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ABSTRACT Numerous, diverse, highly variable defense and offense genetic systems
are encoded in most bacterial genomes and are involved in various forms of conflict
among competing microbes or their eukaryotic hosts. Here we focus on the offense
and self-versus-nonself discrimination systems encoded by archaeal genomes that so
far have remained largely uncharacterized and unannotated. Specifically, we analyze
archaeal genomic loci encoding polymorphic and related toxin systems and ribo-
somally synthesized antimicrobial peptides. Using sensitive methods for sequence
comparison and the “guilt by association” approach, we identified such systems in
141 archaeal genomes. These toxins can be classified into four major groups based
on the structure of the components involved in the toxin delivery. The toxin do-
mains are often shared between and within each system. We revisit halocin families
and substantially expand the halocin C8 family, which was identified in diverse ar-
chaeal genomes and also certain bacteria. Finally, we employ features of protein se-
quences and genomic locus organization characteristic of archaeocins and polymor-
phic toxins to identify candidates for analogous but not necessarily homologous
systems among uncharacterized protein families. This work confidently predicts that
more than 1,600 archaeal proteins, currently annotated as “hypothetical” in public
databases, are components of conflict and self-versus-nonself discrimination systems.

IMPORTANCE Diverse and highly variable systems involved in biological conflicts
and self-versus-nonself discrimination are ubiquitous in bacteria but much less stud-
ied in archaea. We performed comprehensive comparative genomic analyses of the
archaeal systems that share components with analogous bacterial systems and pro-
pose an approach to identify new systems that could be involved in these functions.
We predict polymorphic toxin systems in 141 archaeal genomes and identify new,
archaea-specific toxin and immunity protein families. These systems are widely rep-
resented in archaea and are predicted to play major roles in interactions between
species and in intermicrobial conflicts. This work is expected to stimulate experimen-
tal research to advance the understanding of poorly characterized major aspects of
archaeal biology.
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Prokaryotes (bacteria and archaea) inhabit complex environments, where they in-
teract and compete with other organisms, both prokaryotic and eukaryotic. Multi-

ple offense and defense systems emerged during evolution to combat resource com-
petitors and parasites (1–3). These systems are involved in incessant arms races and
therefore are typically among the fastest-evolving genes (4). They are relatively well
studied in bacteria, but the data on such systems in archaea is scarce.

The peptide antibiotic compounds, which form a prominent arm of the microbial
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defense systems, can be classified into two major types: ribosomally and non-
ribosomally synthesized peptides (RiPPs and NRPs, respectively) (5, 6). Both types of
peptides are typically further processed (maturated) and chemically modified. The RiPPs
are the only antimicrobial peptides that have been experimentally characterized in
archaea. They are known as archaeocins (by analogy with bacteriocins) and so far have
been identified only in a few Halobacteria and Sulfolobales species (7).

In addition to antibiotics, bacteria also deploy large, multidomain protein toxins in
conflicts with other organisms. The polymorphic toxin systems (PTSs) that are typically
deployed against closely related strains or species are large proteins with distinct
trafficking mechanisms from which the toxin domain, often an enzyme, is cleaved off
upon entry into the target cell (3, 8). The toxins deployed in PTSs are extremely diverse
and attack a variety of cellular components, primarily RNA and DNA, and in some cases
proteins and lipids (3). However, different types of toxin domains can be coupled in the
same polypeptide to domains mediating one or more distinct mechanisms of traffick-
ing/delivery (3, 9). Among these mechanisms, the delivery of a toxin through a phage
tail apparatus is the most complex because it requires dozens of genes that encode
phage tail components, toxins that often contain a Zn-dependent processing metallo-
peptidase (MPTase) and the toxin domain itself, as well as immunity proteins and
regulatory components. This machinery is referred to as type VI secretion (9, 10) and
PVC (Photorhabdus virulence cassettes) systems (3). Recently, the term “tailocins” was
coined to denote type VI secretion and PVC systems, emphasizing the origin of both
from phage tails (11).

Another type of toxin system consists of several large multidomain components that
collectively make a pore in the membrane, attach to a target cell, and then deliver and
cleave the toxin domain off once inside the target cell. These systems are typified by
entomotoxins TcABC (toxin complex ABC) from Photorhabdus species that target
eukaryotic cells via modification of Rho GTPases (3, 12). Some toxins are secreted
outside the cell through dedicated secretion systems that either recognize specific
signal sequences or use dedicated chaperones to target these toxins for export (9).
Finally, many toxins are secreted through either the twin-arginine translocation (Tat)
pathway translocating folded proteins (13) or through the Sec system as unfolded
proteins (14).

Homologs of several bacterial PTSs have been identified in archaea (3), but the
genes comprising these systems have never been accordingly annotated in any of
archaeal genomes available in public databases or studied experimentally. The scarcity
of information on intermicrobial conflict mechanisms in archaea prompted us to revisit
the protein families that comprise predicted archaeal conflict systems. Here, we present
an attempt to comprehensively characterize the representation of the PTS and related
systems in archaea and to predict new varieties of such systems on the basis of
observed sequence and contextual features of the respective genomic loci.

RESULTS AND DISCUSSION
Archaeal polymorphic toxin systems. As a result of an iterative “guilt-by associ-

ation” procedure (see Fig. S1 in the supplemental material for details) and extensive
manual curation, we report here 1,909 genes, in 377 genomic islands from 141 archaeal
genomes, that are predicted to encode protein components of PTS and related systems
(see Tables S1 and S2 in the supplemental material).

These systems could be classified into four distinct types based on their architec-
tures or the trafficking-related domains with which the toxins are combined: (i) PVC-like
systems or tailocins; (ii) RHS (rearrangement hot spot) systems, which often include a
large, multidomain toxin protein, with a toxin domain located C terminal of the RHS
repeats, coupled with entomotoxin TcB and TcC components; (iii) previously unchar-
acterized toxins with an N-terminal regions containing Ca2�-binding domains; and (iv)
predicted archaea-specific PTSs that consist of multidomain proteins with signal pep-
tides, indicating secretion via the general secretory pathway. To the N terminus of the
toxin domain, these proteins contain a distinct domain, often with a prominent
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hydrophobic region, that might be involved in their maturation and delivery (see
below) either via contact with rival cells or through some other protein-protein
interaction (Fig. 1 and Table S1). Finally, there is the barnase-barstar system, which is a
minimal, invariant version of the classic PTS.

PVC-like systems. Complete PVC-like systems, with contractile phage tails impli-
cated in toxin injection (Fig. 1 and Table S1), were identified in the genomes of 32
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FIG 1 General organization of offense and self-versus-nonself discrimination systems identified in archaeal genomes. Genes are shown by block arrows. Distinct
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archaea, all mesophiles. Similarly to the previously described systems (3, 15), most of
these genomes contain a large locus, with multiple genes encoding components of the
phage tail, baseplate, tail assembly regulatory components, toxins, and putative im-
munity proteins (Fig. 1 and 2). Typically, toxin genes are followed by immunity genes,
either within these large loci or in separate toxin-immunity cassettes. Several genomes
also contain stand-alone poly-immunity loci that string together multiple immunity
proteins that could counter the toxin from these PVC systems (3, 16) (Fig. 1 and 2;
Table S2).

The phage tail in both PVC and type VI secretion systems consists of the tube-sheath
complex and baseplate components, but the tail-related components and the disas-
sembly ATPase in these systems appear to have originated from different phage
families (3, 17). The tube is assembled from the tail tube proteins (arCOG11410 and
arCOG11413) and is covered by the sheath protein (arCOG11414). The baseplate wedge
consists of phage baseplate assembly protein (arCOG11183), gp47/JayE protein (ar-
COG10307), and phage P2-like protein (arCOG02556), which are homologous to phage
Mu baseplate assembly proteins p46, p47, and p48, respectively (15). Baseplate central
hub components, namely, an LysM domain-containing protein (arCOG11417) and RHS
repeat-containing protein (arCOG10308), correspond to the phage Mu proteins p43
and p44, respectively (15). Another conserved component of the baseplate is a spike
protein (arCOG10240), the counterpart to the phage Mu protein p45 (15). Some of
these systems also contain the PAAR domain, typified by an amino acid motif that
typically contains proline-alanine-alanine-arginine. The PAAR domains are typical of
the type 6 secretion system (T6SS), in which they mediate the recruitment of stand-
alone toxins (3, 18). The presence of these domains in the archaeal PVC systems
suggests that they could be similarly used to diversify the toxin repertoire beyond
those toxins that are fused with the PVC-metallopeptidase (MPTase) within the same
multidomain protein. Several other proteins in the predicted archaeal PVC-like systems
are not similar to any known phage proteins, so that their functions remain unclear, but
because these proteins are encoded within the tail assembly module, they can be
tentatively assigned to the toxin delivery apparatus (Fig. 2; Table S2). One of such
proteins is specific to Halobacteria (arCOG14275). These proteins are variable in length,
but all contain an arginine-rich C-terminal region with the conserved “RRG” motif (see
Fig. S2 in the supplemental material). This motif has not been described previously but,
like many other terminal motifs, might represent a protein targeting signal (19, 20).
Additionally, these loci include genes for two essential regulators of the tail assembly,
the CDC48-like AAA� ATPase (arCOG01308) and the tail terminator protein (ar-
COG11409, DUF4255 family) (15).

The larger loci typically encode a toxin. All complete toxins contain an N-terminal
metallopeptidase (PVC-MPTase) domain that is diagnostic of the PVC systems (3) and
various C-terminal domains that represent known or putative toxins. Altogether, we
identified 170 proteins containing the PVC-MPTase domain, but several of these are
fragments rather than complete, functional proteins. The typical size of the PVC-
MPTase-toxin fusions is about 350 amino acids (aa), but they could be as large as 1,106
aa (NTE_00486 in Nitrososphaera evergladensis SR1) when fused with additional do-
mains. In the majority of these proteins, the C-terminal domains (i.e., the putative
toxins) are not similar to any known toxins. We could identify sequence similarity with
known toxins only for 56 of these proteins (Table S2). The most common identified
toxins in the PVC systems are colicin A, a membrane-perforating toxin, and BECR RNases
(barnase, EndoU, colicin D, RelE fold metal-independent RNases with a core 4-stranded
sheet) of the colicin D family. We also identified variants of some of the PVC-like system
protein families containing the HNH fold nucleases (in particular, the XHH family: for
example, WP_013440589 from Halogeometricum borinquense) that are typical of bac-
terial PTSs but have not been previously observed in archaea (3). Seven of the 8
identified new toxin families containing 3 or more proteins are associated with the PVC
systems (see Fig. S3 in the supplemental material). At least some of these new toxin
families, such as arTOX1, arTOX2, arTOX4, arTOX5, and arTOX7, are likely to represent
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highly derived variants of colicin A because they are predicted to adopt a secondary
structure compatible with the colicin A fold and contain one or two glycine-rich
alpha-helices that are typical of the structurally characterized pore-forming toxins (3,
21) (Fig. S3). The arTOX6 family also, most likely, includes pore-forming toxins (Fig. S3)
given the limited but significant similarity it shows to the hemolysin B component of
enterotoxin from Bacillus cereus (e.g., PDB no. 2NRJ) (Fig. S3). All PVC toxin domains are
expected to be cleaved off by the preceding PVC-MPTase before they are delivered into
the target cell.

Each toxin is expected to be complemented by a respective immunity protein that
protects host cells from autotoxicity or from toxin produced by other cells of the same
clone (3, 9, 16). However, within the PVC-related loci, we identified only a few known
immunity genes, namely, coding for four Imm60 family immunity proteins and one
colicin D inhibitor (Table S2). This lack of homologs of known bacterial immunity
proteins implies that archaea possess distinct, so far completely uncharacterized,
immunity proteins. Indeed, we detected multiple, homologous, uncharacterized pro-
teins (primarily, arCOG10872 and arCOG10882) encoded in most of the PVC loci in
Halobacteria (Table S2). These genes are typically located next to those encoding toxins
of the DUF4157 family but, in several cases, form a separate gene cassette located
outside the PVC loci. It appears highly likely that these genes encode immunity
proteins. Given that these homologous, putative immunity proteins are encoded next
to unrelated toxins, they can be predicted to target a common mechanism of toxin
delivery rather than a specific family of toxins.

Another class of likely immunity components encoded in the PVC loci in Halobac-
teria are ankyrin repeat-containing proteins (arCOG04004), which have been previously
associated with bacterial PTS and implicated in immunity (3). Moreover, in several
archaeal genomes, ankyrin genes are next to known immunity genes, such as those
coding for the SUKH 6 immunity protein (WP_008454742 in Natrinema gari) or an SUFU
family immunity protein (WP_048112428 in “Candidatus Methanoplasma termitum”
MpT1) (16). Combining several immunity genes in the so-called poly-immunity loci is
typical of bacterial polymorphic toxin and immunity systems (3, 16), which further
strengthens the hypothesis that ankyrins are involved in immunity. The identities of
immunity proteins in some other mesophilic archaea with genes encoding the PVC
systems, such as Methanomicrobia and Thaumarchaeota, remain unclear. Typically,
there are some uncharacterized proteins encoded next to the predicted PVC-toxin
proteins in these genomes, but unlike the case of Halobacteria, they do not belong to
any characterized large protein families. This implies that either these organisms
possess completely different immunity mechanisms, such as the specific immunity
proteins against each toxin family that have been identified in bacteria (3, 16), or these
toxins are deployed against distantly related organisms.

Additionally, in several Halobacteria, putative immunity proteins of arCOG10872 are
encoded adjacent to a membrane protein (arCOG07767) homologous to TrbL, which is
present in the trb locus of Agrobacterium conjugative plasmid Ti (22). TrbL is related to
TraG and VirB6 proteins, pore-forming proteins that are essential for conjugative DNA
transfer (23). Moreover, in several archaeal genomes, a conjugative transfer ATPase
gene, virB4 (23), is contained in the vicinity of trbL/arCOG10872 genes (e.g.,
WP_014030626 in Haloarcula sp.). These observations suggest that, in Halobacteria,
genes for immunity proteins are propagated via conjugative plasmids independently
from the toxins and delivery genes.

RHS-like systems. The RHS (YD) repeats are 28-aa sequences that typically contain
the signature motif GxxxRYxYDxxGRL[I/T], where x is any amino acid, and were named
after the rearrangement hot spot proteins of Escherichia coli (24). The RHS is the most

FIG 2 Legend (Continued)
Genes are colored according to the general function (see color code at the bottom of the figure). The arCOG numbers are indicated beneath the respective
genes (when assigned). Brief annotations of the selected genes are shown above the arrows. Identified toxin families are indicated within respective arrows.
Abbreviations: SP, signal peptide; TM, transmembrane helices.
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common N-terminal element found in PTSs in general (3). Tandem RHS repeats form a
large, hollow structure encapsulating the toxin for delivery (25). Additional domains
fused to the RHS element vary substantially, but the C-terminal domain is usually a
variable toxin (3, 8). In the PTS, these toxins are paired with a dedicated immunity
protein, which is usually encoded by the gene next to the RHS element-encoding gene.
These features of RHS toxins are shared by both bacterial and archaeal versions (Fig. 1
and 3A) (3). We identified RHS systems in 24 archaeal genomes—mostly Methanomi-
crobiales and several uncultured archaea (Table S1). Many RHS element-containing
proteins also contain a Tat signal peptide, suggesting that they are secreted through
the Tat system in the folded state. In most genomes, we identified at least one large
RHS repeat-containing protein that also contained additional domains predicted to
form the proximal part of the hollow toxin delivery structure (Fig. 3A). The N-terminal
regions of the RHS proteins in four Methanosarcina species and in Methanolobus
tindarius have the same domain organization as the B component of the entomotoxin
from Yersinia entomophaga, for which the structure has been solved (25). Specifically,
this protein contains the Salmonella virulence plasmid 65-kDa protein B similarity
region (pfam03534), VCBS (a repetitive domain in Vibrio, Colwellia, Bradyrhizobium, and
Shewanella [pfam13517]), and the middle/N-terminal region of the TcdB toxin
(pfam12256). The 5 highly similar archaeal proteins have the same domain organiza-
tion, but their C-terminal toxin domains are all different, indicating that, similarly to
their bacterial counterparts, toxin domain polymorphism via recombination with stand-
alone toxin-immunity cassettes also occurs in archaeal RHS systems (Fig. 4A). Typically,
the large RHS protein (primary locus) is encoded adjacent to the respective immunity
genes and several RHS cassettes (Fig. 3A; Table S2). These cassettes (mostly from
arCOG12091 and arCOG12924) lack an N-terminal signal peptide but have a C-terminal
toxin domain and, like in bacteria, likely recombine into the primary RHS-encoding
genes, to generate variants that differ in their C-terminal toxin domains.

Altogether, we identified 69 putative archaeal RHS proteins, of which 29 contain
C-terminal toxin domains. These toxins belong to previously characterized endonu-
clease families of the HNH, BECR, and ParB folds or metallopeptidases (zincin or
Tox-MPTase) (Table S2). Additionally, we defined a previously unrecognized family of
predicted endo-RNases with the BECR fold (e.g., in Methanosarcina sp. strain
2.H.T.1A.15; WP_048139393.1), which is also present in several bacterial PTSs (Fig. S3).
The majority of the toxin-containing RHS proteins also contain an aspartyl autopepti-
dase domain located downstream of the RHS repeat region (Fig. 4A). This is an
autopeptidase of the same family as the autopeptidase in the TcC component of the
Yersinia entomophaga entomotoxin (25) (Fig. S3). Additionally, several of the archaeal
RHS toxins contain a previously unreported predicted pretoxin domain that is shared
with several bacterial PTSs (e.g., WP_048139393.1). This domain is characterized by two
hydrophobic helices with 3 highly conserved negatively charged residues and might be
involved in processing of the respective toxins or their delivery to the target cells
(Fig. S3). As expected, in several cases, a known toxin gene is followed by a recogniz-
able immunity protein against this particular toxin: e.g., in Methanosarcina sp., barnase
RNase is followed by the barstar inhibitor (26) (Fig. 3A; Table S2). Thus, numerous
uncharacterized genes contained immediately downstream of the RHS element genes
are likely to encode immunity proteins against either known or yet unknown toxins
encoded by these RHS genes (Fig. 3A).

Whereas the RHS and the TcdB toxin that comprise the N-terminal and middle
regions of the RHS proteins, respectively, appear to be specific to these systems, the
VCBS repeat domain is found in many archaeal proteins that are typically encoded by
genes outside the recognizable contexts associated with polymorphic toxins. These
genes encode proteins of various sizes and domain organizations that are predicted to
be secreted and often contain an enzymatic domain, such as different proteases and
terpene cyclases (Fig. 4B; Table S1). Some of these enzymatic domains have been
occasionally identified in PTSs, especially, in association with type II secretion systems
(3). These proteins potentially represent distinct, uncharacterized archaeal offense
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systems, with their enzymatic domains being toxins. However, the absence of potential
immunity protein genes in the vicinity of the respective genes suggests that they are
either deployed against distantly related species or perform a different function, such
as processing cell surface biomolecules.

Calcium-binding domain-containing toxins. Another type of predicted polymor-
phic toxin systems (here Ca_vWA) was identified in 49 archaea, mostly mesophiles. The
key feature of this system is the presence of Ca2�-binding module that is related to
type 3 thrombospondin repeats (27) (Fig. 3B; Table S1). These repeats contain a
characteristic DxDxDGxxDxx[DE] motif, lack secondary structure, and are organized
around a core of calcium ions (27). In addition to this Ca2�-binding module, these
proteins often contain a von Willebrand factor type A (vWA) domain (Fig. 4C). The vWA
domain is a peptide-binding domain that functions in several adhesion-related pro-
cesses (28, 29). Among known polymorphic toxin delivery components, several include
unrelated calcium-binding domains, such as repeats-in-toxin (RTX) domains (30) and
the EF-hand calcium-binding domain of the protective antigen component of anthrax
toxin (31, 32). As with the RHS systems, the Ca_vWA loci encompass several putative
toxin-containing genes (mostly, from arCOG10906 and arCOG12040), each of which
is typically followed by a known or putative immunity gene (Fig. 3B). Often, one of the
toxin-containing proteins is much larger than the others. Most of these large proteins
contain signal peptides, suggesting that these proteins are secreted. About 74% (48 of
65) of these predicted toxin proteins that are larger than 500 aa contain a ZU5
autopeptidase domain (e.g., WP_079891644.1 [366 to 479 aa]) that has been previously
implicated in the maturation of bacterial PTSs (3). The smaller proteins usually lack a
signal peptide and might form a part of the toxin delivery machinery.

We identified homologs of known toxin domains in the C-terminal regions of 92 of
the 122 putative toxins in the Ca_vWA systems (Fig. 3B and 4C; Table S2). Most of the
predicted toxin domains belong to one of the 6 families: 3 are the RNase domain of the
BECR fold, one is a distant homolog of RNase A (NTox41) that has been previously
identified in the contact-dependent growth inhibition toxin (CdiA) of Yersinia kristense-
nii (33), and the other two are the previously characterized Tox-ColD1 and Ntox49
(Table S2), whose active site configurations are similar to that of colicin D RNases
compared to the other families of BECR RNases (3). Another toxin in these systems is an
NAD(P)�-degrading enzyme or ADP-ribosyltransferase of the ART superfamily (Ntox48),
which is also found in many bacterial effectors deployed against animals and plants (34,
35). Additionally, two predicted toxin families, namely a PD-DExK superfamily (also
known as REase [restriction endonuclease] fold) enzyme and a zincin metallopeptidase
(Tox-MPTase), have not yet been experimentally characterized. However, representa-
tives of these families have been identified in analogous bacterial systems in the
previous comparative genomics study (3) (Fig. 4C).

Surprisingly, only a few known immunity proteins were identified in the Ca_vWA
systems. These include 6 colicin D immunity proteins, which are encoded next to the
BECR RNase toxin-containing proteins (Table S2). Three additional families have been
predicted as immunity proteins previously (3), namely, Imm49 family proteins, which
are encoded next to the PD-DExK (REase) toxins, Imm60, often encoded next to ART
family toxins, and HEAT repeat-containing proteins, encoded next to RNase A-like BECR
toxins (Table S2). Many other putative immunity proteins appear to be specific for
archaea, belong to arCOG13290, and can be predicted to be involved in immunity
against the PD-DExK (REase) toxins (Table S2).

FIG 4 Legend (Continued)
are different in all 5 proteins. (B) VCBS domain-containing proteins. These proteins are abundant in archaea, but their involvement in microbial conflict
systems is unclear. (C) Ca2�-binding module-containing proteins. (D) Proteins associated with a CDI-like system specific for thermococci. Proteins are
shown by block arrows with the length proportional to the size of the corresponding protein. For each protein, the GenBank nucleotide contig or genome
partition accession number and the organism are indicated. The identified domains are shown inside the arrows approximately according to their
location and are briefly annotated. Homologous domains are shown by the same color or pattern. Abbreviations: SP, signal peptide; TM, transmembrane
helices.
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Thermococcus-specific PTS. We identified a putative archaea-specific PTS in 18
species of Thermococcales (Fig. 1; Table S1). Typically, at least one of these loci in each
genome contains a gene coding for a full-size toxin (usually �350 to 470 aa), which
apparently contains all the domains required for the toxin delivery and cleavage. Other
predicted toxins encoded in these loci seem to be diverse C-terminal fragments
homologous to the full-size toxins (Fig. 3D). The full-size toxins belong to two distinct
families, arCOG07841 and arCOG10048, whereas most of the partial ones belong to
arCOG07146 (Table S2). All full-size predicted toxins contain a signal peptide, an
uncharacterized middle region, and a C-terminal toxin domain (Fig. 4D; Fig. S3). The
middle regions of arCOG07841 and arCOG10048 proteins are either unrelated or
extremely diverged. The C-terminal domains of some of these proteins belong to the
BECR fold of RNases with the same catalytic residues (histidine, arginine, and tyrosine)
as in the RNase A-related toxin from the CDI (contact-dependent growth inhibition)
polymorphic toxin system characterized in Yersinia kristensenii (33) or the PD-DExK
(REase) toxins of bacterial PTSs (Fig. S3). Altogether, we have identified a BECR RNase
domain (sometimes partial or degraded) in 38 proteins and PD-DExK superfamily toxin
domains (sometimes partial) in 8 proteins of the 46 predicted toxins of this type. The
organizations of these loci are similar to those of the RHS and Ca_vWA systems,
suggesting that the smaller toxin domain-containing genes recombine with the prin-
cipal, full-length toxin gene, resulting in diversification of the toxin domain (Fig. 3D).
Proteins of arCOG07146 are typically encoded next to the BECR fold RNase toxins and
can be predicted to confer immunity to these toxins. Indeed, an HHpred search
identified limited sequence similarity between members of arCOG07146 and the CdiI
immunity proteins that are known to neutralize related RNase toxins in CDI systems (36)
(Fig. S3). Because RNase toxin domains and immunity components of these systems
share similarity with CDI systems, we refer to these systems as “CDI-like.” The PD-DExK
(REase) toxins are relatively rare in these systems but are likely neutralized by dedicated
immunity proteins of arCOG10047 and arCOG11323 that are typically encoded next to
the corresponding toxins (Fig. 3D).

Examination of the domain architecture of the complete toxins of this class yields
hints regarding their trafficking and delivery. The presence of an N-terminal signal
peptide indicates that these toxins are secreted from the producing cells via the general
secretory pathway. The middle region of these proteins shows a tripartite structure,
which includes a linker region located directly upstream of the toxin. The linker is
preceded by a domain containing a GXG or GXD signature flanked by two predicted
hydrophobic alpha-helices (Fig. S3). A similar element is present in several bacterial and
methanococcal PTSs, where it is typically associated with the N-terminal RHS and is
believed to help localize the toxin to the target cell membrane for delivery (3).
Therefore, it seems likely that it plays an analogous role in the distinct thermococcal
PTS described here. In the bacterial and methanococcal homologs, this domain is
preceded by a predicted aspartyl autopeptidase domain containing an [ND]PxxxxDP
motif, which mediates the autopeptidase activity (25). Although this autopeptidase
motif is absent in the thermococcal PTS, the sequence conservation of the region
upstream of the above domain and immediately C-terminal to the signal peptide
featuring a distinct G[ED] motif suggests that this portion of the protein might facilitate
similar cleavage, either directly or in conjunction with a general secretory peptidase
(Fig. S3).

The barnase-barstar system. This secreted RNase toxin barnase and the corre-
sponding immunity protein barstar comprise one of the simplest versions of the class
of conflict systems that is extensively elaborated in various PTSs. The barnase-barstar
system was first identified in bacteria (37, 38) and has since been detected in a wide
range of prokaryotes (3). Although barnase-barstar homologs are present, respectively,
as the toxin tip and the cognate immunity protein in the RHS systems described above
(Fig. 1), unlike the typical polymorphic systems, the solo barnase-barstar system
contains no additional, recombining toxin cassettes. The barnase endo-RNase domain
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is one of the founding members of the BECR fold, which also includes other metal-
independent toxin endo-RNases, such as RelE, colicin E5, EndoU, colicin D, and others,
that are represented both in the PTS and in classical type II toxin-antitoxin systems (3).
The solo barnase-barstar gene dyad was identified in 9 archaeal genomes, all from the
Methanobacteria lineage (Table S1). These genes show no significant association with
other genes in the respective genomic neighborhoods, in accord with the notion that
barnase and barstar jointly comprise a stand-alone conflict system (Table S2).

Archaeocins. Archaeal bacteriocin-like proteins so far have been identified only in
Halobacteria and Sulfolobales (7). To date, 8 distinct halocins have been isolated (39),
but only five of these have been mapped to proteins encoded in the respective
genomes. These halocins belong to three distinct families: C8/A4, S8/R1, and H4. Two
more genes, sulA and sulB, comprise the only known crenarchaeal archaeocin genes,
coding for sulfolobicin, in Sulfolobales species (Fig. 1; Table S1) (40). Typically, these
proteins are secreted and expressed as precursors that are further processed by
unknown peptidases, to release an active toxic peptide (41) and, in the case of C8, also
the immunity protein HalI (42). Additional genes encoding transcriptional regulators
and peptide exporters are sometimes present in the same loci and are assumed to be
involved in immunity, regulation, and export of the halocins (7) (Fig. 1).

We used PSI-BLAST and the guilt-by-association approach to identify archaeocin
homologs and explore their gene neighborhoods. Halocin H4 is rare, being present in
only 7 Halobacteria and two species from other archaeal lineages, Methanosarcina
soligelidi and Thermococcus piezophilus. This gene does not appear to be linked to any
other genes in the respective genomic neighborhoods (Table S2). The C8/A4 and S8
halocins could be unified into a single, large superfamily. Specifically, a PSI-BLAST
search initiated with WP_084813291 from Haloterrigena thermotolerans, a representa-
tive of the halocin C8 family, recovers halocin S8 from Halobacterium salinarum
(ALF62560.2) in iteration 4, with an E value of 10�3. This finding was confirmed by a
hidden Markov model (HMM) search using HMMER3 starting with an alignment of
bacterial and archaeal halocin C8, which recovered H. salinarum halocin S8, with an E
value of 10�4. We identified homologs of these halobacterial proteins in 87 archaeal
genomes, including representatives of Desulfurococcales, Thermoproteales, Methanomi-
crobia, Sulfolobales, Theionarchaea, Archaeoglobi, Thermococcales, and Thermoplasmata
(Table S1). Furthermore, we detected members of the C8/A4/S8 halocin superfamily in
bacteria, mostly in firmicutes, as well as some members of other phyla, such as
actinobacteria, chloroflexi, and proteobacteria (Table S1). To our knowledge, C8 family
halocins have not been previously identified outside the halobacterial lineage, and
most of these newly identified proteins are annotated as “hypothetical.” These toxins
typically contain a signal peptide, followed by a poorly conserved, strongly charged
central region, followed by a C-terminal conserved globular domain containing 6 to 8
cysteines (Fig. S3). Notably, in some chloroflexi, for example, Nitrolancea hollandica (e.g.,
WP_008479876.1), this C-terminal globular domain is coupled with RHS repeats at the
toxin tip of an RHS-type PTS. Thus, the toxic activity of the C8/A4 toxins is likely
mediated by this C-terminal domain, consistent with the fact that the previously
characterized mature versions from Halobacteria are derived from this region (41).

The S8 halocins were detected only in 9 Halobacteria and are typically encoded by
a stand-alone gene (Tables S1 and S2). The more prevalent C8/A4 family genes are
found in variable loci that often include additional genes that are likely to be involved
in halocin expression regulation and transport (Fig. 5). Among the most common
proteins encoded in these neighborhoods are multidrug transporter ABC-ATPase (ar-
COG00196), a DsbD-like membrane-associated disulfide-bond isomerase of the thiore-
doxin fold (arCOG02400), transcriptional regulators of arCOGs 2611, 2808, and 2809,
membrane proteins of the YIP1 family, presumably mediating trafficking (arCOG02054),
and others (Table S2). HalR, the transcriptional regulator from the originally character-
ized C8 locus (42), belongs to arCOG02808. Among the uncharacterized genes in these
loci, two are most common. The first one encodes a Halobacteria-specific, uncharac-
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terized membrane protein (arCOG06311, or HalU) with 14 transmembrane (TM) helices,
possibly, a permease. The second gene also encodes a Halobacteria-specific protein
(arCOG08109) that contains two predicted TM helices with a conserved CxxC motif at
the N terminus and a C-terminal domain with 5 cysteines that might adopt the Zn
ribbon fold (Fig. S3). Genes of arCOG08109 are present in the majority of halobacterial
genomes and do not follow the distribution patterns of C8 halocins (Table S1),
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suggesting that this protein is likely to perform some important function in the
respective organisms. Given the conservation of the configuration of the cysteines in
these proteins, they could facilitate the maturation of the halocin in conjunction with
the DsbD-like disulfide bond isomerase by ensuring the proper formation of disulfide
bonds.

Finally, we identified SulA and SulB homologs only in 3 species in our data set, all
in the Sulfolobales lineage (Table S1). Notably, in Acidianus hospitalis, the SulA compo-
nent was not detected, but there are two separately encoded, stand-alone sulB genes.
Also, as noted previously (40), in Sulfolobus tokodaii, the sulB gene is tandemly dupli-
cated.

Although different known archaeocins are typically encoded in different loci, even
when present in the same genome, many halocin C8 loci contain genes coding for
other secreted proteins. It appears likely that at least some of these proteins are
unidentified archaeocins. Indirectly, this can be inferred from the fact that, in several
genomes, there are additional, dissimilar halocin C8 precursor genes contained in the
same loci (e.g., in Archaeoglobus fulgidus, Thermococcus cleftensis, Methanosarcina
lacustris, Methanohalophilus portucalensi, Methanosarcina soligelidi, Haloferax larsenii,
Picrophilus torridus, Theionarchaea archaeon, and others (Fig. 5; Table S2), suggesting
that C8 halocin family genes are prone to duplication and diversification, similarly to
some polymorphic toxin families described above.

Archaeal lantibiotic systems. Another system that has been characterized in
bacteria and identified in 19 halobacterial genomes produces lantibiotics (“lanthionine-
containing antibiotic”), ribosomally synthesized and posttranslationally modified toxin
peptides containing lanthionine (an atypical amino acid) and dehydrated derivatives of
threonine and serine (5). The minimal system consists of two genes encoding the
lantibiotic cyclase LanM and a small protein, the lantocin precursor. LanM, the signature
protein for type 2 lantibiotics, is an enzyme that catalyzes both dehydration and
cyclization of the precursor peptide (5) (Fig. 1). We identified 10 lantocin precursors in
19 genomes, 8 of which belong to the same protein family (Table S2). All these
lantibiotic precursors contain several cysteines and threonines in the C-terminal region
that are involved in lanthionine synthesis and cyclization (Fig. S3). Some of these
proteins were missed by the gene prediction pipelines, and the rest are currently
annotated as hypothetical. The loci encoding LanM often also contain genes for
multidrug transporters and, less frequently, genes for a hydrolase of the TIKI super-
family that includes metallopeptidases and erythromycin esterases. These could either
process the lantocin precursor or confer immunity cleaving lantocin peptides (Ta-
ble S2).

Candidates for novel archaeocins, archaeal toxins, and other systems involved
in interspecies conflicts or self-versus-nonself recognition. Among the 524 analyzed
archaeal genomes, 168 encompass at least one of the (predicted) offense systems
described above. It appears highly unlikely that the remaining archaea entirely lack
offense or self-nonself recognition systems. This being the case, such systems should be
archaea specific, without readily detectable bacterial counterparts. In our previous
comparative analyses of archaeal genomes, we noticed several archaea-specific systems
that possess some features suggestive of their involvement in interspecies interactions,
self-nonself recognition, or quorum sensing (43). For example, one of such predicted
systems in Thermococcales includes multiple paralogous members of the family of
secreted proteins (encoded by the TK2175, TK2176, and TK2177 genes in Thermococcus
kodakarensis) and a zincin metallopeptidase fused to an immunoglobulin-like domain,
TK2178, which might cleave these putative uncharacterized archaeocins, by analogy
with some bacteriocin systems (43).

Taking into account sequence features of the known archaeocins, bacteriocins, and
polymorphic toxins and the organization of the respective genomic loci, we sought to
identify uncharacterized genes in archaeal genomes that could be involved in similar
functions. In particular, we searched for uncharacterized protein families with a com-
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bination of several of the following features: (i) are prone to tandem duplications, (ii) are
present in several archaeal lineages, (iii) have a patchy distribution across the genomes
from those lineages, (iv) contain cysteine-rich regions, (v) contain either predicted
signal peptides and/or TM helices, or (vi) are encoded next to (predicted) peptide
exporters, peptidases, and/or transcriptional regulators (see Table S3 in the supple-
mental material). Examples from the list of candidates that were obtained by searching
archaeal genomes for combinations of these features are shown in Fig. 6.

The most prominent case of tandem duplications was identified in Methanomicrobia
genomes for the DUF1673 (pfam07895) family (arCOGs 3249, 3255, 3251, 3253, 3252,
3254, 6827, and 6845). The patchy distribution in Methanomicrobia suggests that these
genes are not involved in an essential function. This protein family is characterized by
an N-terminal globular domain of about 60 to 63 aa with a strictly conserved hGWCPN
motif. This domain is often followed by a C-terminal variable domain that contains 4 TM
helices and is predicted to anchor the protein in the membrane. The presence of the
conserved cysteine is reminiscent of the cysteine in the thioester domain that functions
as a thiol chemical harpoon to attach bacteria to target cells via a covalent linkage
through the active cysteine (44). An analogous function appears possible for this the
expanded protein family in Methanomicrobia. Alternatively, the conserved cysteine
could serve as a site for a covalent lipid modification.

Most of the respective genomic neighborhoods include a gene for a predicted
transcriptional regulator of the cI/cro helix-turn-helix (cHTH) family (arCOG04915),
which is a common component of toxin-antitoxin systems (45, 46). In addition, regu-
lators of this family have been identified in the context of antimicrobial genes (47) and
quorum-sensing systems: e.g., RsaL from Pseudomonas aeruginosa (48), which was the
best hit for arCOG04915 in the HHpred search against the PDB database. Members of
arCOG04915 are also present in other archaeal genomes, where their genes are
contained in the vicinity of genes for proteins with four TM helices that might be
functional DUF1673 analogs or homologs that diverged beyond recognition (Fig. 6A).
Among these proteins, there are members of arCOG04484, and analysis of these
proteins provides a clue to the likely involvement of the entire system in interspecies
conflicts or recognition. The membrane proteins from this arCOG are homologs of
sporulation-delaying protein I (SdpI), which confers immunity to the cannibalism
peptide SdpC in bacilli (49). This system has been studied in detail in Bacillus subtilis,
where it causes a delay in spore formation by cannibalizing siblings of the respective
bacterium under nutrient-limiting conditions (49, 50). It consists of 5 proteins, SdpAB-
CIR, where the SdpA and -B components are necessary for toxin maturation, SdpI is an
immunity protein, and SdpR is a transcriptional regulator. Components SdpB, -C, and -I
are unrelated membrane proteins, and SdpI contains four TM helices, similar to
DUF1673 (Table S2). Thus, it appears likely that the transcriptional regulators of
arCOG04915 are functionally analogous to SdpR. The membrane proteins encoded in
the respective loci could be either toxins or immunity proteins, or both if they contain
both immunity and toxin domains, such as, for example, C8 family halocins (Fig. 1 and
6A). The key transcriptional regulator (arCOG04915) is present in 59 archaeal genomes
from Methanomicrobia, Thermococcales, Theionarchaea, Archaeoglobales, and members
of the Asgard group, in different genomic contexts (Fig. 6A; Tables S1 and S2). Further
detailed investigation of the respective gene neighborhoods could lead to identifica-
tion of other components of this system and its extension to other archaeal genomes.
It has been noticed previously that SdpI homologs are present in several archaea (51)
that, as we find now, lack arCOG04915. In our present searches, SdpI homologs from
arCOGs 4484, 6110, and 8593 were identified in 152 additional archaeal genomes that
encode neither DUF1673 nor the transcriptional regulator of arCOG04915, suggesting
that different variants of this putative offense system are widespread in archaea
(Table S1).

Another putative archaeal offense system seems to be a mimic of the preceding one,
although without such pronounced tandem duplications, which occur mostly in Ther-
mococcales and Methanomicrobia (Fig. 6B). As in the case of the DUF1673/arCOG04915
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system, the two main components are a protein with four predicted TM helices (arCOGs
4440 and 6865) and a cHTH family transcriptional regulator (arCOG01864). This system
also shows a patchy distribution but is widespread in archaea. It was identified in 161
genomes, including several members of the Asgard group, DPANN superphylum, all
major euryarchaeal lineages, and a few crenarchaea (Tables S1 and S2). In most
genomes, only these two genes are present in putative operons—sometimes, in two or
more genomic loci (Fig. 6B; Table S2). Also, similarly to the DUF1673/arCOG04915
system (Fig. 6A), the transcriptional regulator is most closely related to the quorum-
sensing regulator RsaL (Fig. S3), but unlike the arCOG04915 proteins, lacks a Zn ribbon.
Furthermore, an ABC family multidrug exporter and a CAAX family protease are often
encoded in these neighborhoods (Fig. 6B). The CAAX family proteases are involved in
the processing of and immunity against bacteriocins (52), which further suggests that
this system is a strong candidate for an either offense or, more generally, a self-versus-
nonself discrimination function.

The next family is specific for three closely related Methanocella species and is not
found in other archaea. Multiple paralogs are encoded in each of the three genomes,
often as tandem duplications that mostly belong to arCOGs 11121, 11122, and 10873
(Fig. 6C; Table S2). These proteins are present in several loci in each genome, and in one
of these loci, they are encoded next to an ABC-type multidrug exporter (Fig. 6C). The
paralogous proteins are highly variable and contain a signal peptide and a glycine-rich
C-terminal region that is weakly predicted as a TM helix, suggesting that this protein
could be a pore-forming archaeocin (Fig. S3).

Secreted proteins that are enriched in cysteines similarly to C8 and S8 archaeocins
and the entire class of bacterial cysteine-rich toxic peptides known as thiazole/oxazole-
modified microcins (5) appear to be potential candidates for similar functions. One such
family of proteins containing 3 to 6 cysteines is present in four Methanomicrobia
genomes (Fig. S3), in two of which these genes are duplicated (Fig. 6D), and also,
sporadically, in certain bacteria (e.g., “Candidatus Peregrinibacteria”). Typically,
these proteins are encoded next to an uncharacterized membrane protein (e.g.,
MPET_RS04425) with four TM helices, likely a component of the same system. In
Methanomicrobiales archaeon HGW, another gene (arCOG07449) is present in the same
predicted operon (Fig. 6D). An HHpred search for the proteins from this arCOG shows
significant sequence similarity to Escherichia coli antitoxin MqsA (Fig. S3). The ar-
COG07449 proteins share a Zn ribbon and a cHTH domain with MqsA but, additionally,
contain another Zn ribbon at the C terminus. MqsA, together with the MqsR toxins,
forms a motility quorum-sensing (MQS) type II toxin-antitoxin system (53, 54). Thus, the
connection identified here might indicate involvement of this archaeal protein family in
quorum sensing.

The final example we address here is a remarkable locus with multiple tandem
paralogous genes that thus far had only been identified in Cenarchaeum symbiosum.
The complete versions of the proteins encoded in this locus contain two N-terminal TM
helices (e.g., ABK77370 protein) which are connected via a linker consisting of a variable
number of short repeats to a C-terminal domain. The locus also contains at least 7
stand-alone genomes encoding the C-terminal domain alone, resembling the toxin
cassettes of the PTS that recombine with the corresponding full-length genes (Fig. 6E).
The C-terminal domain shows considerable variability, suggesting that it might possess
an effector activity analogous to the PTS (Fig. S3). Furthermore, this locus encodes a
predicted metallopeptidase, which might process these proteins. It would be of obvi-
ous interest to investigate if this locus plays a role in the interaction of C. symbiosum
with its animal host.

FIG 6 Legend (Continued)
exception of the C-terminal toxin domains, which are different in all 5 proteins. (B) Neighborhoods including arCOG04440- or arCOG01864-related genes. (C)
Neighborhood including arCOG11121, -11122-, and -10873-related genes in Methanocella. (D) Neighborhood including MPET_RS04425 homologs in several
Methanomicrobia species. (E) Neighborhood including CENSYa_737 homologs in Cenarchaeum symbiosum. Insets for each panel describe key components of
the respective system; otherwise, designations are the same as in Fig. 5.
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Concluding remarks. Like most other organisms, archaea are part of ubiquitous

webs of interactions with cohabitating kin, as well as closely and distantly related
species. As free-living microbes, archaea need to distinguish self from nonself, to form
colonies or biofilms, to exchange genetic material, and to leverage conflicts among
interacting organisms. Bacteria possess numerous systems that are involved in self-
versus-nonself discrimination and offense against competing organisms (3, 5, 8, 55, 56).
In contrast, these functionalities are poorly characterized in archaea, although they are
likely to face ecological challenges comparable to those of bacteria and microbial
eukaryotes. The current knowledge is limited to the identification of a few archaeocins
(7) and several studies on quorum-sensing signaling molecules in Halobacteria (57).
Although several PTSs have been identified in archaea by comparative genomics
methods (3), their annotation has not propagated to the respective archaeal genomes,
and they remain unexplored experimentally.

Here, we expand the previous work and present a comprehensive in silico analysis
of the potential biological conflict systems encoded in 524 archaeal genomes. We
identify PTSs in 141 archaeal genomes and classify them into four types based on the
delivery components. The range of complexity among these PTSs varies from the
simplest barnase-barstar systems all the way to elaborate systems with a multicompo-
nent delivery apparatus. Three of these types—PVC/tailocins, RHS, and Ca_vWMA—
encompass the same maturation/trafficking components as the corresponding bacte-
rial systems and therefore are likely of bacterial origin. The fourth type of PTS identified
in this work shares the toxin and immunity components with bacterial CDI PTS but
might employ an archaea-specific maturation mechanism. Furthermore, we predicted
several previously unknown families of toxins and immunity proteins that appear to be
archaea specific. Similar to the bacterial counterparts, the predicted archaeal PTSs are
highly variable and show evidence of diversification of the toxin domains and immunity
proteins via recombination with stand-alone cassettes within each system.

We also unified the C8 and S8 halocins into a single superfamily and expanded their
phyletic horizon beyond Halobacteria by identifying representatives of this family in 5
other major archaeal and several bacterial lineages. Additionally, in many archaeal
genomes, we identified modified peptide toxins that are counterparts of the bacterial
lantibiotics along with the corresponding enzyme LanM, which is responsible for their
modification.

Although we identified numerous archaeal counterparts of bacterial offense and
self-versus-nonself discrimination systems, these are represented in only a minority of
the available archaeal genomes. These systems are predominantly found in mesophilic
archaea as opposed to hyperthermophiles. A similar trend has been previously noticed
in bacteria (3). One possibility is that the high-temperature environments lower the
levels of interorganismal conflict as only a select set of species can thrive under these
conditions. Additionally, the high-energy environments might disfavor the biochemis-
try of certain toxins. However, given that ecological studies point to high densities of
life even at high temperatures (58) and that such functionalities appear to be essential
for free-living organisms, multiple, unknown, and most likely, archaea-specific conflict
and kin discrimination systems could exist. We searched for such cases using the
characteristic features of the components of the known systems and the organization
of the respective genomic loci, including the tendency to form tandem duplications,
the presence of predicted signal peptides and/or TM helices, and others. This search
resulted in the identification of several candidate systems that might be implicated in
either interspecies conflicts or quorum sensing. However, the analysis presented here
cannot be considered exhaustive, and the computational strategies employed for the
prediction of uncharacterized systems involved in intermicrobial conflicts and commu-
nication remain to be refined. Nevertheless, the present study prompts multiple
experimental directions that can be expected to move forward this important area of
microbial biology.
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MATERIALS AND METHODS
Comparative genomics framework. Genome sequences of 524 archaea with complete or nearly

complete genomes were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/). Se-
quences were assigned to the 2014 arCOGs using PSI-BLAST (59) with the arCOG alignments as the
position-specific scoring matrix (PSSM) sources as previously described (60). Phyletic patterns (i.e., patterns of
the presence or absence of protein families) were derived from the respective arCOG assignments.

General sequence analysis. Iterative profile searches using PSI-BLAST (59), with a cutoff E value of
0.01 and composition-based statistics and low-complexity filtering turned off, were employed to search
for distantly similar sequences in either the NR (nonredundant) database or the protein sequence
database of 524 archaeal genomes. Hidden Markov model searches were run after constructing an HMM
from a multiple-sequence alignment of the predicted toxin domain with an initial seed set of represen-
tatives. These were then run against NR or a database of 2,700 prokaryotic genomes using the
HMMsearch program from the HMMER3 package. Alternatively, iterative HMM searches were run using
the JACKHMMER program with an inclusion threshold for the next iteration of 0.001 (61). Additionally,
other sensitive methods for distant sequence similarity detection were used, including a CDD search (62),
with a cutoff E value of 0.01 and low-complexity filtering turned off, and HHpred search with default
parameters against the PDB, Pfam, and CDD profile databases (63).

Transmembrane helices were predicted using TMHMM v.2.0c with default parameters (64). Signal
peptides were predicted using SignalP v.4.1c; the union of the three predictions (Gram-negative,
Gram-positive, and eukaryotic models) was used (65). Protein secondary structure was predicted using
Jpred 4 (66). Approximate maximum likelihood phylogenetic trees were constructed using FastTree with
default parameters (67).

Search for PTSs. The iterative procedure used for the delineation of polymorphic loci is shown in
Fig. S1. Briefly, 6 arCOGs (seeds) predicted to be involved in the polymorphic toxin delivery system by
the PVC systems (3) were initially used to map the respective genes in archaeal genomes. For further
gene neighborhood analysis, 20 genes located upstream and downstream of the seeds were extracted.
Genomic islands around the mapped genes were trimmed manually based on several criteria: the
flanking genes were discarded if arCOG assignments of the surrounding genes were incompatible with
offense functions based on arCOG functional category assignments, all genes located in the same strand
within a 100-nucleotide (nt) distance were retained, and “orphan” genes not assigned to arCOGs also
were retained regardless of their direction. In the second iteration, the most frequent arCOGs from the
trimmed genomic islands were used as new seeds. The new islands were analyzed as described above.
Sequences of known and predicted toxin domains within these islands were searched against the arCOG
database using PSI-BLAST (4 iterations or until convergence). All proteins with similarity to a toxin
domain with an E value of �0.001 were used as new seeds.

Analysis of archaeocins. Six previously detected archaeocin sequences were used as queries for
PSI-BLAST searches, with 5 iterations (Table S2). For gene neighborhood analysis, 5 or 10 genes located
upstream and downstream of the archaeocin homologs were extracted. Proteins found to be encoded
in the same strand as the archaeocin homologs were searched against the arCOG database using
PSI-BLAST. For all genes in the neighborhood, signal peptides and TM helices were predicted.

Prediction of previously unknown conflict systems. All sequences in the database of 524 archaeal
genomes were classified into superclusters, based on the sequence similarity as detected by reciprocal
PSI-BLAST hits. To that end, a multiple alignment of the protein sequences from each cluster (arCOG) was
used as the query in a search against a database of cluster (arCOG) consensus sequences. Superclusters
were retained for further analysis if they satisfied the following criteria: (i) they had a narrow phylogenetic
representation (present in at most 2 major lineages of archaea), (ii) they had a patchy phyletic
distribution (present in at most half of the genomes in each of the respective lineages), and (iii) they were
classified as a gene with unknown function, had general function prediction only, or were a defense
gene. All instances of genes of the same supercluster (paralogs) and occurring in the same genome
partition or contig within a distance of 5 genes from each other were recorded as tandem blocks. For
each supercluster, the root mean square length of the block, the entropy of the block length distribution,
and the total number of tandem blocks were calculated. The mean number of predicted TM helices and
the fraction of proteins containing a signal peptide were calculated for each supercluster. For each
cluster alignment within a supercluster, the number of cysteine residues conserved in least 50% of the
sequences was calculated and the weighted mean was calculated for the supercluster. The genomic
context (5 upstream and 5 downstream genes) of each gene within a supercluster was examined for the
presence of known transporters, transporter regulators, and peptidases; the fraction of contexts positive
for these gene categories was recorded. All data are available in Table S3.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00715-19.
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