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Continuous contamination of the environment with xenobiotics and related recalcitrant
compounds has emerged as a serious pollution threat. Bioremediation is the key to
eliminating persistent contaminants from the environment. Traditional bioremediation
processes show limitations, therefore it is necessary to discover new bioremediation
technologies for better results. In this review we provide an outlook of alternative
strategies for bioremediation via synthetic biology, including exploring the prerequisites
for analysis of research data for developing synthetic biological models of microbial
bioremediation. Moreover, cell coordination in synthetic microbial community, cell
signaling, and quorum sensing as engineered for enhanced bioremediation strategies
are described, along with promising gene editing tools for obtaining the host with
target gene sequences responsible for the degradation of recalcitrant compounds.
The synthetic genetic circuit and two-component regulatory system (TCRS)-based
microbial biosensors for detection and bioremediation are also briefly explained. These
developments are expected to increase the efficiency of bioremediation strategies for
best results.

Keywords: synthetic biology, bioremediation, xenobiotics, genetic circuit, biosensor

INTRODUCTION

The remediation processes aided by microorganisms present at the various contaminated scenarios
constitute bioremediation (Basu et al., 2018; Kumar et al., 2019). Microbial remediation uses
multiple metabolic pathways responsible for enzyme production (Sharma B. et al., 2018; Dangi
et al., 2019). These enzymes mainly take part in the degradation pathways of xenobiotics (Junghare
et al., 2019). There are different customary methods for bioremediation, primarily based on the
site of bioremediation, in and ex situ (Tomei and Daugulis, 2013). In situ is applied to the
site to minimize soil disturbance. This method is mostly adopted due to less expenditure from
avoiding excavation and transport of contaminated soil (Khan et al., 2004). According to Khan
et al., 2004 less disruption in in situ bioremediation causes less dust dispersion and hence better
degradation (Joshi et al., 2016) of contaminant. Bioaugmentation, bioventing, biosparging, and
engineered in situ bioremediation are main in situ bioremediation methods (Azubuike et al.,
2016). Ex situ bioremediation methods are solid phase system (composting, landfarming, and
biopiling) and slurry phase system (bioreactors) (Kumar et al., 2011). Transportation of soil to
accelerate microbial degradation are done by solid and slurry phase systems, whereby treatments of
domestic, industrial, and organic waste are done by ex situ bioremediation (Juwarkar et al., 2010).
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These traditional bioremediation methods take time and
consume much cost expenditure, giving less result output.
Traditional bioremediation (Duarte et al., 2017) processes
showed the above limitations of extra time taking, less
removal or dissimilation of pollutants, (Bharagava et al., 2019)
disturbance to nature delicacy such as more land coverage
for a long time, and a foul smell in the environment
(Dangi et al., 2019; Kumar, 2019). Therefore, researchers
are eager to discover new bioremediation technologies for
best results. Dvoøák et al. (2017) described bioremediation
via synthetic biology for boosting bioremediation strategies.
This approach can catch the catabolic (Jacquiod et al., 2014)
and metabolic complexities for reviewing the potential of the
microbial population synthetically. The preliminary information
for developing synthetic microbial models for bioremediation
can be obtained by mining genes from the databases (Fajardo
et al., 2019). The computer logics involvement can determine
the microbial cell interactions with recalcitrant compounds
(Kim et al., 2015). These strategies can together grasp the
natural metabolic potential of microorganisms to transform
into novel biological entities of interest (Dangi et al., 2019).
Furthermore, the regulation of metabolic pathways (Alves
et al., 2018) in a controlled manner can also be achieved
for bioremediation processes (Rochfort, 2005). This transition
via synthetic biology application (Figure 1) for remediation
purposes would improve the bioremediation processes via the
involvement of potent (Zhu et al., 2017) dissimilating particular
contaminants (Trigo et al., 2008). Synthetic biological systems
mediate cellular modulations for efficient functioning and
working of existing processes. They permit the modification of
cellular processes viz. metabolic pathway acting for a particular
chemical compound. The advancement of synthetic biology for
bioremediation of various contaminants is attaining the focus of
scientists and researchers. For instance, a sustainable synthetic
microbial community’s establishment for bioremediation is
being investigated. Microbial interactions and quorum sensing
within communities are vastly studied for application in the
area of bioremediation with synthetic biology applications.
Achievement of the synthetic genetic circuit of Pseudomonas
putida proved to be the golden gadget for degradation
studies. Besides this, genome editing by CRISPR-Cas, TALEN,
and ZFNs adds knowledge for reviewing the progression in
bioremediation studies. Synthetic microbial biosensors and
metabolic engineering of cellular processes for utilization
and detection of contaminant residues will remediate the
environment from persistent recalcitrant pollutants. This review
is focused on the above mentioned strategies and their elements
(Figure 2) applicable for bioremediation purposes and research.

METABOLIC RECONSTRUCTION FOR
DESIGNING SYNTHETIC MODELS

A computational platform is utilized for the reconstruction of
cellular metabolism (Agapakis et al., 2012) via metabolic pathway
analysis (MPA) (Banerjee et al., 2016). MPA mathematically
represents the reactions of metabolism. This method is based

on stoichiometric balance reactions so as to propose steady-
state metabolic flux during cellular growth. The stoichiometry
matrix imposes constraints of flux, making the consumption
and production of the compound at a steady state (Bordbar
et al., 2014). The maximum and minimum flux of a reaction
can also be determined by providing the topper and least
bound. This helps to define the extent of permissible flux supply
(Richelle et al., 2016; Rawls et al., 2019). The next step is
defining the objective according to the biological problem to be
studied. This objective mathematically represents the reactions
responsible for the phenotype appearance. The mathematical
reactions and phenotype are combined with linear equations and
solved by computational algorithms such as COBRA Toolbox11
and Matlab toolbox (Orth et al., 2010; Bordel, 2014). FBA is
fundamentally simple, having immense applications in studying
gaps, physiology, and genomes via systems biology approach
(Kim et al., 2015; Hellweger et al., 2016). These gaps are missing
metabolic reactions, making the genome partially known. FBA
uses computational algorithms that can predict missing reactions
viz. OptKnock and OptCom, which can knock out the genes
responsible for producing the desired compound (Biggs et al.,
2015). These approaches are beneficial for constructing microbial
communities for bioremediation of particular contaminants
(Khandelwal et al., 2013). However, MPA is the most challenging
method when metabolic information is incomplete, making it
difficult to obtain a real model (Covert et al., 2001). But this
method shows cellular functions in the dynamic community, and
thus is very useful for the prediction and exchange of metabolic
flux in communities of microorganisms (Khandelwal et al., 2013).
Recently, a metabolic model has been constructed by using
two Geobacter species with parameterized electron transfer and
metabolic exchange to characterize syntrophic growth dynamics.
Such a system may have useful applications in the field of
bioremediation and degradation of particular contaminants
(Butler et al., 2010). A computational platform is also needed for
better prediction of engineered genetic pathways for community
dynamics. A graph-based tool Metabolic Tinker was developed
by McClymont and Soyer to identify thermodynamically
feasible biochemical routes for compounds deterioration (Johns
et al., 2016). This may be applied to identify the routes for
degradation of recalcitrant compounds by microbial consortia.
These computational tools are utilized along with omics (Kim
et al., 2014; El Amrani et al., 2015) and biological data for
desired output (Berger et al., 2013) and toxicity prediction
(i.e., META-CASETOX System) (Peijnenburg and Damborský,
2012). These are also applied for functional gene identification
and their profile analysis, PCR analysis and drug discovery,
etc (Dangi et al., 2019). Computer-aided drug discovery and
development (CADDD) is used effectively with chemical and
biological aspects, i.e., chemical structures accounting the
biological role and its activity via ligand-based drug design,
structure-based drug design, quantitative structure-property
relationships, and quantitative structure-activity (Kapetanovic,
2008). Furthermore, Table 1 depicts similar methodologies
applicable to bioremediation studies. De Jong (2002) analyzed the
multicellular feedback control strategy in a bacterial consortium
(Bruneel et al., 2011) to define the robustness conceivable
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FIGURE 1 | The strategies of synthetic biology applicable for bioremediation.

FIGURE 2 | The components and their construction elements of synthetic biology for bioremediation studies.
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under desired conditions. They utilized an ordinary differential
equations (ODE)-based model and agent-based simulation on
a consortium (Hawley et al., 2014; Atashgahi et al., 2018)
of interacting species population for increasing the efficacy
of the proposed feedback control strategy. The application of
bioinformatics (Arora and Bae, 2014) resources is a prerequisite
dimension for obtaining the data to begin the microbial
bioremediation studies of recalcitrant compounds (Gong et al.,
2012; Ofaim et al., 2019). This involves the information related to
the degradation of xenobiotics by microbes and their pathways
for dissimilation (Dao et al., 2019; Salam and Ishaq, 2019;
Thelusmond et al., 2019; Wei et al., 2019). The data related to
end products and intermediate metabolites released throughout
degradation pathways can also be retrieved (Dvoøák et al.,
2017). An extended information source linked to degradation
is MetaRouter, allowing data (Singh and Gothalwal, 2018) for
life sciences laboratories to explore degradation possibilities of
recalcitrant compounds (Mohanta et al., 2015). The information
on oxygenic degradation of xenobiotics can be retrieved from
OxDBase, a biodegradative oxygenase database (Chakraborty
et al., 2014; Shah et al., 2018). Oxygenase is a class of
enzyme which transfers the oxygen molecule for oxidizing the
chemical compound. They play a role in the degradation of
organic compounds by aromatic ring cleavage (Jadeja et al.,
2014). OxDBase is very particular in providing knowledge of
oxygenases-catalyzed reactions, and is a powerful tool applicable
to bioremediation studies (Singh, 2018). Bioconversion and
biodegradation of persistent and toxic xenobiotics (Desai et al.,
2010; Bao et al., 2017) compounds catalyzed by oxygenases
decrease the compound sustainability and toxicity in the
environment (Kües, 2015; Kondo, 2017). Therefore, OxDBase is
very helpful in acknowledging the degradation processes involved
in bioremediation (Shah et al., 2012). The transcriptional
characterization of genes responsible for the biodegradation and
biodissimilation of a particular compound has great significance
in proposing molecular methodologies. This can be done by the
Bionemo (Biodegradation Network Molecular Biology) database
(Libis et al., 2016a). Bionemo contains the entries for sequences
of genes coding for biodegradation (Carbajosa and Cases, 2010).
It also links the gene transcription and its regulation (Libis
et al., 2016b). The data retrieved from Bionemo can be used
for designing cloning experiments and primers (Arora and Shi,
2010). Garg et al. (2014) used eMolecules and the EAWAG-
BBD PPS database for the prediction of pathways involved in
the biodegradation of 1-naphthyl-N-methyl carbamate. These
above findings empower the researchers to analyze and establish
what prerequisites must be fulfilled for developing synthetic
bioremediation models.

DESIGNING THE SYNTHETIC
MICROBIAL COMMUNITIES

Recent advancements in the field of synthetic biology for
environmental issues have shown a great impact. The use of
GMOs in environmental biotechnology for remediation (Malla
et al., 2018) of toxic compounds, xenobiotics, and pesticidal
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compounds are being done. To design a synthetic community,
it is important to understand natural microbial communities
(Schloss and Handelsman, 2008). In a natural community,
it is difficult to find out which species are actually taking
part in bioremediation (Großkopf and Soyer, 2014). Thus,
a synthetic microbial community is a promising method for
constructing an artificial microbial community with function-
specific species for bioremediation purposes. These communities
may act as a model system for the study of functional,
ecological, and structural characteristics in a controlled manner.
Großkopf and Soyer (2014), defined synthetic community by the
culturing of two microbial species under well-defined conditions
on the basis of interaction and function (Bruggeman and
Westerhoff, 2007). These factors determine the dynamics and
structure of the community. It is based upon the identification
of processes and patterns engaged in by bacterial species.
These microbial interaction patterns are metabolism-driven
and responsible for community interaction (Wintermute and
Silver, 2010). Social-based microbial interactions (i.e., mutualism,
cooperation, and competition, etc.) and the total outcome
of these interactions between two microbial populations can
be +/+ and −/+ or +/−, respectively (Foster and Bell,
2012). It is said that community structure and function
majorly depends on cooperation. The effect of cooperation on
community dynamics is determined by engineered cooperation
resulting in the synthetic community. Engineered cooperation
between two microbial strains (Singh et al., 2016) can
be done by manipulation of environmental conditions, i.e.,
knocking the genes out and in Zuroff et al. (2013). Beyond
this, other interaction patterns have been analyzed with
engineered microbial species in the synthetic community. Such
an application of engineered interaction is highly recognizable
in bioremediation strategies (Sharma, 2012). Synthetic biology
provides greater potential for the sustainable existence of
microorganisms (Dellagnezze et al., 2014) acting together in
a large population. Thus, synthetic microbial communities
are proved as a key strategy for the bioremediation of
contaminants, i.e., pesticides, petroleum (Kachienga et al.,
2018), oil spill, acid drainage (Serrano and Leiva, 2017),
etc. For building the synthetic microbial communities, the
engineered interspecies and intraspecies interactions can make
cellular functions robust and enhance the capabilities of
microbial consortia in various contaminated scenarios. Quorum

sensing is a bacterial signaling mechanism, which is a
density-dependent phenomenon via cell-cell communication
and population level behavior. The signaling is done by the
release and reception of chemical compounds by microbial
candidates in a population. This leads to multicellular behavior
(Obst, 2007), offering engineerable tasks to design function
specific synthetic communities. These synthetic models can
also be exploited to obtain a rational design that can
lose the function when subjected to competition with other
species in the natural environment. With the evolution of
genomic constituents and gene transfer, the possibility of
the gradual extinction of genetic circuits is present. Thus,
strategies are required to maintain the robustness of the
synthetic community, achieved via the synthetic models by
the development of synergistic and cooperative properties
that reduce instability and loss of function (Johns et al.,
2016). A recent study by Coyte et al. (2015) suggests that
competition among species is significant in determining the
stability of communities, acting as a limiting factor in the
stability of the synthetic community. Thus, these dynamics
must be accelerated in order to design particular function
specific synthetic communities for bioremediation purposes
(Coyte et al., 2015).

GENETIC AND METABOLIC
ENGINEERING

Enríquez (2016) said that genome editing is an umbrella
term that refers to “scientific technological advances that
enable rational genetic engineering at a local (gene) or global
(genome) level to facilitate precise insertion, removal, or
substitution of fragments of Deoxyribonucleic acid (“DNA”)
molecules, comprising one or more nucleotides into the
cell(s) of an organism’s genome.” Transcription-activators like
effector nucleases (TALEN), clustered regularly interspaced
short palindromic repeats (CRISPR-Cas), and zinc finger
nucleases (ZFNs) are major gene editing tools used (Table 2).
The most efficient and simple technique of gene editing has
been described as CRISPR-Cas (Kanchiswamy et al., 2016).
These tools can boost the process of bioremediation. TALEN
has a DNA-binding modular which is sequence-specific for
the host genome (Utturkar et al., 2013). TALEN binding to

TABLE 2 | Comparative features of CRISPR, TALE, and ZFNs.

Features Gene editing tools References

CRISPR TALEN ZFNs

System Adaptive immune system Pathogenic Xanthomonas Gene expression system Kumar N. M. et al., 2018

Specificity crRNA TALE Domain Zn finger Domain Jaiswal et al., 2019b

Cleavage Cas9 FokI nuclease Nuclease Kumar V. et al., 2018; Jaiswal et al., 2019b

Nucleases per target per
experiment

Single or more sgRNA;
singleCas9

Single TALEN pair Single ZFN pair Hamilton et al., 2019

Activity High High Moderate Shanmugam et al., 2019

Designing and screening Easy Difficult Difficult Dangi et al., 2019

Multiple gene editing Suitable Not suitable Not suitable Sinha et al., 2019
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DNA creates a double stranded break (DSB) in the target
sequence and leaves sticky ends for stability. Similarly, ZFNs
is also a DNA-binding domain composed of 30 amino acids.
It introduces DSB at the target site of the host genome by
the Fok1 cleavage domain. A new sense of using hybrid
nucleases containing TALENs and ZFNs nucleases came to
act for solving the molecular complications. The CRISPR-Cas
system, on the other hand, has unique action properties of
high sequence specificity and multiplex gene editing. This
unique property is derived from bacteria Streptococcus pyogenes
as immunity against the virus. The CRISPR-Cas system
consists of crisper derived RNA (crRNA) and trans acting
antisense RNA (trcRNA) joined by guide RNA (gRNA). gRNA
directs the Cas9 enzyme to introduce DSB in the target DNA
sequence by recognizing it. These gene editing tools create
the knock-in and knock-out and are under processing for
implementation in bioremediation studies (Kumar V. et al.,
2018). Recent reports indicate though that the CRISPR-Cas
system is mostly adopted and performed by researchers in
model organisms i.e., Pseudomonas (Karimi et al., 2015; Nogales
et al., 2020) or Escherichia coli (Chen et al., 2018; Marshall
et al., 2018; Pontrelli et al., 2018). Nowadays, the new insights
toward CRISPR tool kits and designing gRNA for expression
of function-specific genes related to remediation in non-
model organisms (i.e., Rhodococcus ruber TH, Comamonas
testosteroni and Achromobacter sp. HZ01) are also suggested
in the field of bioremediation (Mougiakos et al., 2016; Jusiak
et al., 2016; Hong et al., 2017; Stein et al., 2018; Tang et al.,
2018; Liang et al., 2020). For gene editing and metabolic
engineering, the contaminant-inhabited bacteria are the most
suitable candidates because they are used to survive and
harbor in stress conditions of various toxic, recalcitrant and
non-degradable xenobiotics, as discussed above. Moreover,
understanding metabolic pathways seems to be important
in studying the microbial bioremediation (Plewniak et al.,
2018), i.e., bioremediation of toxic pollutants by the haloalkane
dehalogenases production pathway and decontamination of
pyrethroid from the soil via the biodegradation pathway of
fenpropathrin studied in Bacillus sp. DG-02 (Chen et al., 2014).
Metabolic engineering leads to modification of the existing
pathway for the betterment of the bioremediation process
(Michel et al., 2007). This approach majorly covers the study of
microbial enzymes, i.e., oxidases, esterases, monooxygenases,
oxidoreductases, phenoloxidases involved at various degradation
steps (Figure 3A; Mónica and Jaime, 2019; Mujawar et al., 2019).
Enzyme-based bioremediation has many advantages because it
is an eco-friendly process. The genetic approach increases the
perspective of getting recombinant enzymes. There are research
reports of extracellular enzymes having a role in enzymatic
bioremediation. For instance, arsenic bioremediation (Andres
and Bertin, 2016; Choe and Sheppard, 2016; Akhter et al., 2017;
Biswas et al., 2019) (bioaccumulation and biotransformation) is
achieved via arsenite oxidase coded by aioA gene of Klebsiella
pneumonia (Mujawar et al., 2019); enzymes released by white
rot fungi degrade PAHs (polycyclic aromatic hydrocarbon)
(Zhao and Poh, 2008; Košnár et al., 2019), dyes, TNT (2,4,6-
Trinitrotoluene) and PCBs (polychlorinated biphenyls) (Gupte

et al., 2016; Kutateladze et al., 2018; Sadańoski et al., 2018).
Esterase D enzyme acts on β-endosulfan (organochlorine
pesticide), producing simpler compounds (Mehr et al.,
2017; Chandra et al., 2019). LiPs encoding hemoproteins
from Phanerochaete chrysosporium degrade PAHs. However,
incomplete or partial degradation of contaminants lead to
simpler non-toxic degradable compounds which can be
consumed by microbes (Kumavath and Satyanarayana, 2014)
as intermediates in biological pathways or substrate, i.e., LiP
(lignin peroxidase) dissimilate benzopyrene to three compounds
of quinine, namely 1,6- quinone, 6,12- quinine and 3,6- quinine
(Gupta and Pathak, 2020). Furthermore, MnP (Manganese
peroxidase) oxidizes organic compounds in the presence of
Mn(II) (Xu et al., 2018; Singh et al., 2019). Laccase, MFO
(mixed function oxidases), glutathione S transferase, cytochrome
P450 also acts in biodegradation of recalcitrant compounds
(Singh, 2019; Boudh et al., 2019). Catechol 1,2-dioxygenase
(intracellular enzyme) from Pseudomonas NP-6 dissimilate
catechol to muconate compounds (Guzik et al., 2011). Also,
enzyme immobilization (Cavalca et al., 2013; Sharma B. et al.,
2018) increases the half-life, stability, and enzyme activity at a
notable level. The enzymatic bioremediation is an elementary,
expeditious, and environmental friendly method for microbial
removal and degradation of persistent xenobiotics compounds
(Sharma B. et al., 2018). Isolation and characterization of
microorganisms with enzymatic capabilities have been done
with the limitation of less productivity (Rayu et al., 2012).
Organophosphates (OP) and organochlorines (OC), major
constituents of insecticides, accumulate in the agricultural soil
(Panelli et al., 2017) and reach the water bodies via agricultural
run-off. Effective bioremediation of γ-hexachlorocyclohexane
(OC) and methyl parathion (OP) has been reported by
genetically engineered microorganisms (Gong et al., 2016).
Moreover, bioremediation of organophosphates and pyrethroids
has been experimented with using genetically modified P. putida
KT2440 (Zuo et al., 2015). With the advent of metabolic
engineering, the catabolism and degradation of various
persistent compounds has been reported. The degradation
pathways of methyl parathion and γ-hexachlorocyclohexane
in Sphingobium japonicum and Pseudomonas sp. WBC-
3 witnessed the bioremediation strategy (Liu et al., 2005;
Miyazaki et al., 2006). Furthermore, 1, 2, 3-trichloropropane,
a persistent constituent of fumigant, is dissimilated into the
environment (Techtmann and Hazen, 2016) via heterologous
catabolism by the assembly of three enzymes from two different
microorganisms in E. coli (Dvorak et al., 2014). A metabolic
pathway (Bertin et al., 2011) degrading organophosphorus and
paraoxon is engineered by inserting the organophosphorus
hydrolase gene (opd) and pnp operon encoding enzymes
that convert p-nitrophenol into β-ketoadipate in P. putida
(de la Pena Mattozzi et al., 2006). A study showed pobA and
chcpca gene clusters of Rhodococcus opacus R7 take part in
the bioremediation of naphthenic acid; more specifically,
expression aliA1 gene codes for fatty acid CoA ligase for
degrading long chains of linear as well as alicyclic naphthenic
acid (Zampolli et al., 2020). To minimize the accumulation,
the above-mentioned strategy is attained using microbes for
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FIGURE 3 | Schematic presentation (A) intracellular and extracellular enzymes production; (B) TCRS based biosensor.

partial or complete mineralization of persistent compounds
(Miyazaki et al., 2006).

SYNTHETIC GENETIC CIRCUIT AND
MICROBIAL BIOSENSOR

The synthetic genetic circuit requires chassis for implantation.
The P. putida is a HVB (Host Vector Biosafety) strain recognized
as safe by the Recombinant DNA Advisory Committee.
It is also referred to as GRAS (Generally Recognized as
Safe) to release in the environment. It is ideal for the next
generation of synthetic biology chassis panel because it can
withstand high intolerant changing conditions including
temperature, pH, solvents, toxins, osmotic, and oxidative
stress. Also, P. putida has versatile metabolism and low
nutrient requirements (Pabo and Nekludova, 2000). These
qualities make this organism the best bacterial model for
environmental bioremediation applications (Tanveer et al.,
2018). Recently, the P. putida synthetic genetic circuit has
been established for the designing of promoter genes and
expression of the gene responsible for the degradation of
persistent compounds (Adams, 2016). An extension of synthetic
biology is the integration of genome with reporter system, and
synthetic promoters of P. putida may be developed for synthetic
bioremediation pathways. Elmore et al. use serine integrases
for synthetic genetic circuit development. Microbial cells have
the advantage of a cellular system, which controls cell growth
and response to external factors like temperature, light, pH,
and oxygen (Tropel and Van Der Meer, 2004). The external

environment of microbes inhabiting the contaminated site will
respond to concentrations of various persistent compounds
present (Ray et al., 2018; Antonacci and Scognamiglio, 2019).
Whole cell biosensors for checking the presence, detection
and biodegradation potential of xenobiotics compounds
(pharmaceutical residues, pesticides, paraffin, PAHs and PCBs,
etc.) present (Adhikari, 2019) in environmental samples are
attaining attention (Wynn et al., 2017; Heng et al., 2018; Patel
et al., 2019). The reporter proteins acting microbe makes a
color signal at the detection of particular contaminants via
transducer (Zhang and Liu, 2016). A biosensor aiming for
detection and bioremediation purposes must have enhanced
contact between microbe and contaminant (Dhar et al.,
2019). This helps the bacterium to adjust their cellular
pathways in response to external environmental conditions
and encodes the genes for utilizing the recalcitrant compounds
as substrate (Bilal and Iqbal, 2019; Skinder et al., 2020).
Synthetic biology strategies are feasible for removing a
particular toxic compound because the genetic circuits can
be developed against the exogenous environmental toxin
(Checa et al., 2012; Tay et al., 2017). The synthetic genetic
circuits are assembled via a two-component regulatory system
(TCRS) in bacteria (Futagami et al., 2014; Uluşeker et al.,
2017). This system acts upon environmental change, and
thereby, cells respond to these changes. A prokaryotic TCRS
has histidine kinase (HK) and response regulator (RR). The
HK is a sensor domain with an extracellular loop present
as an integral membrane protein. HK also has a transmitter
domain in the last cytoplasmic transmembrane, which is a
highly conserved domain. Histidine phosphotransfer (DHp)
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and catalytic ATP-binding domain (CA) acts for molecular
recognition of RR and ATP hydrolysis. The transmitter
domain transmits the signal from periplasm to cytoplasm via
PAS (Periodic circadian proteins, Aryl hydrocarbon nuclear
translocator proteins, and single minded proteins), HAMP (HKs,
Adenyltatecyclases, Methyltransferases, and Phosphodiesterases)
and GAF (cGMP-specific phosphodiesterases, adenylyl cyclases,
and formate hydrogenases) (Casino et al., 2010). Thus,
HK senses the external environmental change and adds
phosphate to conserved histidine. The HK also regulates RR
by phosphorylating the aspartate residues. This promotes the
promoter (Figure 3B) binding to activate the gene expression
or vice-versa (Ravikumar et al., 2017). Therefore, TCRS-based
synthetic biology application for biosensor development for
cell-mediated detection and bioremediation can prove to be a
new advancement.

ECOLOGICAL SAFETY AND RISK
ASSESSMENT

The scientists and researchers are performing the experimental
setup to study the bioremediation (Yergeau et al., 2012)
potential against various pollutants like oil spill, plastics, synthetic
dyes, organic hydrocarbons (Yadav et al., 2015), pesticides
(Jaiswal et al., 2019a), heavy metals (Hemmat-Jou et al., 2018;
Lebrazi and Fikri-Benbrahim, 2018), and other xenobiotics,
etc (Rucká et al., 2017; Paniagua-Michel and Fathepure,
2018; Wu et al., 2020). Considering that bioremediation is
performed in an open environment rather than in a closed
fermentation tank, the ecological safety of bioremediation
performing bacteria must be considered. Economic safety is
justified by the metabolic aptness (Gillan et al., 2015) of
microorganisms as compared to other traditional physical
and chemical bioremediation methods. Besides, regulation for
using genetically and metabolically modified bacteria is released
to evaluate the possible risks (Khudur et al., 2019). The
risk assessment is mainly done by regulatory agencies, i.e.,
Organization for Economic Cooperation and Development
(OECD) at the application level for environmental safety
(Russo et al., 2019; Alam and Murad, 2020; Pastor-Jáuregui
et al., 2020). The possible risks are gene contamination in the
native member of microbial consortium, leading to mislaying
of the natural trait (Mills et al., 2019; Pineda et al., 2019;
Rycroft et al., 2019). The competitiveness between natural
and genetically modified species can give rise to selection
pressure on non-target microflora (Kumar N. M. et al.,
2018; Mohapatra et al., 2019). Moreover, environment and
ecosystem risk assessments infer unpredictable and adverse
effects, as discussed above (Cervelli et al., 2016; van Dorst
et al., 2020). Particularly, the ecological risk assessment behind
addition of GEMs (Genetically Engineered Microorganisms)
(Benjamin et al., 2019; Ahankoub et al., 2020) to the native
environment rather than a laboratory (Fernandez et al., 2019)
is done mainly because of unnecessary delivery of antibiotic
resistance marker along with recombinant genome of interest
(Davison, 2002; Nora et al., 2019), and unintentional uptake

or transfer of induced genes to other microorganisms (French
et al., 2019; Janssen and Stucki, 2020). This phenomenon
is definately disturbing the microbial native genome entity
(Gangar et al., 2019; Petsas and Vagi, 2019). Another aspect
come into considerance, the change in microbial metabolism
(Okino-Delgado et al., 2019), will release uncertain toxic
compounds for the environment and health, indirectly acting
as opposition microbial candidates in this context (Myhr and
Traavik, 2002). Under the TSCA (Toxic Substances Control
Act) (Gardner and Gunsch, 2020), the Office of Pollution
Prevention and Toxics (OPPT) programs (Pietro-Souza et al.,
2020) of the United States Environmental Protection Agency
(Leong and Chang, 2020; Saxena et al., 2020) moniters the
environmental and health risks and releases premanufacture
legal notice for the accreditation of field research outlines
and prototypes (McPartland and McKernan, 2017; Khan et al.,
2020). A magnificant example is given by University of
Tennessee. In 1995, they gave application and suggested the
risk evaluation of microbial bioremediation agents (mainly
Pseudomonas fluorescens HK44) on the environment and health
(Sayler et al., 1999; Khan et al., 2016; Sharma J. K. et al.,
2018; El Zanfaly, 2019). Most remarkable is that the literature
survey points toward a biowar weapon for humanity (Gómez-
Tatay and Hernández-Andreu, 2019; Wang and Zhang, 2019),
stating that gene editing tools left in bad hands could mislead
ethical and moral duties (Khan, 2019; Thakur et al., 2019;
Sharma et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

The microbial bioremediation process for removal and
detoxification of contaminants from the environment
has now emerged as the best option. Synthetic biology is
addressing the decontamination and remediation strategies
for xenobiotics and related compounds from the environment.
It has been observed that the requisite for understanding
existing metabolic pathways is a must for developing synthetic
models of bioremediation. Moreover, genomics reconstruction
methods (Luo et al., 2014; Marco and Abram, 2019) and
technologies made a solid platform for bioremediation
studies. Satisfactory progress has been witnessed in the
field of bioremediation among various contaminants with the
role of specific genes and enzymes applicable via synthetic
biology methodologies. Therefore, it is concluded that microbial
synthetic biology remediation strategies not only increase
the efficiency of microbial bioremediation processes for a
particular contaminant, but also provide the best methodologies
for researchers.
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