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Repertoire-scale determination of class || MHC
peptide binding via yeast display improves
antigen prediction

C. Garrett Rappazzo'24, Brooke D. Huisman'24 & Michael E. Birnbaum@® 23"

CD4T helper T cells contribute important functions to the immune response during pathogen
infection and tumor formation by recognizing antigenic peptides presented by class Il major
histocompatibility complexes (MHC-II). While many computational algorithms for predicting
peptide binding to MHC-II proteins have been reported, their performance varies greatly.
Here we present a yeast-display-based platform that allows the identification of over an order
of magnitude more unique MHC-II binders than comparable approaches. These peptides
contain previously identified motifs, but also reveal new motifs that are validated by in vitro
binding assays. Training of prediction algorithms with yeast-display library data improves the
prediction of peptide-binding affinity and the identification of pathogen-associated and
tumor-associated peptides. In summary, our yeast-display-based platform yields high-quality
MHC-II-binding peptide datasets that can be used to improve the accuracy of MHC-II binding
prediction algorithms, and potentially enhance our understanding of CD41 T cell recognition.
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cells recognize short, linear peptides displayed by major

histocompatibility complexes (MHCs), known as Human

Leukocyte Antigens (HLAs) in humans, through their T
cell receptors (TCRs). Upon recognition of a cognate peptide-
MHC (pMHC) complex, the T cell is activated, initiating an
immune response. The resulting immune response can protect
against infectious diseases and cancer2, but this response can
also potentiate autoimmunity, allergy, and transplant rejection3=>.
Proper T cell function also underlies the success of novel antigen-
targeted vaccinations and immunotherapies®-8.

Given the importance of T cell responses, there is considerable
interest in determining which peptides are presented by MHCs
for T cell surveillance. The highly polymorphic peptide-binding
groove of MHCs and the immense diversity of potential peptide
antigens necessitates the use of allele-specific antigen prediction
algorithms. Recent advances have described improvements of
these computational algorithms®~!1, their underlying training
datal?~14, or both!>-1°. While these advances have benefited anti-
gen prediction for both class I (MHC-I) and class Il MHCs (MHC-
II)—canonically recognized by killer CD8" and helper CD4t
T cells, respectively—there is sustained interest in improving the
performance of MHC-II prediction algorithms20, which frequently
under-perform their MHC-I counterparts!1-21-25,

The under-performance of MHC-II prediction algorithms has
been at least partially due to a relative paucity of peptide-binding
data?6, as under-performance is particularly pronounced for
MHC-II alleles with few reported binders?122, However, peptide
binding predictions for even well-characterized MHC-II alleles
have under-performed their MHC-1 counterparts?h2>. This is
likely due to challenges inherent to class II MHCs, which have
more degenerate peptide-binding motifs than their class I coun-
terparts?/, and an open peptide-binding groove that requires an
added algorithmic step of peptide-register determination?>28-30,
Additionally, publicly available MHC-II-binding peptide datasets
contain redundant nested peptide sets and single amino-acid
variants of well-characterized peptides, potentially limiting their
effective depth and generalizability?31. Therefore, we hypothe-
size that the under-performance of MHC-II prediction algorithms
has been driven by deficiencies in their underlying training data,
and can be ameliorated by higher-quality peptide datasets.

Here, we describe a yeast-display-based platform to screen
108 peptides for MHC-II binding, generating over an order of
magnitude more unique binders than comparable approaches
for two human MHC-II alleles. The identified peptides reca-
pitulate previously reported binding preferences, but also
contain additional motifs and important covariances that are
not completely captured by other MHC-II peptide datasets. In
addition, yeast-display-trained models improve the prediction
of peptide-binding affinity for pathogen- and tumor-associated
peptides, even when compared to recently described mass
spectrometry-based approaches. Collectively, these data show
the importance of large datasets of unique peptide binders to
improve MHC-II binding prediction, and suggest our approach
can potentially facilitate better understanding of CD4™ T cell
recognition and enhance patient benefit from antigen-targeted
therapeutics.

Results

Yeast-displayed MHC-II platform identifies peptide binding.
Yeast-displayed MHC-II constructs have been previously descri-
bed to probe pMHC-TCR interactions3>33. We modified a yeast-
displayed HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01)
construct to determine peptide-MHC interactions by introducing
a 3C protease site and a Myc epitope tag into the flexible linker
that connects the peptide to the HLA B chain (Fig. la). Yeast

were incubated with 3C protease to cleave the linker, allowing
unbound peptides to freely disassociate. Incubation proceeded at
low pH in the presence of a high-affinity competitor peptide and
the peptide-exchange catalyst HLA-DM (Fig. 1b), emulating the
native endosomal environment of MHC-II peptide loading®4.
Yeast encoding binding or non-binding peptides were then dif-
ferentiated with a fluorescently-labeled antibody directed against
the peptide-proximal epitope tag.

Yeast expressing HLA-DR401 linked to the class II-associated
invariable chain peptide (CLIPg; 01), the peptide displaced
during endogenous antigen presentation34, exhibited significant
loss of epitope tag signal immediately following linker cleavage
(Fig. 1c). Signal loss increased with incubation at low pH in the
presence of a competitor peptide (Fig. 1c). Consistent with
its role as a peptide-exchange catalyst, the addition of HLA-
DM significantly accelerated signal loss. However, yeast
expressing peptides known to more strongly bind to HLA-
DR401, HA3p6.315°72¢ and Cll,g;.575°7 739, retained epitope tag
signal when treated with 3C protease and HLA-DM (Fig. 1d),
validating our design.

Selection and analysis of an HLA-DR401 pMHC library. To
enable repertoire-scale identification of HLA-DR401-binding
peptides, we generated a yeast surface display library encoding
1 x 108 random MHC-linked peptides. To simplify downstream
analysis, peptides were designed as randomized 9mers flanked by
constant residues to favor MHC binding in a single register, as the
open MHC-II peptide-binding groove accommodates many
possible peptide registers?>?4. The library was subjected to
iterative rounds of linker cleavage, peptide exchange, and selec-
tion for epitope tag retention (Fig. 2a), resulting in a pool of yeast
encoding strong binders after five rounds (Supplementary
Fig. 1A). Upon deep sequencing, we observed rapid convergence
upon a peptide motif that was strongly enriched for predicted
binders (Supplementary Fig. 1B and 1C). The enriched peptides
were highly diverse, consisting of 81,422 unique peptides in the
expected register (Supplementary Data 1). The distribution of
peptide frequency in the enriched library was largely flat, with no
observed correlation between individual peptide frequency and
affinity (Supplementary Fig. 2A-C).

We observed strong amino acid preferences at MHC ‘anchor’
peptide positions P1, P4, P6, and P9 (Fig. 2b), where the peptide
backbone orients amino acid side chains directly into pockets of
the MHC surface (Fig. 2c)??. These enrichments largely matched
previous reports for HLA-DR401:17:1838,:40-44 the deep P1 pocket
favors large hydrophobic residues; the basic P4 pocket favors
acidic residues; P6 favors polar residues Ser, Thr, and Asn; and
the shallow P9 pocket favors Ala, Gly, and Ser. However, the
observed enrichment of P9 Cys has not been previously reported,
and the enrichment of P6 Asp only aligns with a subset of
previous reports!7-184445 We also observed a less stringent
preference for Pro and Asn at P7, which is considered to be an
auxiliary anchor position®. While the remaining positions are
considered to be determinants of TCR binding#’, each displayed
marked preferences, such as the uniform depletion of Trp, the
enrichment of Pro and Asp at P5, the strong depletion of P2 Pro,
and a previously described preference for P2 Arg384l. Each
described enrichment or depletion was highly statistically
significant (p <0.001, Supplementary Data 2). Overall, our
library-enriched motif (Fig. 2d) closely resembled that of known
HLA-DR401 binders (Fig. 2e), generated by clustering previously
reported HLA-DR401-binding peptides curated on the SYF-
PEITHI database3!.

In order to quantify the impact of the peptide-exchange
catalyst HLA-DM on our observed peptide repertoire, we
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Fig. 1 Design and validation of a yeast-display platform to identify peptide binding to a co-expressed class Il MHC. a Structural representation of HLA-
DR401 (PDB 1J8H) modified to encode a 3C protease cleavage site and Myc epitope tag within the linker connecting the peptide and MHC p1 domain.
b Schematic of validation protocol, including linker cleavage with 3C, peptide exchange at low pH in the presence of HLA-DM and high-affinity competitor
peptide, and quantification of remaining bound peptide with an anti-Myc antibody. ¢ Time course of mean fluorescence intensity (MFI) of a fluorescently
labeled anti-Myc antibody for HLA-DR401-CLIPgy101-encoding yeast without treatment (Untreated), with linker cleavage (3C), or with linker cleavage and
peptide exchange (3C + HLA-DM), as determined by flow cytometry. d Comparison of peptide retention for HLA-DR401-CLIPg;.101, -Cllzg1-273, or -HA306-
31g-encoding yeast with linker cleavage and peptide exchange, as determined by flow cytometry and normalized to MFI before treatment. For each
construct, n =3 aliquots were treated independently and measured for each time point and condition. Statistical evaluation was performed by repeated
measures two-way ANOVA with Dunnett’s test for multiple comparison within treatment conditions (3 degrees of freedom, F=54 in 1C and F =504 in
1D), or Tukey's test for multiple comparisons across treatment conditions (2 degrees of freedom, F =312 in 1C and F = 2366 in 1D). Source data are

provided as a Source Data file.

repeated selections in the absence of HLA-DM. With the
exception of minor differences in their magnitudes, the observed
enrichments and depletions were consistent with HLA-DM
addition (Supplementary Fig. 2D, E), suggesting that HLA-DM
selects for the retention of high-affinity peptides uniformly across
each position, but does not impart unique positional preferences,
consistent with previous reports!8:48,

Analysis of peptide motifs that deviate from predictions. While
the peptide motifs we observed for HLA-DR401 (Fig. 2d) largely
conformed to those observed in previously collected data
(Fig. 2e), these motifs did not precisely match those predicted by
commonly used MHC-II prediction algorithms, based upon
either peptide binding assays, such as NetMHCII 2.3!! or IEDB
consensus*’, or upon structural modeling, such as TEPITOPE>?
(Table 1), especially at P4 and P9 (Fig. 3a).

To determine whether these differences represented bona fide
differences in peptide binding, we identified and synthesized
peptides that were enriched by our library but deemed non-binders
by both NetMHCII 2.3 and the IEDB consensus tool (predicted
ICs0> 1 uM, consensus rank >10 464%). We performed fluorescence
polarization competition assays using recombinant HLA-DR401
on the selected peptides to determine their ICs, values, which

are correlated with their MHC-binding affinities®!. Each tested
peptide had an ICs less than 1 uM, and 14/16 bound stronger than
HAszp6.315 (76 nM), a well-characterized high-affinity binder3>3¢
(Table 1). Importantly, the binding of the cysteine-containing
peptides was specific, as two allele-mismatched cysteine-containing
peptides did not exhibit binding (Supplementary Figure 3B). While
this observed strong peptide binding was not predicted by legacy
algorithms such as NetMHCII 2.3 or IEDB consensus (Fig. 3b),
recently described algorithms that use mass spectrometry-derived
eluted pMHC ligands as training datasets, such as NeonMHC218
and NetMHClIIpan 4.0 EL?, perform markedly better (Table 1),
albeit with some remaining discrepancies.

We further identified 8 peptides derived from Influenza A virus
[A/Victoria/3/75 (H3N2)] that were predicted as binders by
NetMHCII 2.3 or the IEDB consensus tool (ICsq<200nM,
consensus rank <5), but did not match our enriched motif, largely
due to departures at P4 and P9 (Table 1). Each had a measured
ICs0>2pM, and 6/8 bound weaker than CLIPgg ;. These
peptides were also largely predicted to be non-binders by
NetMHClIpan 4.0 EL and NeonMHC2 (Table 1). Overall, there
was minimal concordance between the measured ICs, of these
peptides and the predictions of legacy tools such as NetMHCII
2.3, IEDB consensus, or TEPITOPE (Fig. 3b).
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Fig. 2 Selection and analysis of a yeast-displayed HLA-DR401 randomized peptide library. a Schematic of sequential rounds of library selection to
eliminate non-binding peptides and enrich binders. b Unweighted heat maps of positional percent frequency and log2-fold enrichment of each amino acid in
round 5 of selection (n= 81,422 unique peptides). ¢ Structure of HA3zp6.315 peptide in the HLA-DR401 peptide-binding groove (PDB 1J8H), with primary
peptide MHC anchor positions denoted. d Kullback-Leibler relative entropy motifs of the core nine amino acids of HLA-DR401-binding peptides, as
determined empirically from our yeast-display library, or by clustering of binders curated on the SYFPEITHI database.

These data highlight the importance of high-quality datasets,
such as those produced by our yeast-display platform or mass
spectrometry, to identify peptides that would have been misclassi-
fied by the previous generation of antigen prediction tools.

Preferences outside of the peptide core affect MHC binding.
Canonically, peptide positions P1 through P9 are considered to
form the core of the interface with the MHC-II peptide-binding
groove?82%, However, positions outside of the MHC groove, also
known as peptide flanking residues (PFRs), can greatly affect
peptide binding®2->%. Most notably, modifications at position P10
can alter peptide ICs, up to two orders of magnitude®® without
altering the peptide core or TCR interactions?’.

To investigate the effect of positions outside of the groove on
peptide binding, we constructed and selected a randomized
13mer HLA-DR401 library. While peptides from round 5
displayed no initially obvious motif (Supplementary Fig. 4A),
register deconvolution by Gibbs Cluster> identified 7 distinct
registers among the 15,147 unique peptides (Supplementary
Data 1), 3,374 of which occupied the central register where
positions P(-2) through P11 are diversified (Fig. 4). Position P10
displayed a mild preference for aromatic residues, consistent with
previous findings®3, and depletion of both Gly and Glu. We also
observed depletion of hydrophobic residues and enrichment of
acidic residues at positions P(-2) and P(-1). Positional preferences
between positions P1 and P9 were consistent with the original
library (Fig. 2b), suggesting our motif was not influenced by the
fixed peptide flanking residues in our original design.

To validate these observations, we performed competition
assays with variants of Cll,s; »73. Notably, modifying P10 to its
most enriched residue, tyrosine, resulted in a 30-fold decrease in
measured ICsy, transforming Clls; 73 into a strong binder
(Table 2, Supplementary Fig. 4B). Furthermore, modification to
its most depleted residue, glycine, resulted in a 4-fold increase in
1Csp. Added modification of P(-2) and P11, which sit outside the
groove but are not considered TCR contacts?’, did not further
benefit peptide binding for favorable residues, but furthered loss
of binding for unfavorable residues. We observed comparable
effects from modifying each TCR contact [P(-1), P2, P3, P5, and
P8] to favorable or unfavorable residues, and the singular
modification of P2 to Pro resulted in the loss of any detectable
binding, consistent with its strong depletion. Although NetMH-
CII 2.3 and the recently described NetMHClIIpan 4.0 reportedly
consider PFRs!1:19:30, we did not observe substantial changes in
predicted ICso when positions P(-2), P10, or P11 were modified
(Table 2).

These data demonstrate that peptide binding is greatly affected
by positions outside the MHC groove, especially at P10,
highlighting additional factors that may be rectified by datasets
such as those generated by yeast-displayed libraries.

Application to a less studied HLA-DR allele. Among human
MHC-II alleles, HLA-DR401 is well studied, with over 5,000 pep-
tides curated in the Immune Epitope Database (IEDB)2°. However,
many alleles have few, or no, reported binders. We therefore
sought to apply our platform to one such allele, HLA-DR402
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Table 1 Validation of library-enriched HLA-DR401-binding motif. Table of peptides either enriched by our randomized 9mer
HLA-DR401 library selections, but not predicted to bind HLA-DR401 by NetMHCII 2.3 or IEDB Consensus, or derived from
Influenza A virus and predicted to bind HLA-DR401 but not matching our enriched motif, with algorithmic prediction values and

IC50 values measured via fluorescence polarization competition assays.

Peptide Measured NetMHCII 2.3 IEDB Consensus TEPITOPE NeonMHC2 NetMHClIpan
IC50 (nM) IC50 (nM) Rank (%) Rank (%) Rank (%) 4.0 EL Rank (%)
AAANMDTSLPAWEEG 180 1922 48 86 34 25
AAERKMSVLSAWEEG 817 2444 54 85 28 30
AAGVIDPTMLGWEEG 29 1378 66 91 25 24
AALNVERTCHCWEEG 33 13,045 95 2.2 7.5 28
AALREEHTCKCWEEG 37 8801 88 3.2 4.5 29
AALSLERSCKCWEEG 25 8192 87 12 3.6 52
AALVDDPTCRCWEEG 29 6089 79 4.7 6.9 18
AAVADDFSCRGWEEG 47 6836 82 60 27 34
AAWDPDKTVYGWEEG 44 1866 47 22 0.5 0.6
AAWDPERTCRAWEEG 32 5921 79 95 0.7 n
AAWERENDMLGWEEG 15 1480 42 28 0.9 1.9
AAWESSTDLVGWEEG 12 1365 50 50 13.7 4.9
AAWHGEGSQIGWEEG 18 1728 45 8.8 03 3.2
AAWHNDPACKGWEEG 41 12,112 93 17 11 6.0
AAWVPCGDMVSWEEG 26 4439 71 6.3 7.3 13
AAWVVEHSEVGWEEG 19 1345 39 0.9 0.2 0.5
KGYMFESKSMKLRTQ 38,661 138 16 36 40 28
LFEKFFPSSSYRRPV >50,000 172 n 32 9.5 15
NONIITYKNSTWVKD 43,436 75 3.8 49 45 20
SFFYRYGFVANFSME >50,000 35 6.1 24 18 31
SRMQFSSFTVNVRGS 3,381 81 6.7 54 14 12
VSSFQDILLRMSKMQ >50,000 101 9.4 39 42 50
VVNEVSMEFSLTDPR 7969 34 55 19 8 17
YWKQWLSLRNPILVFE 2515 30 1.7 19 2.7 15
a |IEDB consensus NetMHCII 2.3 TEPITOPE
15 15 15
1.0 1.0 1.0
& os & = I
X o = = ¥ = X
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Fig. 3 Comparison of library-enriched HLA-DR401-binding motif to MHC-II prediction algorithms. a Kullback-Leibler relative entropy motifs of the core
nine amino acids of HLA-DR401-binding peptides, as determined by application of selected MHC-II prediction algorithms to computationally-generated
peptides. b Scatterplots of algorithmic predictions versus measured 1Cso with lines of best fit and their associated coefficients of determination (R2).

Asterisk denotes R? values of negative correlations. Source data are provided as a Source Data file.
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the third peptide register (n = 3,374 unique peptides).

Table 2 Effect of preferences at TCR contacts and positions outside the peptide core. Table of modified Cll,¢..o73 peptides with
associated measured IC5q values and the predictions of selected MHC-II prediction algorithms.
Peptide Positions modified Measured NetMHCII 2.3 NetMHClIpan 4.0
1C50 (nM) 1C50 (NM) EL Rank (%)
AAGFKGEQGPKGEPG — 2910 165 03
AAGFKGEQGPKGYPG P10 15 138 0.4
AGGFKGEQGPKGYNG P(-2), P10, PT 134 100 0.4
AAGFKGEQGPKGGPG P10 12,101 161 0.4
AIGFKGEQGPKGGVG P(-2), P10, P11 23,274 144 0.6
AAEFRNEDGPLGEPG TCR Contacts 80 636 0.3
AAFFGWEWGPDGEPG TCR Contacts 5,668 4,540 28
AAGFPGEQGPKGEPG P2 >50,000 12,348 31

(HLA-DRA1*01:01, HLA-DRB1*04:02), that differs from HLA-
DR401 at four amino acids (Fig. 5a), yet has only 256 peptides
curated in the IEDB, many of which are non-unique nested sets and
single amino-acid variants of a parental sequence?631.

Our vyeast-displayed HLA-DR402 construct was validated
through its ability to specifically retain previously reported
peptide binders*+°6-0 (Supplementary Fig. 5A), and a rando-
mized 9mer HLA-DR402 library was constructed, selected, and
analyzed. While the predicted affinity of enriched peptides
increased throughout selection, the final proportion of predicted
binders was low (27%), suggesting a large divergence between our
enriched library and prediction algorithms (Supplementary
Fig. 5B). Sequences from round 5 of selection again revealed a
strongly enriched motif (Fig. 5b), with 7,692 unique peptides in
the expected register (Supplementary Data 1).

Consistent with the location and nature of the polymorphisms
of HLA-DR402 (Fig. 5a), residue preferences at peptide positions
P2, P3, P6, P8, and P9 mirrored those of HLA-DR401, yet
differed notably at positions P1, P4, P5, and P7 (Fig. 5b, c).
Specifically, the truncated P1 pocket favors smaller hydrophobic
residues; P4 favors basic residues and large hydrophobic residues
Trp and Met; P5 favors Pro as well as basic residues; and P7

favors basic residues, consistent with the consensus of previous
reports38:44:45.57,61-64 Eyrther analysis revealed that the enriched
sequences represented two unique motifs (Fig. 5d): The first, a
conventional HLA-DR motif with strong preferences at MHC
anchor positions P1, P4, P6, and P9; the second, an unconven-
tional motif dominated by hydrophobic residues at P4, and
significantly (p < 0.05) less dependent on hydrophobic residues at
P1, but more dependent on P5 Pro (Fig. 5e).

Our enriched motif again differed from those generated by
legacy prediction algorithms (Supplementary Figure 5C), that
reflect the truncation of the P1 pocket and consistent preferences
at P6, yet have increased uncertainty at P9. In addition, the dearth
of curated peptide training data for this allele results in an
inconclusive motif for NetMHCII 2.3. Our enriched motif was
supported by competition assays that validated 16/16 library-
enriched peptides (measured ICsy<150nM) that were not
predicted to bind HLA-DR402 by both NetMHCIIpan 3.2 and
TEPITOPE (Supplementary Table 1, Supplementary Fig. 5D).
These peptides were derived from both clusters within our data,
supporting each motif. We further identified 8 peptides derived
from Influenza A virus and predicted to be strong binders by both
NetMHClIpan 3.2 and TEPITOPE that did not match our overall
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Fig. 5 Selection, analysis, and validation of a HLA-DR402 library. a Structure of HLA-DR401 complexed with HA306.308 (PDB 1J8H) highlighting HLA-
DR402 polymorphisms (red) and polymorphism-proximal peptide positions (blue), with associated sequence alignment. b Unweighted heat maps of
positional percent frequency and log2-fold enrichment of each amino acid in round 5 of selection of a randomized 9mer HLA-DR402 library (n =7,692
unique peptides). ¢, d Kullback-Leibler relative entropy motifs of the core nine amino acids of HLA-DR402-binding peptides, either determined empirically
from our yeast-display library, or in each of the two clusters found within our library. @ Amino acids significantly (p <0.05) more represented at each
position within the core 9 amino acids of HLA-DR402-binding peptides between clusters. Displayed size of residues correlates with statistical significance
of deviation and significance was determined by two-sided unweighted binomial test for p < 0.05, with a Bonferroni correction for multiple hypothesis
testing. f Scatterplots of algorithmic predictions versus measured ICsq with lines of best fit and their associated coefficients of determination (R2). Asterisk
denotes R? values of negative correlations. Source data are provided as a Source Data file.

enriched motif. Interestingly, only 3/8 were found to be weak or
non-binders (ICsy>500nM), possibly due to averaging two
overlapping motifs in our data. Notably, the predictions of legacy
algorithms showed no correlation with measured ICs, (Fig. 5f).
However, many of these deficiencies were rectified by recently
described algorithms that use mass spectrometry-derived eluted
pMHC ligands as training datasets, such as NeonMHC2 and
NetMHClIIpan 4.0 EL (Supplementary Table 1).

These results demonstrate that our platform can generate large
quantities of high-quality training data even for alleles for which
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there are no allele-specific reagents to validate fold and function.
It further revealed that HLA-DR alleles can bind peptides in
multiple distinct peptide motifs, including non-conventional
motifs, and can introduce inaccuracies in algorithms that
overweight hydrophobic preferences at position P1.

Benchmarking performance of yeast-display trained algorithms.
We hypothesized that yeast display-derived peptide binding data
could be used to improve algorithmic prediction of MHC binding.
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To address this hypothesis, we trained prediction algorithms with our
yeast-displayed library data using NN-Align, the architecture
underlying NetMHCII and NetMHClIpan®, facilitating direct
comparison of the effect of the training data versus that of the pre-
diction algorithm architecture. Algorithms trained on yeast-display
data exhibited good correlation with the above described measured
IC5, values (Supplementary Fig. 6A, B), and correctly classified 24/24
of the previously measured HLA-DR401 peptides and 21/24 of the
HLA-DR402 peptides as binders or non-binders (rank <10% and
measured ICsy<1pM, or rank >10% and measured ICs5>1 M,
respectively). Furthermore, consistent with the effect of peptide
flanking residues on binding, training on the 13mer HLA-DR401
yeast-display data resulted in improved correlation with measured
IC5 for the Clly4;.,73 variant peptides, relative to training on the
9mer library, or to NetMHCII 2.3 (Supplementary Fig. 6C).

We next set out to comprehensively benchmark the predictive
performance of our algorithm as compared to a large array of
other described approaches. We identified two peptide-binding
datasets for each allele that were not represented in most current
prediction training datasets!®44, facilitating independent evalua-
tion. These datasets were generated from eluted ligand mono-
allelic mass spectrometry (MS) obtained from antigen-presenting
cells that express only a single MHC-II allele, eliminating the
ambiguity in allelic assignment encountered in conventional
poly-allelic MS eluted ligand datasets!4?7. This method has
recently been used to generate high-quality data for many MHC-I
and MHC-II alleles!41>1844 While these datasets are over an
order of magnitude smaller than those generated by yeast-display
in terms of unique peptide cores (Supplementary Data 1,
Supplementary Fig. 7), their motifs are largely consistent with
yeast-display, with the exception of P9 Cys and the absence of two
distinct motifs for HLA-DR402. As one of these datasets!$
underlies the recently published MHC-II prediction algorithm
NeonMHC2, we generated an additional prediction algorithm

from this data—again using NN-Align—to provide further
comparison on the effect of training data versus the underlying
algorithmic architecture.

Each algorithm was applied to the remaining allele-matched
dataset*4, with length- and expression-matched decoy peptides, to
determine two metrics of predictive performance: the area under
the receiver operating characteristic curve (AUC), and the
positive predictive value (PPV). While the MS- and 9mer yeast-
display-trained models performed comparably to one another,
the overall predictive performance of each algorithm was initially
relatively low, with a maximum AUC of 0.81 (Supplementary
Fig. 8A), suggesting a disparity between the training and
evaluation sets. Unsupervised clustering of each MS-derived
evaluation set with Gibbs Cluster® revealed that a substantial
portion of each set (26% for HLA-DR401, 19% for HLA-DR402)
were outliers (Supplementary Data 1), including peptides with
long stretches of Gly or Pro, which have been previously reported
to nonspecifically populate eluted ligand datasets®>.

Removal of these outliers vyielded universally improved
prediction performance (Fig. 6a). For both alleles, the MS- and
yeast-display-trained algorithms performed comparably in AUC
(0.92-0.94), and outperformed NetMHCII 2.3 and NetMHCIIpan
3.2, which are also built on NN-Align. This outperformance was
more pronounced in PPV, with the yeast-display-trained
algorithm reaching 67% PPV for HLA-DR401. While the recently
released NetMHClIpan 4.0 EL!Y greatly outperformed
its predecessors, its training set included our evaluation set,
and therefore this algorithm could not evaluated equitably.
NeonMHC2 demonstrated strong performance for both alleles
via AUC (0.96-0.97) and PPV (64-69%). As NeonMHC2 is built
upon the same underlying data as the MS-trained algorithms, its
improved performance may be due to the incorporation of peptide
processing information, such as peptide cleavage preferences!s.
In addition, the recently described MixMHC2Pred!4, which is

a HLA-DR401 MS test set HLA-DR402 MS test set b HLA-DR401 YD test set
1.0 —— - 1.0 1.0 |
0.8 0.8 0.8
) - o
s o 2
.02) 0.6 ) v _g 0.6 ® 0.6
% "~ YD-trained Q 0.4 ~"—— YD-trained S 04| s YD-trained
e 0.4 MS-trained g : MS-trained g = MS-trained
= P —— NetMHCII [ —— NetMHCII = —— NetMHCII
/ § —— NetMHClIpan 3.2 ——— NetMHClIpan 3.2 2 —— NetMHClIpan 3.2
0.2 p —— NeonMHC2 0.2 —— NeonMHC2 0. —— NeonMHC2
P —— MARIA —— MARIA — MARIA
0.0 ¥ , NetMHCllpan 4.0 * 0.0 v ] NetMHCllpan 4.0 * 00 NetMHClIpan 4.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate False positive rate
Prediction AUC PPV (%) Prediction AUC PPV (%) Prediction AUC PPV (%)
YD-trained 0.93 67 YD-trained 0.94 47 YD-trained 0.92 55
MS-trained 0.92 54 MS-trained 0.93 53 MS-trained 0.79 27
NetMHCII 2.3 0.88 42 NetMHCII 2.3 0.55 6 NetMHCII 2.3 0.82 30
NetMHClIpan 3.2 0.85 41 NetMHClIpan 3.2 0.80 24 NetMHClIpan 3.2 0.81 27
NeonMHC2 0.96 64 NeonMHC2 0.97 69 NeonMHC2 0.74 29
MARIA 0.85 34 MARIA 0.82 29 MARIA 0.58 12
NetMHCllpan 4.0 * 0.95 74 NetMHCllpan 4.0 * 0.94 75 NetMHClIpan 4.0 0.82 29

Fig. 6 Benchmarking performance of yeast-display-trained algorithms. Receiver operating characteristic (ROC) curves for prediction with existing
prediction algorithms, or algorithms trained on our 9mer yeast-display library (YD-trained) or eluted ligand mono-allelic mass spectrometry (MS-trained)

data, on either a outlier-removed eluted ligand MS data for HLA-DR401 and

-DR402, with expression-matched decoy peptides, or b yeast-display 13mer

HLA-DR4O01 library data, with naive library decoys. For each dataset, the area under the ROC curve (AUC) and positive predictive value (PPV) of each
prediction are shown. Asterisks indicate algorithms that contain the evaluation set in their training data. Source data are provided as a Source Data file.
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trained on conventional poly-allelic eluted ligand MS data,
displayed comparable performance to NeonMHC2 on a subset
of HLA-DR401 peptides (Supplementary Fig. 8B), but could not
be fully compared due to peptide length constraints and the
absence of an HLA-DR402 predictor. All algorithms evaluated
outperformed another recently released poly-allelic eluted ligand
MS-trained algorithm, MARIA!®.

Importantly, however, the use of a MS-derived test set in
evaluating predictive performance may not fully capture false
negatives that might arise due to gaps in MS-derived data, such as
those arising from systemic under-sampling of cysteine-containing
peptides!®44,  Therefore, we further evaluated the predictive
performance of each algorithm on our 13mer HLA-DR401 library
data. We observed comparable performance between NetMHCII
2.3, NetMHClIIpan 3.2, NetMHClIIpan 4.0 EL, and the MS-trained
NN-align algorithm (AUC 0.79-0.82, PPV 27-30%) (Fig. 5b).
NeonMHC?2 slightly underperformed its NN-Align-based counter-
part, even though it was used in ‘tiling mode’ which ignores peptide
cleavage preferences, further suggesting that the incorporation of
peptide cleavage preferences underlie its previously noted out-
performance on MS-derived data. The yeast-display-trained model
clearly outperformed each alternative algorithm, with an AUC of
0.92 and a PPV of 55%, and prediction performance only minimally
improved by the removal of outlier peptides (Supplementary
Figure 8C).

Overall, a yeast-display-trained algorithm performed compar-
ably to current state-of-the-art approaches such as NeonMHC2
and NetMHClIpan 4.0 on MS-derived data, while performing
better on yeast-display-derived data. These results suggest the
presence of bona fide peptide motifs in yeast-display data that are
not adequately sampled in MS-derived data. Direct comparison of
the MS- and yeast-display-trained algorithms at a positional
level revealed a significantly (p <0.05) more stringent P9
preference in the yeast-display-trained algorithm for both alleles
(Supplementary Fig. 7B). Furthermore, consistent with its under-
representation in MS-derived data, Cys was significantly over- or
under-represented at multiple positions and the MS-trained
algorithms had a greater preference for small hydrophobic
residues Ile, Leu, and Val at multiple positions.

Yeast display trained algorithms improve antigen prediction.
To investigate the effect these differences may have on the pre-
diction of clinically relevant peptides, we performed antigen
prediction for HLA-DR401 with NeonMHC2 and the 9mer yeast-
display-trained algorithm on two datasets: the proteome of
Influenza A virus (IAV), and expression-validated mutations
from human lung adenocarcinoma patients®. From these datasets,
the 9mer yeast-display-trained model differentially classified—relative
to NeonMHC2—5 IAV-derived peptides as strong or non-binders,
and differentially classified 13 adenocarcinoma-derived peptides as
potential cancer neoantigens. Interestingly, these algorithms displayed
non-overlapping algorithmic misses (Supplementary Table 2, Sup-
plementary Figure 9), suggesting that there are peptide motifs unique
to both the MS- and yeast-display-derived training data that con-
tribute to improved peptide prediction performance.

When all 55 peptides assayed for binding to HLA-DR401 in this
study were considered, current eluted ligand MS-trained algorithms
NeonMHC2, NetMHCIIpan4.0 EL, MARIA, and our own MS-
trained model displayed little to no correlation with measured ICs
(R2=0.08-0.19), indicative of poor peptide affinity prediction
performance (Fig. 7). In addition, NetMHCIIpan 4.0 BA, which is
trained exclusively on peptide binding affinity data!®, failed to show
correlation with measured ICs, for these peptides (R%Z=0.01)
However, our 9mer yeast-display trained model algorithm displayed
notably improved correlation with measured ICs, (R? = 0.47), and

consistent with our findings on peptide flanking residues, the
predictions of the 13mer yeast-display-trained model displayed
even greater correlation (R? = 0.62). These findings held true when
each prediction was converted to percent rank (Supplementary
Figure 10).

Overall, our results demonstrated that both eluted ligand MS-
and yeast-display-derived peptide datasets improved the perfor-
mance of MHC-II prediction algorithms relative to legacy
datasets, and both identified unique peptide motifs. However,
we find that yeast-display provided much larger datasets than
eluted ligand MS, and provided notably improved performance in
predicting peptide affinity.

Discussion

The central role of CD4t T cells across infection, cancer,
autoimmunity, and allergy motivates a need to predict which
peptide antigens can be presented by MHC-IIs. However,
MHC-II prediction algorithms can suffer from consequential
gaps and inaccuracies in coverage, especially for less char-
acterized alleles!1-21-25. Here, we present a platform for large-
scale identification of diverse MHC-II-binding peptides. We
demonstrated that our platform generates over an order of
magnitude more unique data than comparable approaches for
two human MHC-II alleles and identifies motifs that are missed
by both current data collection techniques and frequently used
prediction algorithms. We further trained existing algorithms
upon our yeast-display library data and used these algorithms
to discover bona fide peptide binders that are not predicted by
other prediction algorithms.

Analysis of the training data underlying previously described
prediction algorithms revealed multiple sources of under-
performance. For both alleles studied, we found large numbers of
nested and single amino acid variant peptides within curated
training sets. While training algorithms account for redundant
information from nested sets3Y, their presence diminishes the
functional size of the training set. However, single amino acid
variants are considered unique peptides, and can therefore
impart biases. Furthermore, a systemic absence of cysteine in
training sets resulted in substantial algorithmic false negatives for
both alleles. While this is likely due in part to an aversion to
working with cysteine-containing peptides, it may also be
driven by the difficulties inherent to sampling them in mass-
spectrometry (MS)®7. A systemic underrepresentation of acidic
residues in the IEDB has also been reported!8. In comparison, no
systematic absences were observed within our yeast-display data
(Supplementary Data 1).

In addition, we found that yeast-displayed libraries uniquely
benefit from their large size and engineered composition. By
engineering randomized peptide libraries with defined flanking
residues, we reduced register uncertainty and increased anchor
preference resolution. Meanwhile, the large size of our libraries
enabled identification of consequential preferences at non-
anchor residues, including those outside the peptide-binding
groove. Our libraries also enabled us to identify two distinct
motifs for HLA-DR402 that were not adequately captured by
curated peptides or eluted ligand MS (Fig. 5d). The coexistence
of two unique binding motifs, including one of which defies the
conventional notion of a hydrophobic P1 residue-driven HLA-
DR motif in favor of hydrophobic residue at P4, is unique
relative to recent reports of HLA-DR alleles!+17:18, The smaller
size of the mono-allelic MS-derived dataset and its under-
representation of Trp!8, which dominated this newly-described
motif, may account for its absence.

By using our data to train prediction algorithms and
benchmark their performance against existing algorithms, we
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Fig. 7 Benchmarking MHC-II algorithm performance for prediction of peptide-binding affinity. Scatterplots of algorithmic predictions versus measured

ICs0 values for 55 peptides assayed for binding to HLA-DR401 in fluorescen

ce polarization competition assays, with lines of best fit and their associated

coefficients of determination (R2). Asterisk denotes R? values of negative correlations. Source data are provided as a Source Data file.

identified key considerations for MHC-II antigen prediction
moving forward. First, our results demonstrate that high-
quality training data improves the performance of MHC-II
prediction algorithms without alteration of underlying training
algorithm architectures, especially for less characterized alleles
(Fig. 6a). However, there are important opportunities for
algorithmic improvement, such as increased focus on peptide
flanking residues. Second, we find that each source of data has
non-overlapping strengths and weaknesses for improving pre-
diction performance. Therefore, we believe that an ideal MHC-
II prediction algorithm may be trained on both high-quality
datasets that reflect native processing®’, such as eluted ligand
MS datasets, as well as large and diverse peptide datasets, such
as those generated by our yeast-display platform. Third, we
highlight the importance of the choice of validation sets for
benchmarking prediction algorithms, as frequently used
metrics of prediction performance underestimate false nega-
tives due to gaps in test sets, allowing entire classes of peptides
to be missed without impacting performance metrics (Fig. 6a,
b). Finally, we find that yeast-display-trained algorithms are
superior at predicting peptide affinity, which is a crucial con-
sideration in identifying peptides suitable for antigen-targeted
therapeutics®-8. The non-binary nature of yeast-display data,

10

which is trained on peptides from five rounds of selection,
possibly accounts for this key disparity.

Lastly, as this platform does not require allele-specific reagents,
we believe it can generate high-quality repertoire-scale data for
many additional MHC-II alleles, even those with few curated
binders, greatly increasing its applicability. As such, we believe
this technology can greatly benefit the field of MHC-II antigen
prediction, and therefore the study and application of CD4+ T
cell recognition across pathogen infection, cancer, and immune
disorders.

Methods

Yeast-displayed pMHC design and peptide exchange. Full-length yeast-dis-
played HLA-DR401 (HLA-DRA1*01:01, HLA-DRB1*04:01) with a cleavable
peptide linker was based upon a previously described HLA-DR401 construct
optimized for yeast display with the mutations Ma36L, Val32M, HP62N, and
Dp72E to enable proper folding without perturbing either TCR- or peptide-
contacting residues3. The alpha and beta chain ectodomains were expressed as a
single transcript connected by a self-cleaving P2A sequence. The peptide was joined
through a flexible linker to N-terminus of MHC B1 domain. This construct was
further modified to express a 3C protease site (LEVLFQ/GP) and MYC epitope tag
(EQKLISEEDL) within the flexible linker, for a total of 32 amino acids between the
peptide and p1 domain. HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02) was
generated by modification of this construct with each native HLA-DR poly-
morphism of HLA-DR402. All yeast-display constructs were produced on the
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PYAL vector as N-terminal fusions to AGA2. All yeast strains were grown to
confluence at 30°C in pH 5 SDCAA yeast media then subcultured into pH 5
SGCAA media at ODggo = 1.0 for 48 h induction at 20 °CS8,

For peptide retention experiments, the linker between peptide and MHC was
cleaved with 1 uM 3C protease in PBS pH 7.4 at a concentration of 2 x 108 yeast/
mL for 45 minutes at room temperature. After linker cleavage, yeast expressing the
pMHC were washed into pH 5 citric acid saline buffer (20 mM citric acid, 150 mM
NaCl) at 1 x 108 yeast/mL with 1 M HLA-DM and a high-affinity competitor
peptide at 4 °C to catalyze peptide exchange. HLA-DR401-expressing yeast were
incubated with 1 uM HA 36315 (PKYVKQNTLKLAT) and HLA-DR402-
expressing yeast were incubated with 5 uM CD485¢ 53 (FDQKIVEWDSRKSKYFES)
(Genscript, Piscataway NJ). Peptide dissociation was tracked through an
AlexaFluor647-labeled «-Myc antibody (Cell Signaling Technologies, Danvers
MA) on an Accuri C6 flow cytometer (Becton Dickinson, Franklin Lakes NJ). For
each construct, n =3 aliquots were treated independently and measured for each
time point and condition. Statistical evaluation of dissociation experiments was
performed by repeated measures two-way ANOVA with Dunnett’s test for multiple
comparison within treatment conditions, or Tukey’s test for multiple comparisons
across treatment conditions, in Prism 8.0 (GraphPad Software Inc, San Diego CA).

Library design and selection. Randomized peptide yeast libraries were generated
by polymerase chain reaction (PCR) of the pMHC construct with primers encoding
NNK degenerate codons (Supplementary Methods). To ensure only randomized
peptides expressed within the library, the template peptide region encoded multiple
stop codons. Randomized 9mer libraries were designed as [AAXXXXXXXXXWE
EG...] to constrain peptide register and randomized 13mer libraries were designed
as [AXXXXXXXXXXXXXG...]. Randomized pMHC PCR product and linearized
PYAL vector backbone were mixed at a 5:1 mass ratio and electroporated into
electrically competent RJY100 yeast® to generate libraries of at least 1 x 108
transformants. Libraries were subjected to 3C cleavage and peptide exchange for
16-18 h, as described above, and were selected for peptide-retention via binding of
x-Myc-AlexaFluor647 antibody and magnetic «-AlexaFluor647 magnetic beads
(Milltenyi Biotech, Bergisch Gladbach, Germany). Selected yeast were re-cultured,
induced, and selected for an additional four rounds, for five total rounds of
selection.

Library deep sequencing and analysis. Libraries were deep sequenced to deter-
mine the peptide repertoire at each round of selection. Plasmid DNA was extracted
from 5 x 107 yeast from each round of selection with the Zymoprep Yeast Miniprep
Kit (Zymo Research, Irvine CA), according to manufacturer’s instructions.
Amplicons were generated by PCR with primers designed to capture the peptide
encoding region through the polymorphic region that differentiates HLA-DR401
from HLA-DR402 (Supplementary Methods). An additional PCR round was then
performed to add P5 and P7 paired-end handles with inline sequencing barcodes
unique to each library and round of selection. Amplicons were sequenced on an
Ilumina MiSeq (Illumina Incorporated, San Diego CA) with the paired-end MiSeq
v2 500 bp kit at the MIT BioMicroCenter.

Paired-end reads were assembled via FLASH? and processed with an in-house
pipeline that filtered for assembled reads with exact matches to the expected length,
polymorphic sequences, and 3C protease cleavage site, then sorted each read based
on its inline barcode and extracted the peptide-encoding region. To ensure only
high-quality peptides were analyzed, reads were discarded if any peptide-encoding
base pair was assigned a Phred33 score less than 20, or did not match the expected
codon pattern at NNK sites (n = any nucleotide, K= G or T). To account for PCR
and read errors from high-prevalence peptides, reads were discarded if their
peptide-encoding regions were Hamming distance >1 from any more prevalent
sequence, Hamming distance >2 from a sequence 100 times more prevalent, or
Hamming distance >3 from a sequence 10,000 times more prevalent within the
same round, in line with previously published analysis methods”!. Unique DNA
sequences were translated by Virtual Ribosome’? and filtered for peptides not
encoding a stop codon.

Heat map visualization of library peptide preferences. Heat maps were gen-
erated from filtered sequences from each round to visually represent positional
preferences. For each round, the unweighted prevalence of each amino acid at each
position was calculated as a percentage. This positional percent prevalence was
compared to its matched value in the unselected library to generate log2-fold
enrichment values. The significance of deviations from the positional amino fre-
quencies in the unselected library were evaluated using an unweighted two-sided
binomial test using 10,000 peptides to establish each distribution in kpLogo’3, with
a Bonferroni correction for multiple hypothesis testing.

For randomized 9mer libraries, these log2-fold enrichment values were used to
generate 20 X 9 position-specific scoring matrices (PSSMs) that were used to
identify out-of-register peptides in round 5 of selection. Each 15mer peptide was
scored in each of its seven possible 9mer registers by the PSSM, without positional
weighting. Peptides which scored highest in a shifted register, regardless of score,
were deemed out-of-register. For the randomized 13mer library, peptide register
was determined by Gibbs Cluster 2.0°%, with settings imported from ‘MHC class I
ligands of the same length’, a motif of 13 amino acids, no discarding of outlier

peptides, and background amino acid frequencies derived from the data. This
allowed visualization of each peptide register independently, without collapsing to a
common 9mer motif. The number of unique clusters was determined by maximum
Kullback-Leibler distance. Results were comparable between both methods of
register determination for the 9mer peptide data.

Analysis of peptide data from external data sources. External MHC-binding
peptide data was curated either from the SYFPEITHI database?! or from two
previously-published eluted ligand mono-allelic mass-spectrometry (MS)
datasets!®#*, Eluted ligand mono-allelic MS peptide data was analyzed as pre-
viously recommended?, the minimum epitope of nested peptide sets were filtered
for those that did not map to immunoglobulin or HLA proteins. Each dataset was
clustered by Gibbs Cluster 2.0 with default settings for ‘MHC class II ligands’,
excepting the default removal of outlier peptides, and amino acid frequencies ‘from
data’, to identify the core 9mer of each peptide. In each case, Kullback-Leibler
distance was maximized for one cluster. For identification of outlier peptides, the
default removal of outlier peptides was enabled.

Generation and comparison of peptide motifs. Kullback-Leibler relative entropy
motifs were generated with Seq2Logo 2.074. For yeast-display data, the core 9mers
of round 5 sequences were input with background amino acid frequencies derived
from their average in their matched unselected library. For externally sourced
peptide data, unique core 9mers were input with background frequencies from the
UNIPROT?? average of each amino acid. Motifs for prediction algorithms were
generated by application of each prediction to a computationally-generated set of
50,000 unique 15mer peptides with the UNIPROT average frequency of each
amino acid. Prediction with each of NetMHCII 2.3!1, TEPITOPE>?, NetMHClIpan
3.211, the TEDB consensus tool* produced a predicted value and core 9mer.
Predicted core 9mers of peptides that met published recommendations for binding
(NetMHCII and NetMHCIIpan: ICs, < 500 nM, TEPITOPE: rank <6, IEDB Con-
sensus: rank <10) were input into Seq2Logo with UNIPROT average background
frequencies.

Statistical comparison of peptide motifs was performed with Two Sample
Logo®. Significance was determined by two-sided unweighted binomial test for p <
0.05, with a Bonferroni correction for multiple hypothesis testing.

Training of peptide prediction algorithms. Allele-specific MHC-II prediction
models were generated from yeast-display library data or from external mono-
allelic MS data!®44 using NN-Align 2.0%%. For yeast-display library data, the ran-
domized residues of up to 80,000 sequenced peptides were assigned a target value
commensurate with the final round of selection in which they were observed,
between 0 and 1, with increasing target value for observation in later rounds. As
peptides from the pre-selection library were randomly generated, sequences
observed in the pre-selection library but not subsequent rounds served as our
negative dataset. The 9mer library data was used for training with default settings
for ‘MHC class II ligands’, excepting expected peptide length set to 9 amino acids
and expected PFR (peptide flanking residue) length set to 0 amino acids. The
13mer library data was used for trained with default settings, excepting expected
peptide length set to 13 amino acids.

For the mono-allelic MS data, curated filtered minimum epitopes were assigned
a target value of 1. In order to prevent the algorithm from conflating altered amino
acid frequencies arising from MS data collection with peptide-binding preferences,
each peptide was scrambled to generate negative instances and assigned a target
value of 0, in line with previously published recommendations!8. These algorithms
were trained with default ‘MHC class II ligands’ settings.

Reported prediction values are the inverse of model output prediction values (1-
value) for ease of comparison to other prediction algorithms. Percentile ranks were
established by comparison of prediction values to the distribution of prediction
values generated by applying each prediction to 50,000 computationally generated
random 15mer peptides (see above).

Benchmarking and comparison of prediction algorithms. Prediction algorithms
were benchmarked against independently generated allele-specific eluted ligand
mono-allelic MS or yeast-display library data, with matched decoy peptides. For
the MS datasets, the filtered minimum core epitopes (see above) were classified as
positive instances, and length- and expression-matched decoy peptides were ran-
domly selected from a pool of computationally generated peptides, as previously
described!8. For each protein observed within the dataset, we tiled across its
sequence with peptide lengths randomly selected from the length distribution of
the observed peptides, starting at the first amino acid in the protein and allowing
an eight amino acid overlap between subsequent proteins. If the length of the last
peptide extended beyond the end of the protein, we randomly shifted the starting
amino acid such that the starting amino acid of the first peptide and last amino acid
of the final peptide were all within the protein. We randomly selected decoy
peptides from this set such that the length distribution of decoy peptides matched
that of the positive instances, and that there was no 9mer sequence match with the
other decoys or positive instances. For the yeast-display dataset, a randomly
selected size-matched set of peptides found enriched in round 5 of selection were
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classified as positive instances, and decoy peptides were randomly selected from
peptides only observed in their respective unselected library.

A 1:1 ratio of positive instances and decoy peptides was used to generate
receiver operating characteristic (ROC) curves, where area under the ROC curve
(AUC) was calculated with scikit-learn version 0.20.3. A 1:19 ratio of positive
instances and decoy peptides was used for calculation of positive predictive value
(PPV), and calculated as the fraction of true instances observed in the top 5% of
predicted value for each algorithm!®. AUC and PPV values are provided for the 1-
log50k(aff) output of NetMHCII 2.3 and NetMHClIIpan 3.2, and was comparable
to the performance of the %Rank output. For NetMHCIIpan 4.0, %Rank_EL was
provided, and performs comparably to the Score_EL output. MHC-II binding
predictions by IEDB Consensus and TEPITOPE Sturniolo on validation peptides
were updated on August 9, 2020.

Prediction algorithms were compared at a positional level by Two Sample
Logo’®. For each comparison, the two algorithms were applied to a common set of
50,000 computationally-generated 15mer peptides (see above). The predicted core
9mer of peptides that rank within the 90t percentile or higher of predicted value
for onlz one algorithm were evaluated against the cores of peptides that rank within
the 90t percentile or higher of predicted value for both algorithms. Significance
was determined by two-sided unweighted binomial test for p < 0.05, with a
Bonferroni correction for multiple hypothesis testing.

Recombinant protein production. Recombinant soluble HLA-DM, HLA-DR401,
and HLA-DR402 were produced in High Five (Hi5) insect cells (Thermo Fisher)
via a baculovirus expression system, as previously described for other MHC-II
proteins32. Ectodomain sequences of each chain followed by a poly-histidine
purification site were cloned into pAcGP67a vectors. For each construct, 2 pg of
plasmid DNA was transfected into SF9 insect cells with BestBac 2.0 linearized
baculovirus DNA (Expression Systems, Davis CA) using Cellfectin II reagent
(Thermo Fisher, Waltham MA). Viruses were propagated to high titer, co-
titrated to maximize expression and ensure 1:1 MHC heterodimer formation,
then co-transduced into Hi5 cells and grown at 27 °C for 48-72 h. Proteins were
purified from the pre-conditioned media supernatant with Ni-NTA resin and
size purified via size exclusion chromatography using a $200 increase column on
an AKTAPURE FPLC (GE Healthcare, Chicago IL). HLA-DRB1*04:01 and
HLA-DRB1*04:02 chains were expressed with CLIPg, ;o; peptide connected by
a 3C-protease-cleavable flexible linker to the MHC N-terminus to improve
protein yields.

Peptide competition assays and IC5o determination. The ICs, of characterized
peptides was quantified with a protocol modified from Yin, L. and Stern, LJ. (2014)°1.
Relative binding values were generated at each concentration according to the equation
(FPsampte = FPgree)/(FPro_comp — FPgee), Where FPyg is the polarization value of the
fluorescent peptide before addition of MHC, FPp,q,_comp is the polarization value with
added MHC but no competitor peptide, and FPg,mpe is the polarization value with
added MHC and competitor peptide. Relative binding curves were generated and fit by
Prism 8.0 (GraphPad Software Inc, San Diego CA) to the equation y = 1/(1 + [pep]/
ICs), where [pep] is the concentration of competitor peptide, to determine the ICs, of
each peptide, its concentration of half-maximal inhibition.

For each 200 uL assay, 100 nM soluble MHC was combined with 25 nM of
fluorescently-modified peptide in pH 5 binding buffer and incubated at 37 °C for 72 h
in black 96-well flat bottom plates (Greiner Biotech, Kremsmiinster, Austria).
Modified HA3¢6.308 peptide [APRFV{Lys(5,6 FAM)}QNTLRLATG] was used for
HLA-DR401 and modified CD4856 55 peptide [AQRIVEWDSR{Lys(5,6) FAM)}
SRYG] was used for HLA-DR402. n = 3 replicates were performed for each unlabeled
peptide (Genscript, Piscataway NJ) concentration, ranging in five-fold dilutions from
20 uM to 1.28 nM. Plates were read on a Tecan M1000 (Tecan Group Ltd., Morrisville
NC) with 470 nm excitation, 520 nm emission, optimal gain, and a G-factor of 1.10.
An important modification of our protocol is the presence of the MHC-linked CLIP
peptide that was released by incubation with 3C protease at a 1:100 molar ratio at
room temperature for 1 h prior to dilution into plates. Residual cleaved CLIP peptide
at 100 nM is not expected to alter peptide binding.

Due to poor soluble expression of HLA-DR402, the assay for HLA-DR402-
binding peptides was limited to two concentrations of unlabeled competitor peptide
for this allele. However, we found high correlation between two-point estimated ICs
values and those obtained from full titration curve fitting for HLA-DR401.

Lines of best fit between predicted and measured affinity for characterized
peptide, and associated determinants of determination (R?), were generated in
Prism 8.0 (GraphPad Software Inc, San Diego CA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All deep sequencing data was deposited on the sequence read archive (SRA) with
accession code PRINA647875. All processed peptide data can be found in Supplementary
Data 1. All other data are available upon request. The UNIPROT and SYFPEITHI
databases were utilized in this study. Source data are provided with this paper.

Code availability
All scripts used for data processing and analysis, as well as all NN-Align model files, are
publicly available at [https://github.com/birnbaumlab/Rappazzo-et-al-2020].
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