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Abstract
New technological progress in robotics has brought many beneficial clinical applications. Currently, computer 
integrated robotic surgery has gained clinical acceptance for several surgical procedures. Robotically assisted 
eye surgery is envisaged as a promising solution to overcome the shortcomings inherent to conventional 
surgical procedures as in vitreoretinal surgeries. Robotics by its high precision and fine mechanical 
control can improve dexterity, cancel tremor, and allow highly precise remote surgical capability, delicate 
vitreoretinal manipulation capabilities. Combined with magnified three‑dimensional imaging of the surgical 
site, it can enhance surgical precision. Tele‑manipulation can provide the ability for tele‑surgery or haptic 
feedback of forces generated by the manipulation of intraocular tissues. It presents new solutions for some 
sight‑threatening conditions such as retinal vein cannulation where, due to physiological limitations of the 
surgeon’s hand, the procedure cannot be adequately performed. In this paper, we provide an overview of 
the research and advances in robotically assisted vitreoretinal eye surgery. Additionally the barriers to the 
integration of this method in the field of ocular surgery are summarized. Finally, we discuss the possible 
applications of the method in the area of vitreoretinal surgery.
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INTRODUCTION

The introduction of minimally invasive surgery (MIS) 
has revolutionized conventional surgical procedures.[1] 
Through the use of special surgical instruments and 
techniques, MIS allows surgeons to operate through 
small incisions minimizing tissue trauma. Use of this 
technique as a substitution for conventional methods 
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has resulted in lower rates of injury, scarring, and pain 
in addition to faster recovery times and reduced health 
care costs.[2] The advantages of MIS make it an excellent 
method for vitreoretinal surgeries. Vitreoretinal 
surgeries are performed through small incisions 
through the sclera, allowing the insertion of fine 
surgical instruments which are delicately manipulated 
by the surgeon inside the patient’s eye while observing 
the operation through a microscope equipped with a 
magnifying lens. The surgical site can also be viewed 
indirectly by watching a monitor coupled to a camera 
mounted on the surgical microscope. Since the 1970s 
when the first pars plana vitrectomy was performed, 
the method has been constantly refined, developing 
new techniques and surgical tools capable of increasing 
precision and accuracy.[3] Figure  1 shows a surgeon 
performing vitreoretinal surgery and a schematic view 
of the surgical site inside the eye. Despite the appreciable 
benefits of MIS for vitreoretinal surgeries, the method 
has several shortcomings, mostly related to the surgeon. 
In vitreoretinal surgeries, it is sometimes necessary 
to position the instrument very precisely relative to 
the target site of surgery; within about 10 microns.[4] 
This degree of precision is far below the 100‑micron 
amplitude of the natural tremor of a human hand.[5] 
Distance between the entry site into the eye, and the 
surgical field means that any precise movement from the 
surgeon’s hand close to the entry site will be enhanced 
at the point of contact with ocular tissue. Surgery as 
it is carried out presently is not ergonomic. The head 
position, unsupported hands at the edge of the head 
lead to frequent complaints of neck, shoulder, and back 
pain a decade or so into a surgeon’s practice.[6,7] Lack 
of force perception is a third problem in vitreoretinal 
surgeries; the surgeon does not have a direct sense 
of tissue stiffness as it is beyond the limits of human 
perception.[8] The surgeon must instead rely on optical 
feedback to gauge stiffness. Moreover, to become a 
skillful vitreoretinal surgeon demands several years of 
training. In particular, it takes time to learn how to adjust 
one’s movements to the biomechanical properties of 
intraocular tissues particularly when these are affected 
by disease. Furthermore fine motor skills unfortunately 
diminish as one matures, and any surgeons skilled 
in this procedure find that their physical abilities 
decreased much faster than hoped due to age, while their 

understanding and skill in performing these delicate 
operations increase.

Recent advances in robotics technology and computer 
graphics have introduced means to overcome some of 
the limitations of vitreoretinal surgery mentioned above. 
Using a robotic surgical system, surgeons can perform 
operations from a distance while sitting in an ergonomic 
position. It is also possible for several surgeons 
simultaneously to help perform a single surgery. The 
tremor of the surgeon’s hand can be filtered out using a 
robotic system and the surgery can be performed with a 
high degree of precision. It is believed that the next major 
advancement in ophthalmology will be the integration 
of robotic surgery.[9]

Robotically assisted eye surgery was first introduced 
in 1989 by Guerrouad and Vidan.[10] The feasibility 
and applicability of the robotic vitreoretinal surgeries 
has been analyzed in several studies.[11‑13] The first 
experimental robotic vitreoretinal eye surgery on a 
human eye was done at Oxford University in 2016 
by Professor Robert MacLaren. Surgeons successfully 
removed a membrane from the retina with a thickness of 
only 10 microns.[14] This achievement of robotic‑assisted 
eye surgery in its first clinical application was a 
breakthrough in vitreoretinal surgery, but there are still 
many barriers to overcome before the method can be 
clinically accepted.

Robotic-assisted Eye Surgery
Robotically assisted eye surgery was sparked by the 
introduction of the Stereo‑Taxical Micro‑Manipulator 
(SMOS) robot invented by Guerrouad and Vidal in 
1989.[10] Since then, researchers around the world have 
proposed new robotic platforms for vitreoretinal eye 
surgery. Table 1 summarizes the focus and location of 
research on robotic eye surgery.[8,10,15‑40] It is to be noted 
that because of the size and delicacy of the eye, available 
general purpose robotic systems are not suitable 
solutions for vitreoretinal surgery applications, as they 
are bulky, are not compatible with the size of ophthalmic 
operating rooms, and lack the required 3‑D precision 
inherent to eye surgery.[9]

Ophthalmic robots can be classified into three 
main categories: assistive hand-held instruments, 
co‑manipulation platforms, and tele‑manipulation 
systems. In addition, some special eye surgery robots 
such as Octomag and Microhand have been introduced 
for special applications.[41,42]

A hand‑held instrument is a special tool that aims to 
negate the tremor and unintentional movements of the 
surgeon’s hand.[43] As depicted in Figure 2, the surgical 
instrument is mounted on the hand‑held device, and the 
robotic system stabilizes and cancels out the unwanted 
fine motions of the surgeon’s hand. In one special design, 
the hand‑held instruments provide a magnified sense Figure 1. Surgeon performing vitreoretinal surgery.
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of the forces at the level of the eye structures during 
surgery.[44]

Co‑operative systems  [Figure  3] also cancel the 
unwanted motions of the surgeon’s hand; they use 
a mechanism that holds the incision point fixed and 
provides precise, tremor‑free motion control.[45] It can 
also be equipped with a force magnifying system to 
provide the surgeon with a perception of the tool‑tissue 
interaction force. In a comparison of the hand‑held 
and co‑operative devices, it should be mentioned that 
the co‑operative device is more bulky and the surgeon 
experiences more inertial force while using it. However, 
it has advantages, including the capacity to stabilize the 

motion of the surgeon’s hand at the entry point, which 
minimizes damage to the sclera.

In tele‑operated systems, the surgeon controls the 
surgical robot  (slave robot) using a joystick  (master 
robot) through a computerized control system. Using 
the benefits of tele‑operation, the surgeon can make full 
use of the functionalities provided by a robotic system: 
a precise overview and controlled movement within the 
surgical site visible on a monitor. Larger movements of 
the surgeon’s hand within the surgical field are mapped 
to much more delicate motions at the surgical site, which 
increases the accuracy of the surgical task. A magnified 
view limited to the surgical site can be used for precise 

Table 1. Eye surgery robots developed since 1989

Location of researchCountryYearAuthor

Automatical Center of LilleFrance1989Guerrouad and Vidal[10,15]

University of GenevaSwitzerland1991Pournaras et al[16]

Northwestern universityUSA1993Grace et al[17,18]

MC Gill UniversityCanada1993Hunter et al[19]

Jet Propulsion Lab, NASAUSA1997Charles et al [20,21]

University of Western AustraliaAustralia1998Yu et al[22]

John Hopkins UniversityUSA1999Taylor et al[23,24]

Carnegie Mellon UniversityUSA2001Riviere et al[25,26]

Columbia/Vanderbilt UniversityUSA2007Wei et al[27,28]

University of CaliforniaUSA2009Hubschman et al[29,30]

Tokyo UniversityJapan2009Nakano et al[8,31]

Eindhoven University of TechnologyNetherland2010Meenink et al[32,33]

Ku Leuven UniversityBelgium2011Gijbels et al[34‑35]

Technical University of MunchenGermany2013Nasseri et al[36,37]

K.N Toosi University of TechnologyIRAN2015Molaei and Abedloo[38]

Utah UniversityUSA2015Nambi et al[39,40]

Figure 2. Micron, a hand held robotic instrument, developed 
at Carnegie Mellon University  (CMU) is designed to 
remove unintentional hand movement and compensating 
for hand tremor. Permitted by Cameron N. Riviere, Ph.D. 
Research Professor and Director of Surgical Mechatronics 
Laboratory, The Robotics Institute, Carnegie Mellon University, 
Pennsylvania, USA.

Figure  3. The steady hand of John Hopkins University is a 
cooperatively controlled microsurgical system where the 
surgeon and the actively controlled robotic arm move the 
surgical instrument simultaneously. Permission by Iulian 
IORDACHITA, Ph.D. Associate Research Professor, Johns 
Hopkins University, WSE, ME/LCSR. https://amiro.lcsr.jhu.
edu/IulianIordachita.
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manipulations, as all movements of the robot can be 
confined to a particular three dimensional space, as 
required. Stand‑by functionality, positional stability 
and memorized location are other functions that are 
possible in tele‑operated systems. The surgeon can also 
perform the operation from remote locations while 
performing surgery from an ergonomic position. Thus, 
highly qualified surgeons are able to perform complicated 
surgeries for patients in remote areas with minimal stress.

The surgical robotic arms  (master robots) available 
for tele‑surgery are inspired by the motion of surgical 
instruments in MIS. In a typical MIS, the incision point of 
the surgical instrument is fixed and the surgeon orients 
the surgical tool about the entry point. The fixed entry 
port, or virtual fixture, is an important requirement for 
any clinically acceptable robot used for vitreoretinal 
surgery. For safety reasons, the fixed entry port of the 
surgical instrument is provided mechanically using a 
remote center of motion (RCM) mechanism, which holds 
the incision point fixed regardless of the motion of the 
robot linkages. The eye surgery robots should also be 
compact enough to become head mountable, and their 
workspace must cover the required angular region 
for vitreoretinal surgeries. Figure  4 illustrates several 
available RCM mechanisms that have been introduced 
for vitreoretinal surgeries. While tele‑operated systems 

may allow the surgeon to sit at a distance from the 
patient, there are many circumstances, where he may 
prefer to use the system for specific dedicated tasks. 
Hence, the ideal configuration of a mount to which the 
micromanipulator is fixed should be non‑obtrusive. 
It should allow the surgeon to easily switch between 
manual and robotic surgery.

Potential Applications of Robotics for 
Intraocular Applications

Retinal surgery
Vitreoretinal surgeries address serious sight‑threatening 
conditions such as retinal detachment, macular pucker, 
macular holes, vitreous hemorrhage, and diabetic 
retinopathy.[46] Retinal surgeries demand a high degree 
of accuracy, which is at the limit of human physiological 
ability. Additionally, the long surgical times are 
uncomfortable for both the surgeon and the patient. 
Increasing precision and fidelity while decreasing 
duration of surgery has led to a breakthrough in 
vitreoretinal surgery, which is accessible through the 
use of robotic systems.

Retinal vein cannulation
In retinal vein cannulation, a clot‑dissolving drug 
is injected into the occluded vein, but the limited 
positioning, precision, and force perception make the 
procedure challenging and risky.[47] Veins in the eye 
also have a tendency to collapse when a cannulation is 
attempted, just as in the peripheral venous system. Since a 
tourniquet cannot be placed on the retinal vessel without 
damaging neighboring structure, cannulation requires 
a very precise piercing motion to avoid penetrating the 
outer vessel wall. Thus, it is not yet a common practice 
in intraocular surgeries. However, robotic systems have 
the potential to enable the surgeon to safely administer 
injections into the micron‑sized vein of the retina.

Implant surgery
Retinal implant surgery allows surgeons to partially 
restore the sight of a patient suffering from macular 
degeneration.[48] These devices transfer an electrical signal 
through a multitude of electrodes which are preferably 
imbedded at a specific depth inside the retinal tissue. 
An intraocular robotic system can provide the surgeon 
with a manipulation mechanism capable of carefully 
orienting the implant and inserting it to the appropriate 
depth inside the retina. The depth of implantation can 
for example be controlled by intraoperative OCT.

Drug delivery
Drug delivery refers to any method used to transport 
drugs and compounds to specific sites within the body.[49] 

Figure 4. IRISS; an isotropic spherical serial mechanism having 
RCM point developed at UCLA mechatronics and control 
lab  (a) DIAMOND; a spherical compact size mechanism 
having singularity free workspace with RCM point, 
developed at K.N Toosi University[38] (b) Eye‑Rhas; a double 
parallelogram based gravity balanced RCM mechanism, 
developed at Eindhoven University of Technology. “Courtesy 
of Preceyes b.v.”[32] (c).

c
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The ability to inject a precise amount of drug under the 
retina or at a precise location within the vitreous cavity 
will provide high precision drug delivery to any location 
within the eye.

Gene therapy
Gene therapy has been gaining more and more 
prominence in medicine. The eye is considered one 
of sites most likely to benefit from advances in gene 
therapy. It is a unique target, due to its accessibility 
and immunologically privileged condition.[50] However, 
immune privilege is relative and depends on respecting 
ocular structures, particularly the choroid which should 
not be penetrated. Robotic systems provide a highly 
reliable method to deliver gene therapy constructs at 
a specific site inside the eye with high precision and 
speed.

Training surgeons
Robotically assisted eye surgery provides an intuitive 
platform for educational purposes. By integrating the 
method in a virtual reality system, trainees can benefit 
from a safe, controlled, and feedback‑oriented learning 
environment. In many training centers today, beginner 
surgeons are required to first train on a simulator before 
moving on to patients. A transition to robotic surgery 
would in such circumstance be facilitated, and also allow 
surgeons to simulate difficult surgeries prior to carrying 
out the procedure. Technologies and training strategies 
used to train and maintain skills in commercial airlines 
may be applicable to future ophthalmic surgeons.

Tele‑surgery
Robotic systems provide the surgeon with the ability 
to perform surgery over long distances while sitting 
in an ergonomic position. In the near future, ocular 
tele‑surgery will be a feasible way to bring emergency 
eye care to remote locations.

Bio‑printing inside the eye
One of the major advances we may expect in the near 
future in medicine will be the use of bio‑printing of living 
tissues and organs.[51] Robotics will provide the surgeon 
with a suitable tool to bio‑print living cells into the RPE 
and choriocapillaris and possibly even allow damaged 
cells to be replaced in the retina.

Barriers and Challenges to Development of 
Eye Surgery Robots
Despite widespread usage of robotic surgery, robotically 
assisted eye surgery is still in its infancy. One important 
hurdle was the downscaling of systems to a level that 
allows for ophthalmic microsurgery. Another, is to 
provide the surgeon with an intuitive work environment 

in which the micromanipulator becomes an extension of 
his own hands. An environment in which he does not 
need to worry about the speed of approach to the retina, 
or the risk of moving too close to critical structures. 
Scaling of motion can be adjusted for distance from the 
retina for example without the surgeon being aware 
that the scaling is variable ‑ similar to the motion of a 
computer mouse. Development of a tele‑operated system 
needs an appropriately tested and validated software. 
In a co‑manipulator, it has to be built into the design. 
Whatever is being designed and optimized, it must take 
into account the fragility of the eye, the needed precision 
of specific surgical tasks, even the risk of inadvertent 
movement by the patient’s head.
In summary, major advances in intraocular surgeries 
are owed to a large extent to engineering developments, 
including small‑gauge instrumentation, high‑speed 
cutters, panoramic visualization systems, and wide‑field 
illumination probes. Similarly, robotically assisted 
surgery offers profound advantages for vitreoretinal 
surgeries compared to unaided human hands. These 
benefits comprise highly precise positioning, scaled 
force feedback, tremor and unwanted hand motion 
cancellation, and the possibility of performing surgery 
at a distance. In the near future robots will be the second 
hands of the surgeons, helping them to overcome the 
current difficulties of conventional vitreoretinal surgeries. 
The barriers to adaptation of eye surgery robots are the 
same ones once encountered by proponents of minimally 
invasive laparoscopic surgery. However, laparoscopic 
robotic surgeries evolved through the years and now 
laparoscopic surgery is a widely accepted technique. 
Evidence of the past three decades implies that robotic 
systems might be useful to improve health care. Ongoing 
developments in eye surgery robots could make them 
useful tools for eye surgeons.
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