improvement in prediction accuracy, the error and
the corresponding probability plot were also calculated. As the number of test points
increases, the distribution of error is diminished, and the average error is reduced, as
shown in Figure 9a. Notably, the average error is reduced below 3 mV when the number
of test points is 100, and further improvement is minimal when the number grows from
100 points to 150 points. Likewise, the prediction probability is also enhanced as the
number of test points increases, which is described in Figure 9b. Of course, the smaller the
allowable error, the lower this probability is. However, when the allowable error is 5 mV, it
is confirmed that the 100-point measurements show more than 90% reliability. Given these
facts, it is estimated that at least 100-point measurements will be needed to reliably predict
the overall offset voltage of the wafer by measuring the test points.
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Then, we made other types of virtual wafers to examine how the prediction accuracy
changes with regard to variation properties. The aforementioned wafer was named ‘w0’,
and the rest of the wafers (from ‘w1’ to ‘w6’) were set by increasing and decreasing the
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average value of σ(VTN) and σ(VTP) of dies in wafer ‘w0’ by 20%, respectively. The
variation properties and analytical offset voltages of wafers are summarized in Table 1. For
an accurate comparison, the number of test points is chosen as 100, and the simulation was
performed in the same way.

Table 1. Variation characteristics and analytical offset voltages of each wafer.

Wafer w0 w1 w2 w3 w4 w5 w6

Average σ(VTN) of dies (mV) 19.7 23.64 15.76 19.7 19.7 23.64 15.76
Average σ(VTP) of dies (mV) 12.8 12.8 12.8 15.36 10.24 15.36 10.24
Analytical offset voltage (mV) 94.44 100.1 86.14 105.3 80.96 113.33 75.55

Figure 10 shows the result of the simulation. In Figure 10a, analytical points of each
wafer are marked on the offset voltage contours. Since 100 points were measured to
investigate the desirable accuracy, a number of relevant predicted points are placed near
each analytical point, as shown in Figure 10b. Then, a quantitative analysis of the error is
described in Figure 11. Interestingly, it is confirmed that the average error has a positive
correlation with the analytical offset voltage (see Figure 11a). In other words, the wafer
with the largest variation has a larger prediction error. This is because the greater the
population variance is, the more the consistency of the sample variances decreases. For this
reason, regarding the prediction probability, the wafer with the largest variation is more
likely to make a poor prediction. Specifically, as shown in Figure 11b, when the allowable
error is 3 mV, the prediction probability falls to around 50% at wafer ‘w5′, which has the
greatest variation.
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Figure 10. Offset voltage contours and predicted points of each wafer. The orange points represent the analytical offset
voltages of each wafer. (a) Offset voltage contours. The analytical offset voltage of each point is: ‘w0’ = 94.44 mV,
‘w1’ = 100.1 mV, ‘w2’= 86.14 mV, ‘w3’ = 105.3 mV, ‘w4’ = 80.96 mV, ‘w5’ = 113.33 mV, ‘w6’ = 75.55 mV. (b) Predicted points
of each wafer. A total of 100 test points are selected in 1 wafer for a reliable prediction.
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5. Conclusions

Owing to the increase in demand for DRAM and the scaling of device technology
nodes, the offset voltage characteristics of the DRAM SA are becoming increasingly impor-
tant to design a sensitive SA. In this study, we numerically analyzed the prediction accuracy
and reliability of the offset voltage of DRAM wafers using test point measurement for the
first time. We created a virtual wafer and then compared the analytical offset voltage of
the wafer with the predicted value obtained through ∆VT measurement at the test points.
With regard to the number of test points, 100-point measurements show more than 90%
reliability when the allowable error is 5 mV. Additionally, it is confirmed that the predictive
reliability of wafers with small variations is higher. We expect that this study can be used
as important information in the DRAM process line, and it will be helpful in strengthening
the in-line controllability of wafers to secure the DRAM sensing margin.
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