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ABSTRACT: The resistance of microorganisms to antimicrobials has endangered
the health of many people across the world. Overcoming the resistance problem will
require the invention of molecules with a new mechanism of action so that no cross-
resistance with existing therapies occurs. Because of their powerful antibacterial
activity against a wide spectrum of Gram-positive and Gram-negative bacterial
strains, heterocyclic compounds are appealing candidates for medicinal chemists. In
this regard, as unique hybrid compounds, we synthesized a novel family of bis-
thiazoles linked to quinoxaline or thienothiophene via the 2-phenoxy-N-
arylacetamide moiety. The target compounds were synthesized by reacting the
relevant bis(α-haloketones) with the corresponding thiosemicarbazones in EtOH at
reflux with a few drops of TEA. Under comparable reaction conditions, the isomeric
bis(thiazoles) were synthesized by reacting the appropriate bis(thiosemicarbazone)
with the respective α-haloketones. The structures of the novel compounds were
confirmed using elements and spectral data. All of the synthesized compounds were
tested for antibacterial activity in vitro. With an inhibitory zone width of 12 mm, compound 12a had the same activity as the
reference medication tobramycin against Staphylococcus aureus. Compound 12b showed 20 mg/mL as a minimum inhibitory
concentration (MIC) against Bacillus subtilis. Some of the synthesized compounds were tested via molecular docking against two
bacterial proteins (dihydrofolate reductase and tyrosyl-tRNA synthetase).

1. INTRODUCTION
The creation of novel antimicrobial medicines has become a
hot issue and one of the most difficult problems, while
multidrug-resistant bacteria threaten all fields of human
medicine worldwide. This involves creating analogues of
existing antibacterial medication classes with novel modes of
action aiming at increasing potency, reducing resistance, and
reducing toxicity.1 The problem of bacterial infection manage-
ment cannot be dismissed simply by discussing the diseases
caused, the bacteria involved, and the benefits and drawbacks
of the various antibacterial agents now available, especially
since the latter still have certain definite shortcomings. A
deeper knowledge of how humans fight and harbor germs, as
well as some of the mechanisms by which bacteria create
negative consequences, can help with the management of more
complex and resistant bacterial illnesses.2 Extensive research
has been carried out over the years in the hunt for effective and
safe antimicrobial drugs based on heterocyclic scaffolds,
particularly to combat the ever-increasing microbial resistance
and to minimize the high late-stage attrition rate in the drug
development process. In this regard, thiazole derivatives have

been shown to exhibit antiviral, antibacterial, antifungal,
antidiabetic, antioxidant, anti-inflammatory, anticancer, and
analgesic properties.3−9 They are also found in 18 clinically
approved drugs (FDA-approved), including antitumor drugs
(epothilone and tiazofurin), anti-inflammatory drugs (melox-
icam), antifungal drugs (isavuconazole), antiparasitic drugs
(thiabendazole and nitazoxanide), antigout drugs (febuxostat),
antithrombotic drugs (edoxaban), antiulcer drugs (nizatidine
and famotidine), and antibacterial drugs (aztreonam, sulfathia-
zole, cefepime, and ceftriaxone) (Figure 1).10−12 Because of
the simplicity of chemical achievement as well as structural
optimization, thiazole-based scaffolds are the most attractive
heterocycles in synthetic medicinal chemistry.6,13,14 Further-
more, phenoxyacetamide and its derivatives are pharmacolog-
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ically active molecules with anticancer, antiviral, antioxidant,
anti-inflammatory, antiparasitic, antibacterial, and antihyper-
glycemic effects, as well as antituberculosis and MAO-A
inhibitor activity.15−23 AdipoRon VI (Figure 1), a phenox-
yacetamide medication, has received a lot of interest in this
respect as a potential therapy for obesity, cardiovascular
disease, diabetes, and nonalcoholic fatty liver disease. More-
over, quinoxaline derivatives have been the focus of substantial
investigation since they have emerged as an important
heterocyclic moiety with a varied spectrum of physicochemical
and biological functions including antibacterial, antitubercular,
antimalarial, antiviral, anti-inflammatory, antifungal, anticancer,
antiproliferative, antitumor, and anticonvulsant proper-
ties.24−34 They have a wide variety of biological actions.
Figure 1 depicts the quinoxaline core structure of several
pharmacological compounds.35 In addition to the prospective
applications of thieno[2,3-b]thiophene derivatives in optical
and electrical systems, they have also sparked significant
medicinal interest due to their diverse biological properties,
which include antibacterial, antiviral, anticancer, and anti-
glaucoma properties.36−45 Furthermore, bis-heterocyclic com-
pounds are widely used as scaffolds in drugs and pharmaceuti-
cally relevant substances. Many bis-heterocycles have been
shown to have anticancer, antibacterial, antiallergic, and other
disease-fighting characteristics when linked properly.46,47

Molecular hybridization is the process of combining at least
two pharmacophore fragments from different bioactive
chemicals to create hybrids that outperform the original
drugs. The pharmacophore scaffolds of several compounds are
combined to create hybrid molecules. In this regard, anticancer
drugs that are safer and more effective than those presently on
the market may benefit from hybridization.48,49 In light of
these findings, as well as our continuing interest in the
synthesis of heterocycles50−62 and their bis(heterocycles),63−77

we sought to incorporate N-arylacetamide units into the
backbone of thiazole to obtain a novel series of bis-thiazole
derivatives linked through biologically active quinoxaline or
thienothiophene cores using a “hybrid conjugation of bioactive
ligands” approach. Our synthetic strategy employs 2-(4-(1-(2-
carbamothioylhydrazineylidene)ethyl)phenoxy)-N-(aryl)-
acetamides, 2-(4-(2-bromoacetyl)phenoxy)-N-(aryl)-
acetamides, bis(4,1-phenylene)bis(2-bromoethan-1-ones) 7,
bis(α-bromoketone), and bis(thiosemicarbazone) as precur-
sors (Figure 2).

2. RESULTS AND DISCUSSION
2.1. Synthesis. In boiling DMF, the potassium salt of 4-

hydroxyacetophenone (2) reacts with the corresponding 2-
chloro-N-arylacetamide derivatives (1a,b) to give the corre-
sponding 2-(4-acetylphenoxy)-N-(aryl)acetamides 3a,b. Bro-
moacetyl derivatives 6a,b were produced by treating the
corresponding 3a,b with N-bromosuccinimide (NBS) in the
presence of p-toluenesulfonic acid (p-TsOH). Thiosemicarba-
zone precursors 5a,b were produced when 3a,b was condensed
with one equivalent of thiosemicarbazide (4) in refluxing
ethanol acidified with acetic acid (Scheme 1).

Utilizing thiosemicarbazones 5a,b, we investigated the
synthesis of bis(thiazoles) 7a,b that are linked to the
quinoxaline core to achieve the concept of molecular
hybridization. Thus, the reaction of bis(α-bromoketone) 778

with the corresponding thiosemicarbazones 5a,b in EtOH at
reflux with a few drops of TEA as a catalyst resulted in the
novel bis-thiazoles 8a,b in 74 and 76% yields, respectively
(Scheme 2).

The novel isomeric bis(thiazoles) 10a and 10b were
successfully synthesized in 77 and 79% yields, respectively,
by reacting bis(thiosemicarbazone) 978 with the appropriate α-

Figure 1. Some clinically approved drugs (FDA-approved) include the thiazole ring, quinoxline, or the phenoxyacetamide moiety.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07125
ACS Omega 2023, 8, 44312−44327

44313

https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


bromoketones 6a and 6b in ethanol at reflux with a few drops
of TEA (Scheme 3).

Our investigation was expanded to include the synthesis of
novel bis(thiazole) 12a,b linked to the thienothiophene core,
in addition to their prospective applications in optical and
electrical systems. Thus, the reaction of bis(α-bromoketone)
1179 with the corresponding thiosemicarbazones 5a,b in
refluxing ethanol and a catalytic amount of triethylamine
yielded the expected bis-thiazole derivatives 12a,b in good
yields (Scheme 4).

Similarly, the reaction of bis(thiosemicarbazone) 1379 with
the appropriate α-bromoketones 6a and 6b in ethanol at reflux
with catalytic trimethylamine as a basic catalyst yielded bis-
thiazoles 14a and 14b in 69 and 73% yields, respectively
(Scheme 5).

We postulated in Scheme 6 that the reaction that culminates
in the production of thiazole derivatives begins with the
creation of nonisolable intermediates I. Following the loss of
water molecules under experimental circumstances, the latter
underwent sequential in situ cyclization to yield the
appropriate nonisolable intermediates II, which gave the

Figure 2. Design concept of bis-thiazole derivatives.
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required bis-thiazoles as end condensation products (Scheme
6).
2.2. Spectroscopy. The proposed structures of the newly

synthesized compounds are supported by elemental analyses as
well as spectral data. The 1H NMR spectra of 6a revealed the

disappearance of the methyl group and the presence of CH2−
Br protons, which resonated at 4.82 ppm as singlet signals
integrating two protons. Spectroscopic data, such as IR, 1H
NMR, and 13C NMR, supported the structure confirmation of
thiosemicarbazones 5a,b. C�N stretching was observed in the

Scheme 1. Synthesis of Acetyl-, Bromoacetyl-, and Thiosemicarbazone Derivatives

Scheme 2. Synthesis of Bis-thiazoles 8a,b Linked to the Quinoxaline Core
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FTIR range of 1540−1565 cm−1, while the C�S band was
discovered between 1212 and 1256 cm−1. C�O stretching
was detected between 1710 and 1670 cm−1, and NH stretching
was detected between 3225 and 3320 cm−1. As an example, in

1H NMR of 5a, CH2 appeared as a singlet in the range of
4.72−4.74 ppm, while the NH−N signal appeared at 9.98 ppm.
At 10.09, however, a broad singlet was observed for NH−C�
S. The abovementioned analysis also confirmed the spectral

Scheme 3. Synthesis of Isomeric Bis-thiazoles 10a,b Linked to the Quinoxaline Core

Scheme 4. Synthesis of Bis-thiazoles 12a,b Linked to the Thiophene Core

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07125
ACS Omega 2023, 8, 44312−44327

44316

https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=sch4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=sch4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


data of the remaining protons, which were found to be in good
agreement with the predicted structure. The IR spectrum of
10b revealed an absorption band caused by NH and C�O at
3275 and 1673 cm−1, respectively. Due to D2O-exchangeable
NH protons, its 1H NMR spectrum revealed two signals at
10.24 and 11.14 ppm. Furthermore, three distinct singlet
signals appear at 2.31, 4.76, and 7.36 ppm, which are attributed
to the methyl, methylene ether linkage OCH2CO, and the
thiazole ring’s C-5 proton. The chemical shifts and integral
values of the remaining protons were all as expected. The mass
spectrum of compound 10b revealed a molecular ion peak at
m/z 1112 corresponding to its molecular formula.

The IR spectrum of compound 14a revealed the presence of
a −NH group absorption band at 3275 cm−1. Furthermore, it
displayed C�O values at 1705 and 1681 cm−1. The 1H NMR
spectrum of 14a revealed the presence of two singlet signals at
2.25 and 2.80 ppm, which corresponded to four CH3. It also
showed ethyl ester as a triplet signal at 1.28 ppm and a quartet
signal at 4.34 ppm. It also revealed the OCH2 linkage as a
singlet signal at 5.64 ppm. At 10.20 and 11.90 ppm, the two −
NH groups appeared as broad signals. The aryl protons were
assigned multiplets at 6.91−7.74 ppm.

2.3. Antibacterial Activity. The antibacterial activity of
the synthesized compounds was tested against four bacterial
strains: two Gram-positive bacteria (Bacillus subtilis (DSM
1088) and Staphylococcus aureus (ATCC 6538) and two Gram-
negative bacteria (Pseudomonas aeruginosa (ATCC 10145) and
Escherichia coli (ATCC 8739). The antibacterial activity data
are shown in Table 1. Compound 12a had a comparable action
against S. aureus as the conventional antibiotic tobramycin,
with an inhibition zone of 12 mm. Compounds 8a and 12b
inhibited S. aureus with an inhibition zone of 11 mm, which
was highly similar to tobramycin. When compared to the
reference antibiotic clindamycin (the diameter of the inhibition
zone was 27 mm), compounds 12a and 12b had modest action
against B. subtilis (the diameters of the inhibition zone were 10
and 15 mm, respectively). With a diameter of the inhibition
zone of 10 mm, compound 8b had comparable activity to
tobramycin (13 mm) and moderate activity to ofloxacin (17
mm) against E. coli. All of the substances tested demonstrated
no efficacy against P. aeruginosa. The microdilution technique
was performed to determine the minimum inhibitory
concentration (MIC) for the most effective compound (12b)
which had the highest activity against B. subtilis. MIC is the
lowest concentration that inhibits 100% of the bacterial

Scheme 5. Synthesis of Isomeric Bis-thiazoles 14a,b Linked to the Thiophene Core

Scheme 6. Plausible Mechanism for the Formation of Targeted Thiazoles
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growth. As shown in Figure 3, the MIC was 20 mg/mL for
compound 12b.
2.4. Structure−Activity Relationship. The location of

the bis-thiazoles from the quinoxaline core in derivatives 8a,
8b, 10a, and 10b had a significant influence on activity,
according to the structure−activity relationship. Because of the
closeness of the bis-thiazoles to the quinoxaline core in
derivatives 8a and 8b, they showed promising efficacy against
S. aureus and E. coli when compared to tobramycin,
respectively. While the presence of bis-thiazoles farther away
from the quinoxaline core decreased antibacterial activity in
derivatives 10a and 10b, the inclusion of the electron-donating
group (methyl) and the electron-withdrawing moiety (Cl) in
derivatives 8a and 8b, respectively, had no discernible effect on
activity. Similarly, in derivatives 12a and 12b, the presence of
bis-thiazoles close to the thiophene core resulted in promising
action against S. aureus and slight activity against B. subtilis
when compared to tobramycin and clindamycin, respectively.
The presence of bis-thiazoles distant from the thienothiophene
core in derivatives 14a and 14b reduced activity. The activity
of derivatives 12a and 12b differed little depending on whether
the methyl group or the Cl atom was present.
2.5. Molecular Docking. The molecular docking study

was carried out to evaluate the potential mechanism of action
of compounds 8a, 8b, 12a, and 12b as antibacterial agents. For
this investigation, bacterial dihydrofolate reductase (DHFR)
and tyrosyl-tRNA synthetase (TyrRS) were used. The enzyme

DHFR is involved in the folic acid pathway.82 It converts
dihydrofolate to tetrahydrofolate, boosting thymidylate pro-
duction, DNA replication, RNA transcription, protein trans-
lation, and cell development.83 Other tetrahydrofolate
metabolites are also involved in the conversion of single-
carbon units into pyrimidines, purines, and amino acids.82 As a
result, DHFR suppression can result in a lack of protein and
nucleic acid components, resulting in a halt in DNA synthesis
and programmed cell death. Aminoacyl-tRNA synthetases
(aaRSs) are a class of enzymes that promote the transfer of
amino acids to their matching tRNAs during protein
synthesis.84 Since the identification of this information,
which includes the structures of the amino acids and the
coinciding tRNA molecules, it is critical to transform the coded
information into protein structures in nucleic acids.85 TyrRS
belongs to the aaRSs family, which is found in all living
organisms and has two highly conserved sequence motifs at the
active site, HIGH and KMSKS.84 Compounds 8a, 8b, 12a, and
12b fit in the active site of DHFR with comparable binding
energies (−40.8, −37.14, −39.7, and −37.9 kcal/mol) relative
to the cocrystallized ligand (−16.2 kcal/mol), as shown in
Table 2. Binding energies of our compounds were found to be

more negative than those of the standard, implying that they fit
with higher stability than the standard. The binding energies
for TyrRS were likewise extremely comparable (−36, −36.6,
−37.1, and −40 kcal/mol, respectively) and were more
negative than the standard (−18.6 kcal/mol) (Table 2).
Figure 3 depicts the modes of interaction of the investigated
compounds with the DHFR active site. It was found that
compound 8a interacted through 11 interactions, one
hydrogen bond between the nitrogen of quinoxaline ring and
LYS: 144 with bond distance 5.68 A0; two alkyl hydrophobic
interactions with VAL: 6 and LYS: 45; seven π-alkyl

Table 1. Antibacterial Activity of the Prepared Compounds
at a Concentration of 20 mg/mLa

diameter of the zone of inhibition (mm) at 20 mg/mL

sample B. subtilis S. aureus P. aeruginosa E. coli

8a NA 11 NA NA
8b NA NA NA 10
10a NA NA NA NA
10b NA NA NA NA
12a 10 12 NA NA
12b 15 11 NA NA
14a NA NA NA NA
14b NA NA NA NA
tobramycin80 12 13
ofloxacin81 20 17
clindamycin 27 23
DMSO 0.0 0.0 0.0 0.0

aStandard antibiotic tobramycin (10 μg) for S. aureus and E. coli,
ofloxacin (2 μg/disk) for Gram-negative bacteria, and clindamycin (2
μg/disk) for Gram-positive bacteria. NA: no activity.

Figure 3. Microdilution assay for compound 12b against B. subtilis.

Table 2. Binding Energy Values for Compounds 8a, 8b, 12a,
and 12b and Standard Ligands with Bacterial Dihydrofolate
Reductase and Tyrosyl-tRNA Synthetase Proteins

Gibbs free energy (S) (kcal/mol)

sample
bacterial dihydrofolate

reductase
bacterial tyrosyl-tRNA

synthetase

8a −40.8 −36
8b −37.14 −36.6
12a −39.7 −37.1
12b −37.9 −40
cocrystallized ligand
(standard)

−16.2 −18.6
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hydrophobic with ALA: 7, LYS: 29, LEU: 20, LEU: 28, LEU:
54, and LYS: 32 residues; and one unfavorable acceptor−
acceptor with SER: 49 (Figures 4a and 5a). Compound 8b was
able to fit into the active site of DHFR via 12 interactions,
including three hydrogen bonds with LYS: 32, ILE: 50, and
LYS: 52; one π-cation electrostatic with LYS: 32; and eight π-
alkyl hydrophobic with HIS: 23, PRO: 55, LEU: 28, and LYS:
32 residues (Figures 4b and 5b). Compound 12a had 14
interactions: three hydrogen bonds with GLN: 19, LEU: 20,

and LYS: 144; one π-cation electrostatic interaction with LYS:
29; and 10 alkyl and π-alkyl hydrophobic interactions with
LYS: 29, LEU: 28, LEU: 54, HIS: 23, LEU: 20, ALA: 7, VAL:
6, and ILE: 14 residues (Figures 4c and 5c). Figures 4d and 5d
reveal 11 contacts for compound 12b, including one hydrogen
bond with SER 49; one π-cation electrostatic interaction with
LYS 23; and nine π-alkyl hydrophobic interactions with VAL 6,
ALA 7, ILE 14, LEU 20, ILE 50, LEU 54, and LEU 28
residues. Compound 8a was found to match TyrRS through

Figure 4. Two-dimensional (2D) representation of (a) compound 8a, (b) compound 8b, (c) compound 12a, and (d) compound 12b with
bacterial dihydrofolate reductase.
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nine interactions (Figures 6a and 7a). Two hydrogen bonds
were formed with LYS: 84 and ASP: 195; five alkyl
hydrophobic contacts were formed with ALA: 43, HIS: 47,
HIS: 50, TRP: 241, and VAL: 224; one π−π stacked with HIS:
47; and one π−σ with LEU: 223. Figures 6b and 7b show five
hydrogen bonds with GLY: 49, ASP: 40, and LYS: 84; two
alkyl hydrophobic with CYS: 37 and LEU: 70; two π-alkyl
hydrophobic with PRO: 53 and LYS: 84; one π-sulfur between
the benzene ring and CYS: 37; and one π-cation electrostatic
between the benzene ring and LYS: 84. Compound 12a also
had 11 interactions, including three hydrogen bonds with LYS:
84 and ASP: 195; three electrostatic interactions with ASP: 80,
LYS: 84, and TRP: 241; and five hydrophobic interactions with
HIS: 47, PRO: 53, LEU: 223, ALA: 239, and TRP: 241
residues (Figures 6c and 7c), while compound 12b fitted via
12 interactions, including four hydrogen bonds with HIS: 50
and ASP: 40; two π-cation electrostatic with LYS: 84 and LYS:
234; four alkyl hydrophobic with CYS: 37, LEU: 70, LYS: 84,
and LYS: 231; one π−π T-shaped with HIS: 47; and one π-
alkyl hydrophobic interaction with LYS: 234 (Figures 6d and
7d). As a result, compounds 8a, 8b, 12a, and 12b may have
antibacterial action by inhibiting the bacterial DHFR and
TyrRS enzymes.

3. CONCLUSIONS
Bis-thiazoles connected to quinoxaline or thienothiophene via
2-phenoxy-N-arylacetamide were synthesized as novel hybrid
compounds. Condensation of bis-thiosemicarbazones or bis(α-
haloketones) with a suitable reagent is the key step in our
synthetic strategy. The mechanistic routes and chemical
structures of all synthesized derivatives were described and
validated by using spectrum data. The products were produced
in high yields using easily accessible starting ingredients and a
straightforward method. Compound 12a had promising
antibacterial activity when compared to tobramycin and
moderate activity when compared to clindamycin. Compound
12b exerted the highest activity against B. subtilis with a
diameter of the inhibitory zone and MIC equaled to 15 mm
and 20 mg/mL, respectively. The molecular docking
simulation demonstrated that compounds 8a, 8b, 12a, and
12b could fit in the active site of bacterial DHFR and TyrRS
with binding energies lower than those of the standard.

4. EXPERIMENTAL SECTION
4.1. General. 4.1.1. Synthesis of Target Molecules.

Melting points were determined in open glass capillaries with
a Gallenkamp apparatus. Elemental analyses were carried out
at the Microanalytical Center of Cairo University, Giza, Egypt.

Figure 5. Three-dimensional representation (3D) of the molecular interaction of (a) compound 8a, (b) compound 8b, (c) compound 12a, and (d)
compound 12b with bacterial dihydrofolate reductase.
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The infrared spectra were recorded as potassium bromide disks
on a PyeUnicam SP 3-300 and Shimadzu FTIR 8101 infrared
spectrophotometer. NMR spectra were recorded on a Varian
Mercury VXR-300 NMR spectrometer at 300 MHz (1H
NMR) and 75 MHz (13C NMR) using DMSO-d6 as solvent
Chemical shifts were reported downfield from TMS (=0) for
1H NMR. For 13C NMR, chemical shifts were reported in the
scale relative to the solvent used as an internal reference. Mass
spectra (EI) were obtained at 70 eV with a Shimadzu GCMQP
1000 EX spectrometer. Compounds 6a and 6b were prepared
as described.86

4 . 1 . 2 . S y n t h e s i s o f 2 - ( 4 - ( 1 - ( 2 -
Carbamothioylhydrazineylidene)ethyl)phenoxy)-N-(aryl)-
acetamide (5a,b). To a solution of the acetyl compounds 3a,b
(10 mmol) in absolute ethanol (25 mL) containing 1 mL of
acetic acid, thiosemicarbazide (4) (10 mmol) was added. The

reaction mixture was heated under reflux for 3 h and then
allowed to cool. The solid formed was collected by filtration
and recrystallized from ethanol/DMF to give 5a,b as a yellow
powder.

4.1.3. 2-(4-(1-(2-Carbamothioylhydrazineylidene)ethyl)-
phenoxy)-N-(p-tolyl)acetamide (5a). Pale yellow powder,
(81% yield), mp. 215−217 °C; IR: (potassium bromide)
3421, 3366 (NH2), 3251 (NH), 1675 (C�O) cm−1; 1H
NMR: δ 2.25 (s, 3H, CH3), 2.26 (s, 3H, CH3), 4.72 (s, 2H,
OCH2C�O), 6.99 (d, 2H, J = 7.2 Hz, ArH), 7.11 (d, 2H, J =
7.5 Hz, ArH), 7.51 (d, 2H, J = 7.2 Hz, ArH), 7.88−7.91 (m,
2H, ArH), 8.18 (s, 2H, NH2), 9.98 (s, 1H, NH), 10.09 (s, 1H,
NH); 13C NMR (75 MHz, DMSO-d6) δ 17.0, 21.5, 67.3,
114.6, 120.3, 127.3, 128.6, 129.4, 130.6, 136.8, 142.5, 161.1,
162.3, 179.9; MS: m/z (%) 356 (M+). Anal. Calcd. for

Figure 6. Two-dimensional representation of (a) compound 8a, (b) compound 8b, (c) compound 12a, and (d) compound 12b with bacterial
tyrosyl-tRNA synthetase.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07125
ACS Omega 2023, 8, 44312−44327

44321

https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07125?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


C18H20N4O2S: C, 60.65; H, 5.66; N, 15.72; S, 8.99. Found: C,
60.62; H, 5.69; N, 15.75; S, 8.96.

4.1.4. 2-(4-(1-(2-Carbamothioylhydrazineylidene)ethyl)-
phenoxy)-N-(4-chlorophenyl)acetamide (5b). Pale yellow
powder, (80% yield), mp. 220−222 °C; IR: (potassium
bromide) 3433, 3361 (NH2), 3257 (NH), 1681 (C�O)
cm−1; 1H NMR: δ 2.26 (s, 3H, CH3), 4.74 (s, 2H, OCH2C�
O), 6.98 (d, 2H, J = 8.4 Hz, ArH), 7.36 (d, 2H, J = 8.4 Hz,
ArH), 7.67 (d, 2H, J = 7.8 Hz, ArH), 7.89 (d, 2H, J = 7.8 Hz,
ArH), 8.18 (s, 2H, NH2), 10.06 (s, 1H, NH), 10.21 (s, 1H,
NH); 13C NMR (75 MHz, DMSO-d6) δ 16.8, 67.7, 114.2,
121.7, 126.3, 129.7, 133.2, 137.3, 142.1, 158.1, 166.1, 172.7;
MS: m/z (%) 376 (M+). Anal. Calcd. for C17H17ClN4O2S: C,
54.18; H, 4.55; Cl, 9.41; N, 14.87; S, 8.51. Found: C, 54.12; H,
4.59; N, 14.85; S, 8.56.

4.1.5. Synthesis of Bis(thiazoles) Linked to Heteroar-
omatic Cores 8a,b and 12a,b. A mixture of the appropriate
bis-2-bromoethanone derivatives 7 or 11 (1 mmol) and the
thiosemicarbazone 5a,b (2 mmol) was dissolved in ethanol (25
mL), TEA (0.2 mL) was added, and the reaction mixture was
heated at reflux for 3−5 h. The reaction mixture was then left
to cool, and the solid product was filtered off and recrystallized
from ethanol/DMF, to afford compounds 8a,b and 12a,b.

4.1.6. 2,2′-(((((((Quinoxaline-2,3-diylbis(oxy))bis(4,1-
phenylene))bis(thiazole-4,2-diyl))bis(hydrazin-2-yl-1-

ylidene))bis(ethan-1-yl-1-ylidene))bis(4,1-phenylene))bis-
(oxy))bis(N-(p-tolyl)acetamide) (8a). Brown powder, (74%
yield); mp 259−261 °C; IR (KBr): 3311 (NH), 1673 (C�
O), 1555 (C�N) cm−1; 1H NMR: δ 2.26 (s, 6H, CH3), 2.32
(s, 6H, CH3), 4.73 (s, 4H, OCH2C�O), 7.06 (d, 4H, J = 8.7
Hz, ArH), 7.13 (d, 4H, J = 8.1 Hz, ArH), 7.35 (s, 2H, thiazol-
5-H), 7.45 (d, 4H, J = 8.4 Hz, ArH), 7.53 (d, 4H, J = 8.1 Hz,
ArH), 7.58−7.78 (m, 8H, ArH), 8.01 (d, 4H, J = 8.4 Hz, ArH),
10.00 (s, 2H, NH), 11.14 (brs, 2H, NH); 13C NMR (75 MHz,
DMSO-d6) δ 17.3, 20.0, 68.1, 102.4, 114.5, 120.6, 121.6, 121.9,
127.1, 127.4, 128.7, 129.5, 134.1, 137.0, 141.1, 145.8, 147.4,
152.3, 155.7, 160.5, 161.3, 167.9, 172.1; MS: m/z (%) 1070
(M+). Anal. Calcd. for C60H50N10O6S2: C, 67.27; H, 4.70; N,
13.08; S, 5.99. Found: C, 67.24; H, 4.71; N, 13.05; S, 5.97.

4.1.7. 2,2′-(((((((Quinoxaline-2,3-diylbis(oxy))bis(4,1-
phenylene))bis(thiazole-4,2-diyl))bis(hydrazin-2-yl-1-
ylidene))bis(ethan-1-yl-1-ylidene))bis(4,1-phenylene))bis-
(oxy))bis(N-(4-chlorophenyl)acetamide) (8b). Brown powder,
(78% yield); mp 253−255 °C; IR (KBr): 3275 (NH), 1673
(C�O), 1551 (C�N) cm−1; 1H NMR: δ 2.31 (s, 6H, CH3),
4.76 (s, 4H, OCH2C�O), 7.05 (d, 4H, J = 9 Hz, ArH), 7.36
(s, 2H, thiazol-5-H), 7.38 (d, 4H, J = 9 Hz, ArH), 7.45 (d, 4H,
J = 8.7 Hz, ArH), 7.55−7.70 (m, 8H, ArH), 7.76 (d, 4H, J =
8.7 Hz, ArH), 8.01 (d, 4H, J = 8.7 Hz, ArH), 10.24 (s, 2H,
NH), 11.14 (brs, 2H, NH); 13C NMR (75 MHz, DMSO-d6) δ

Figure 7. Three-dimensional representation of the molecular interaction of (a) compound 8a, (b) compound 8b, (c) compound 12a, and (d)
compound 12b with bacterial tyrosyl-tRNA synthetase.
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14.1, 67.1, 103.9, 114.6, 121.3, 122.0, 126.6, 127.0, 127.2,
127.4, 127.9, 128.7, 131.2, 132.4, 137.0, 137.4, 146.4, 149.3,
149.9, 151.9, 158.4, 166.6, 170.1; MS: m/z (%) 1110 (M+).
Anal. Calcd. for C58H44Cl2N10O6S2: C, 62.64; H, 3.99; N,
12.60; S, 5.77. Found: C, 62.62; H, 3.99; N, 12.61; S, 5.75.

4.1.8. Diethyl 3,4-Bis((4-(2-(2-(1-(4-(2-oxo-2-(p-
tolylamino)ethoxy)phenyl)ethylidene)hydrazineyl)thiazol-4-
yl)phenoxy)methyl)thieno[2,3-b]thiophene-2,5-dicarboxy-
late (12a). Brown powder, (71% yield); mp 240−242 °C; IR
(KBr): 3275 (NH), 1712 (C�O), 1671 (C�O), 1553 (C�
N) cm−1; 1H NMR: δ 1.28 (t, 6H, J = 6.9, CH3), 2.25 (s, 6H,
CH3), 2.29 (s, 6H, CH3), 4.34 (q, 4H, J = 6.9, CH2), 4.71(s,
4H, OCH2C�O), 5.66 (s, 4H, OCH2), 6.90 (d, 4H, J = 8.4
Hz, ArH), 7.02 (d, 4H, J = 8.1 Hz, ArH), 7.10−7.53 (m, 10H,
ArH and thiazol-5-H), 7.66 (d, 4H, J = 8.4 Hz, ArH), 7.71 (d,
4H, J = 8.4 Hz, ArH), 9.98 (s, 2H, NH), 11.00 (brs, 2H, NH);
13C NMR (75 MHz, DMSO-d6) δ 14.7, 19.7, 28.2, 61.3, 67.2,
104.2, 113.2, 114.6, 116.3, 126.3, 126.5, 126.8, 128.2, 128.6,
129.9, 130.2, 134.3, 135.9, 146.9, 152.6, 156.8, 157.6, 160.4,
167.3, 169.7, 173.5; MS: m/z (%) 1252 (M+). Anal. Calcd. for
C66H60N8O10S4: C, 63.24; H, 4.82; N, 8.94; S, 10.23. Found:
C, 63.22; H, 4.81; N, 8.95; S, 10.21.

4.1.9. Diethyl 3,4-Bis((4-(2-(2-(1-(4-(2-((4-chlorophenyl)-
amino)-2-oxoethoxy)phenyl)ethylidene)hydrazineyl)thiazol-
4-yl)phenoxy)methyl)thieno[2,3-b]thiophene-2,5-dicarboxy-
late (12b). Brown powder, (71% yield); mp 234−236 °C; IR
(KBr): 3275 (NH), 1710 (C�O), 1675 (C�O), 1553 (C�
N) cm−1; 1H NMR: δ 1.28 (t, 6H, J = 6.9, CH3), 2.29 (s, 6H,
CH3), 4.34 (q, 4H, J = 6.9, CH2), 4.74(s, 4H, OCH2C�O),
5.66 (s, 4H, OCH2), 6.90 (d, 4H, J = 8.4 Hz, ArH), 6.95−7.09
(m, 6H, ArH and thiazol-5-H), 7.37 (d, 4H, J = 8.4 Hz, ArH),
7.65−7.70 (m, 8H, ArH), 7.74 (d, 4H, J = 9 Hz, ArH), 10.22
(s, 2H, NH), 11.01 (brs, 2H, NH); MS: m/z (%) 1292 (M+).
Anal. Calcd. for C64H54Cl2N8O10S4: C, 59.39; H, 4.21; N, 8.66;
S, 9.91. Found: C, 59.37; H, 4.23; N, 8.64; S, 9.88.

4.1.10. Synthesis of Isomeric Bis(thiazoles) Linked to
Heteroaromatic Cores 10a,b, and 14a,b. To a solution of the
appropriate bis(thiosemicarbazone derivatives) 9 or 13 (1
mmol) was added the α-bromoketone 6a,b (2 mmol) in
ethanol (25 mL) containing TEA (0.2 mL). The reaction
mixture was heated at reflux for 4 h. The obtained solid
products upon cooling were filtered off and then recrystallized
from ethanol/DMF to afford compounds 10a,b, and 14a,b.

4.1.11. 2,2′-(((((((Quinoxaline-2,3-diylbis(oxy))bis(4,1-
phenylene))bis(ethan-1-yl-1-ylidene))bis(hydrazin-1-yl-2-
ylidene))bis(thiazole-2,4-diyl))bis(4,1-phenylene))bis(oxy))-
bis(N-(p-tolyl)acetamide) (10a). Brown powder, (77% yield);
mp 270−271 °C; IR (KBr): 3315 (NH), 1693 (C�O), 1551
(C�N) cm−1; 1H NMR: δ 2.26 (s, 6H, CH3), 2.80 (s, 6H,
CH3), 4.71 (s, 4H, OCH2C�O), 7.04 (d, 4H, J = 9 Hz, ArH),
7.12 (d, 4H, J = 7.8 Hz, ArH), 7.18 (s, 2H, thiazol-5-H), 7.47−
7.82 (m, 20H, ArH), 9.97 (s, 2H, NH), 12.18 (brs, 2H, NH);
13C NMR (75 MHz, DMSO-d6) δ 14.0, 20.5, 67.2, 101.8,
114.8, 119.8, 121.5, 122.9, 126.8, 129.2, 130.5, 132.7, 135.2,
135.8, 135.9, 141.1, 142.1, 150.6, 155.6, 157.3, 161.3, 166.3,
168.0; MS: m/z (%) 1070 (M+). Anal. Calcd. for
C60H50N10O6S2: C, 67.27; H, 4.70; N, 13.08; S, 5.99. Found:
C, 67.25; H, 4.71; N, 13.06; S, 5.95.

4.1.12. 2,2′-(((((((Quinoxaline-2,3-diylbis(oxy))bis(4,1-
phenylene))bis(ethan-1-yl-1-ylidene))bis(hydrazin-1-yl-2-
ylidene))bis(thiazole-2,4-diyl))bis(4,1-phenylene))bis(oxy))-
bis(N-(4-chlorophenyl)acetamide) (10b). Brown powder,
(79% yield); mp 273−275 °C; IR (KBr): 3280 (NH), 1683

(C�O), 1546 (C�N) cm−1; 1H NMR: δ 2.95 (s, 6H, CH3),
4.74 (s, 4H, OCH2C�O), 7.04 (d, 4H, J = 9 Hz, ArH), 7.18
(s, 2H, thiazol-5-H), 7.37−7.71 (m, 20H, ArH), 7.95 (d, 4H, J
= 8.7 Hz, ArH), 10.21 (s, 2H, NH), 12.19 (brs, 2H, NH); 13C
NMR (75 MHz, DMSO-d6) δ 17.5, 66.3, 105.6, 114.8, 119.8,
126.8, 127.0, 127.8, 128.3, 129.1, 129.4, 129.9, 132.7, 135.8,
141.2, 146.1, 150.2, 153.1, 157.3, 159.6, 166.3, 168.3, 172.3;
MS: m/z (%) 1110 (M+). Anal. Calcd. for C58H44Cl2N10O6S2:
C, 62.64; H, 3.99; N, 12.60; S, 5.77. Found: C, 62.61; H, 3.97;
N, 12.61; S, 5.75.

4.1.13. Diethyl 3,4-Bis((4-(1-(2-(4-(4-(2-oxo-2-(p-
tolylamino)ethoxy)phenyl)thiazol-2-yl)hydrazineylidene)-
ethyl)phenoxy)methyl)thieno[2,3-b]thiophene-2,5-dicarbox-
ylate (14a). Brown powder, (69% yield); mp 269−271 °C; IR
(KBr): 3297 (NH), 1705 (C�O), 1681 (C�O), 1551 (C�
N) cm−1; 1H NMR: δ 1.27 (t, 6H, J = 6.9, CH3), 2.25 (s, 6H,
CH3), 2.80 (s, 6H, CH3), 4.33 (q, 4H, J = 6.9, CH2), 4.70 (s,
4H, OCH2C�O), 5.63 (s, 4H, OCH2), 6.91 (d, 4H, J = 8.7
Hz, ArH), 7.99−7.13 (m, 10H, ArH and thiazol-5-H), 7.46 (d,
4H, J = 8.1 Hz, ArH), 7.52 (d, 4H, J = 8.1 Hz, ArH), 7.74 (d,
4H, J = 8.7 Hz, ArH), 9.97 (s, 2H, NH), 11.92 (brs, 2H, NH);
MS: m/z (%) 1252 (M+). Anal. Calcd. for C66H60N8O10S4: C,
63.24; H, 4.82; N, 8.94; S, 10.23. Found: C, 63.21; H, 4.80; N,
8.95; S, 10.22.

4.1.14. Diethyl 3,4-Bis((4-(1-(2-(4-(4-(2-((4-chlorophenyl)-
amino)-2-oxoethoxy)phenyl)thiazol-2-yl)hydrazineylidene)-
ethyl)phenoxy)methyl)thieno[2,3-b]thiophene-2,5-dicarbox-
ylate (14b). Brown powder, (73% yield); mp 261−263 °C; IR
(KBr): 3295 (NH), 1711 (C�O), 1671 (C�O), 1550 (C�
N) cm−1; 1H NMR: δ 1.28 (t, 6H, J = 6.9, CH3), 2.95 (s, 6H,
CH3), 4.34 (q, 4H, J = 6.9, CH2), 4.73 (s, 4H, OCH2C�O),
5.64 (s, 4H, OCH2), 6.91 (d, 4H, J = 8.7 Hz, ArH), 7.00 (m,
4H, J = 8.7 Hz, ArH), 7.03 (s, 2H, thiazol-5-H), 7.37 (d, 4H, J
= 8.7 Hz, ArH), 7.46 (d, 4H, J = 8.7 Hz, ArH), 7.68 (d, 4H, J =
8.7 Hz, ArH), 7.73 (d, 4H, J = 8.7 Hz, ArH), 10.20 (s, 2H,
NH), 11.90 (brs, 2H, NH); 13C NMR (75 MHz, DMSO-d6) δ
14.0, 18.1, 61.7, 65.1, 109.1, 112.7, 120.5, 120.6, 120.7, 122.2,
122.3, 122.4, 123.5, 125.0, 126.4, 130.8, 134.4, 138.1, 144.6,
149.1, 153.5, 156.5, 150.2, 162.5, 168.1, 173.2; MS: m/z (%)
1292 (M+). Anal. Calcd. for C64H54Cl2N8O10S4: C, 59.39; H,
4.21; N, 8.66; S, 9.91. Found: C, 59.36; H, 4.23; N, 8.64; S,
9.89.
4.2. Antibacterial Assay. The antibacterial activity of the

synthesized compounds was tested by using the agar well
diffusion technique. B. subtilis (DSM 1088) and S. aureus
(ATCC 6538) were used as Gram-positive bacteria, whereas P.
aeruginosa (ATCC 10145) and E. coli (ATCC 8739) were used
as Gram-negative bacteria. Dimethyl sulfoxide (DMSO) was
used as a carrier to create a solution for each synthesized
compound (20 mg/mL). Bacterial centrifuged pellets from
overnight culture with about 1 × 106 colony forming unit CFU
per mL were cultivated on nutritional agar plates (yeast extract
0.5%, peptone 1%, NaCl 0.5%, agar 1.5%, distilled water 1 L,
pH 7.2). Before use, the nutritional agar was autoclaved for at
least 20 min at 121 °C. The nutrient agar plates were then
allowed to cool to 45 °C. Following that, sterile metallic bores
were used to create 6 mm wells in nutritional media. The
activity was then evaluated by measuring the diameter of the
inhibitory zone in millimeters. 20 L of the investigated
chemicals (20 mg/mL) was poured into the plates’ prepared
wells. As a negative control, a DMSO vehicle was added. As a
positive control for S. aureus and E. coli, standard tobramycin80

(10 μg) was employed. For gram-positive and gram-negative
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bacteria, conventional clindamycin (2 g/disk) and ofloxacin81

(2 g/disk) were employed as positive controls, respectively.
The plates were incubated at 37 °C for 24 h before the
inhibitory zone diameter was measured in millimeters using a
caliper.
4.3. Microdilution Assay. The microdilution technique

was used to determine the MIC for compound 12b against B.
subtilis (DSM 1088) established by CLSI.87 Briefly, (5 mg/
mL) stock solution of compound 12b in DMSO was diluted in
nutrient broth media to different concentrations (20, 10, 5, 2.5,
1.25, 0.625, and 0.3125 mg/mL). The DMSO final
concentration was ≤2.5%, which does not affect the bacterial
growth. The bacterial strain was transferred to fresh nutrient
broth agar 1 day before the test. An overnight inoculum was
prepared 12−16 h before the test and incubated overnight on a
reciprocal shaker at 37 °C. 180 μL portion of the prepared
bacterial suspension was then added to 20 μL of the tested
compound which was present in every well of the micro-
titration plate. An eight-channel pipet was used to perform this
procedure. The first well of the plate was taken as blank and
contained 200 μL of liquid broth medium with 1% DMSO.
The OD was read at a wavelength of 600 nm. Finally, the
minimum concentration at which 100% of bacterial growth was
inhibited (MIC) was determined.
4.4. Molecular Docking. The Molecular Operating

Environment (MOE) version 2009.10 was used for the
molecular docking simulation research. The program builder
interface was used to draw the structures of the target
compounds 8a, 8b, 12a, and 12b. Then, using the integrated
MOPAC, they were subjected to local energy reduction. The
compounds were then subjected to global energy reduction by
systematic conformational search, with RMS distance and
RMS gradient set to 0.1 Å and 0.01 kcal/mol, respectively. The
protein database was used to derive the X-ray crystallographic
structures of the bacterial dihydrofolate reductase and tyrosyl-
tRNA synthetase proteins complexed with their cocrystallized
ligands (PDB ID: 3FRA and 1JIJ, respectively). 5-[(2S)-2-
C y c l o p r o p y l - 7 , 8 - d ime t h o x y - 2H - c h r omen - 5 - y l ] -
methylpyrimidine-2,4-diamine and 2-amino-3-(4-hydroxy-phe-
nyl)-propionylamino-(1,3,4,5-tetrahydroxy-4-hydroxymethyl-
piperidine-2-yl)-acetic acid were the cocrystallized ligands. The
proteins were modified in the following ways: first, the proteins
with their standard ligands were protonated. Following that,
the target proteins’ undesirable water chains and cocrystallized
ligands were eliminated. The MOE α site finder was then used
to locate the active site of the chosen proteins, and fake atoms
were created from the α spheres. Finally, the changed proteins
were docked with the target molecules following self-docking
with their cocrystallized ligands. Using BIOVIA Discovery
Studio software V6.1.0.15350, the protein−ligand interactions
were identified in the active domain and visualized in 2 and 3
dimensions.
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