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Abstract

Loss of skeletal muscle mass is a characteristic feature of various pathologies including cancer, diabetes, and obesity, as well as
being a general feature of ageing. However, the processes underlying its pathogenesis are not fully understood and may
involve multiple factors. Importantly, there is growing evidence which supports a role for fatty acids and their derived lipid
intermediates in the regulation of skeletal muscle mass and function. In this review, we discuss evidence pertaining to those
pathways which are involved in the reduction, increase and/or preservation of skeletal muscle mass by such lipids under
various pathological conditions, and highlight studies investigating how these processes may be influenced by dietary
supplementation as well as genetic and/or pharmacological intervention.
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Introduction

The maintenance of skeletal muscle mass and integrity is cru-
cial for proper functioning of the musculoskeletal system as
well as efficient nutrient uptake and storage. Under normal
physiological conditions, a network of interconnected signals
serves to co-ordinate muscle protein synthesis and proteoly-
sis. However, any impairment of these signalling processes
can contribute to a loss of muscle mass, or atrophy, which
is a feature associated with various pathologies including can-
cer (termed cachexia), heart disease and obesity, as well as
ageing (termed sarcopenia) (see Figure 1).1–12 Moreover, inju-
ries such as severe burns can induce a series of proinflamma-
tory stress responses which have also been linked to muscle
wasting post-injury.13 Consequently, reduced skeletal muscle
mass can severely weaken the musculoskeletal system and
hamper locomotion, as well as contribute to the develop-
ment of impaired glucose and lipid homeostasis, particularly
in the obese state.

Conversely, muscle mass can be increased either through
hypertrophy, which is characterized by an expansion in the
size of pre-existing myofibres, or through the process of hy-
perplasia, which involves an increase in the number of cells
or fibres.14–17 Indeed, several model systems have been used

to study such growth responses in myogenic progenitor
(satellite) cells and/or differentiated myotubes including, for
example, the murine C2C12 muscle cell line (myoblasts origi-
nally cultured from thigh muscle of C3H mice), rat L6 muscle
cells (a skeletal muscle cell line established from thigh muscle
of newborn rats), or primary myogenic cells derived from pu-
rified muscle fibres.18,19 Notably, muscle hypertrophy can be
induced by multiple anabolic stimuli—among the most stud-
ied of which include insulin and insulin-like growth factor 1
(IGF-1).20 Indeed, signalling triggered by growth factors such
as IGF-1 act to positively regulate muscle growth, driven at
least in part through the induction of protein synthesis.21–23

Mechanistically, activation of the IGF-1/IGF-1 receptor
signalling axis leads to the insulin receptor substrate 1
(IRS1)-dependent recruitment of PI3-kinase and subsequent
activation of protein kinase B (PKB) (also known as Akt)
through the generation of phosphatidylintosiol-3,4,5 tris-
phosphate (PIP3) by PI3-kinase. Active Akt then promotes
the activation of mechanistic target of rapamycin (mTOR)
complex 1 (mTORC1) by phosphorylating and inhibiting
its upstream repressor TSC2.24 This then results in the
mTORC1-dependent phosphorylation of p70-S6 kinase 1
(S6K) and eIF4E-binding protein (4E-BP), leading to in-
creased protein synthesis. An alternative downstream
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target of Akt is glycogen synthase kinase 3β (GSK3β) which
becomes phosphorylated and inhibited by active Akt. Re-
pression of GSK3 acts to relieve its inhibition of the initi-
ation factor eIF2B, leading to increased protein
synthesis.25 In addition, Akt also phosphorylates and in-
hibits the Forkhead box O (FOXO) family of transcription
factors, thereby repressing their transcriptional activation
of the E3 ubiquitin ligases Muscle Atrophy Fbox (MAFbx)
(also known as atrogin-1) and Muscle Ring Finger 1
(MuRF1) which function to promote ubiquitination and
subsequent proteasomal degradation of target substrates.9

Pro-inflammatory cytokines such as tumour necrosis factor
alpha (TNF-α) can also act to induce atrophic genes such
as MuRF1 and atrogin-1/MAFbx by activating the nuclear
factor-kappa B (NF-kB) family of transcription factors.26

Therefore, a number of distinct signalling pathways have
been implicated in controlling skeletal muscle hypertrophy
and atrophy. Notably, diet-induced obesity or short-term
high fat feeding has been shown to promote or augment
muscle atrophy and catabolism, as evidenced by reduced
muscle mass and muscle fibre size, in association with
up-regulated expression of atrophic factors (i.e. atrogin-1/
MAFbx and MuRF1) and increased rate of proteolysis.10,27

Allied to this, fat infiltration into muscle has been associated
with reduced muscle strength.28 Herein, we discuss the evi-
dence which supports a role for the involvement of fatty acids
and derived lipid metabolites in the regulation of skeletal
muscle mass and function through their ability to modulate
muscle cell growth, proliferation, and/or differentiation.
Furthermore, we explore potential mechanisms that may be
involved in the control of muscle hypertrophy/atrophy by
such lipids.

Fatty acid modulation of skeletal
muscle mass and function

Evidence from several studies suggests that saturated and un-
saturated fatty acids may act to differentially regulate skeletal
muscle mass and function. For example, exposure of C2C12
myotubes to palmitate (C16:0), the most abundant circulating
saturated fatty acid, has been shown to decrease myotube
diameter and suppress insulin signalling.29 In accord with this,
palmitate provision in muscle cells has been reported to
induce the expression of pro-atrophic genes such as atrogin-
1/MAFbx, concomitant with increased nuclear localization
of its transcriptional regulator FoxO3.30 In contrast, applica-
tion of docosahexaenoic acid (DHA), an omega-3 polyunsatu-
rated fatty acid (PUFA), did not alter myotube morphology
when applied alone and was shown to counter-modulate
palmitate-induced atrophy in C2C12 myotubes.29 Consistent
with this, a separate study reported the amelioration of
palmitate induced protein degradation in C2C12 myotubes
following co-treatment with DHA.30 Notably, this coincided
with the ability of DHA to mitigate enhanced nuclear FoxO3
localization and atrogin-1/MAFbx gene expression in re-
sponse to palmitate provision.30

In accord with these findings in cultured muscle cells, sev-
eral in vivo studies have also reported the ability of unsatu-
rated fatty acids to convey beneficial responses which act to
prevent muscle wasting and/or atrophy. For example, feeding
mice bearing the colon-26 adenocarcinoma, an animal model
of cancer cachexia, with a diet supplemented with conjugated
linoleic acid, was shown to preserve gastrocnemius muscle
mass.7 Notably, this protective effect coincided with a

Figure 1 Disorders and conditions which are associated with reduced muscle mass and/or function. Schematic diagram illustrating various pathologies
and/or conditions which are associated with increased muscle catabolism coinciding with reduced skeletal muscle mass and/or function.
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reduction in skeletal muscle TNF-α receptor expression sug-
gesting that the PUFA may act to prevent muscle wasting,
at least in part, by reducing the catabolic actions of the cyto-
kine TNF-α.7,31 In a separate study, dietary supplementation
with eicosapentaenoic acid (EPA; C20:5(n-3)) attenuated pro-
tein degradation in gastrocnemius muscle of mice bearing the
cachexia-inducing MAC16 tumour.4 EPA treatment has also
been reported to prevent arthritis-induced reductions in gas-
trocnemius muscle weight in rats following administration of
Freund’s adjuvant, concomitant with the normalization of
atrogin-1/MAFbx and MuRF1 gene expression.32 Moreover,
dystrophic hamsters fed a diet enriched in the PUFA α-
linolenic acid (ALA) (C18:3(n-6)) exhibited improvements in
muscle morphology and function, including enlarged
myofibres.33 In accord with these findings, omega-3 and
omega-6 PUFAs have also been shown to increase phosphor-
ylation of p70S6K1 at Thr389, indicative of its increased activ-
ity, during myogenic differentiation of L6 myocytes.34

Together, these studies support the notion that unsaturated
fatty acids can provide protection against muscle wasting in
response to various pathological conditions. Furthermore,
these findings highlight the distinct responses that saturated
and unsaturated fatty acids induce to promote or counter
muscle atrophy and protein degradation, respectively.

Potential factors underlying fatty acid
regulation of skeletal muscle size and
mass

A number of different signalling pathways and/or intermedi-
ates have been implicated as potential mediators of muscle
wasting and atrophy, which themselves can be regulated in
response to fatty acid provision (see Figure 2). For example,
palmitate is known to act as a potent repressor of PKB/Akt di-
rected signalling in skeletal muscle, at least in part through its
ability to induce the accumulation of toxic lipid intermediates
such as ceramide.35,36 Indeed, such sphingolipids can act by
stimulating protein phosphatase 2A (PP2A) or atypical protein
kinase C (PKC) (PKCζ) isoforms to inhibit PKB/Akt.37 In accord
with this, C2C12 myotube atrophy induced by TNF-α has been
reported to coincide with elevated levels of intracellular cer-
amide,38 whereas blocking ceramide synthesis has been
shown to attenuate TNF-α induced muscle atrophy in L6
myotubes, as well as protecting mice against tumour induced
(via C26 carcinoma implantation) skeletal muscle atrophy
in vivo.38 Notably, these beneficial responses concurred with
increased protein synthesis and decreased proteolysis, con-
comitant with reduced expression of the atrogin-1/MAFbx
gene via suppressed Foxo3 function, as well as increased
abundance of key mediators of protein synthesis including
S6K1 and PKB/Akt.38 Moreover, exogenous provision of cer-
amide in L6 muscle cells has been reported to reduce protein

levels of the myogenic transcription factor myogenin via inhi-
bition of phospholipase D, whilst inhibition of ceramide syn-
thesis enhanced myogenin expression and accelerated
myotube formation.39 A study by Turpin and colleagues also
demonstrated increased muscle ceramide content following
acute (5 h) intralipid® infusion, which coincided with the acti-
vation of pro-apoptotic signalling as demonstrated by in-
creased caspase-3 activity in gastrocnemius muscle.40

However, the role of ceramide in promoting this lipid-driven
increase in muscle apoptosis was not investigated, for
example by co-administration of inhibitors of ceramide syn-
thesis. Alternatively, elevated levels of ceramide associated
with hyperlipidaemia may also act to suppress protein
synthesis by inducing the expression and/or activity of key
repressors of mTORC1-S6K signalling such as Regulated in
Development and DNA Damage 1 (REDD1).41,42 Notably, it
should also be highlighted that the ganglioside GM3
(trisialotetrahexosylganglioside), a sialic acid-containing
glycosphingolipid derived from ceramide, has also been impli-
cated as a negative regulator of skeletal muscle growth
and/or differentiation, concomitant with its reported ability
to impair insulin action by impairing insulin receptor func-
tion.43–46 Moreover, another ceramide derived lipid,
ceramide-1-phosphate, has also been shown to stimulate
C2C12 myoblast proliferation through a mechanism involving
the activation of Akt, mTOR, and ERK1/2.47 Indeed, further
work utilizing mice deficient for GM3 synthase, the enzyme
responsible for the synthesizing GM3, may shed more light
regarding the role of this ganglioside in the control of skeletal
muscle mass, for example in response to obesity and/or
aging.

In addition to sphingolipids, diacylglycerols (DAGs) are an
alternative class of lipid which can be generated in response
to fatty acid provision. Notably, increased levels of DAG have
been associated with the development of insulin resis-
tance.35,48 Moreover, increased muscle DAG levels have been
detected following lipid infusion in mice, concomitant with
increased caspase-3 activity in gastrocnemius muscle.40 Al-
though little is known regarding the role of DAGs in the reg-
ulation of skeletal muscle mass, ex-vivo mechanical
activation of DAG kinaseζ (DGKζ), an enzyme which catalyzes
the conversion of DAG to phosphatidic acid (PA), has been re-
ported to promote increased mTOR dependent signalling and
associated hypertrophy in isolated mouse extensor digitorum
longus (EDL) muscle, concomitant with the reported ability of
PA to bind and directly activate mTOR.49,50 In accord with
this, cardiac-specific overexpression of DGKζ has also been
shown to ameliorate myocardial atrophy in streptozotocin-
induced diabetic mice.51 Therefore, these findings suggest
that activation and/or overexpression of DGKζ may provide
a means of stimulating protein synthetic rates and hypertro-
phic responses, and thereby ameliorating losses in muscle
mass, either through reducing cellular levels of DAG and/or
increasing PA-induced activation of mTOR signalling.
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Importantly, future work may involve investigating the poten-
tial beneficial effects of overexpressing of DGKζ in muscle as a
means of countering age and/or diet induced muscle atrophy.
In addition, animal models which exhibit elevated levels of
DAG in skeletal muscle, including mice which are deficient
for hormone-sensitive lipase (HSL),52 may also be useful for
elucidating the role of DAG in skeletal muscle atrophy.

Another important consideration relates to the possibility
that distinct DAG species may impact differently on pathways
that are involved in regulating muscle mass, for example as
determined by the composition of the fatty acyl groups which
become esterified at either the sn-1,2, sn-1,3, or the sn-2,3
positions of the glycerol backbone of DAG.53,54 Indeed, previ-
ous work by our group has demonstrated that treatment of
rat L6 myotubes with palmitate leads to significant increases

in the cellular levels of certain DAG species, as well as total
cellular DAG content.55 Furthermore, co-treatment with the
monounsaturated fatty acid (MUFA) palmitoleate (C16:1)
was shown to selectively suppress palmitate-induced in-
creases in the levels of DAG species containing C18:0 and
C20:0 saturated fatty acyl moieties, coinciding with the
MUFA’s anti-inflammatory action.55 Although not determined
in this study, distinct stereoisomers of DAG may also differen-
tially regulate muscle anabolic/catabolic signalling. To support
this notion, sn-1,2 DAG stereoisomers (in comparison to
sn-1,3 isomers) have been reported to be more potent at
activating signalling pathways linked to insulin resistance, in-
cluding the activation of PKC.56 Together, these studies pro-
vide emerging evidence that certain DAG molecules/isomers
may play a more prominent role in the development of

Figure 2 Summary of pathways mediating muscle atrophy by saturated fatty acids. Exposure of muscle cells to saturated fatty acids such as palmitate
(C16:0) results in the intracellular accumulation of toxic lipid intermediates such as ceramide and diacylglycerol. (A) Increased ceramide levels can lead
to the inhibition of protein kinase B/Akt through activation of atypical protein kinase C(ξ/λ) isoforms and/or protein phosphatase 2A. Moreover, cer-
amide acts as a precursor for the synthesis of the glycosphingolipid GM3 which has been shown to impair insulin receptor function. In addition, cer-
amide may also act to modulate nutrient uptake, for example by repressing the expression of the neutral amino transporter SNAT2 thereby reducing
cellular amino acid supply. (B) Diacylglycerol-induced stimulation of protein kinase Cθ has been shown to promote serine phosphorylation of IRS-1,
resulting in its impaired function. The resulting inhibition of protein kinase B/Akt in turn can lead to the repression of protein synthesis through sup-
pression of mechanistic target of rapamycin (mTOR)/p70-S6 kinase 1-dependent signalling (C), the activation of Forkhead box O (FoxO) transcription
factors and induction of their target atrophic genes (D), and/or the activation of caspase-dependent proteolysis (E). In addition, stimulation of pro-in-
flammatory signalling by long chain saturated fatty acids can lead to the nuclear factor-kappa B-dependent upregulation of atrophic genes (F).
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muscle atrophy, for example by promoting insulin resistance
and/or increasing pro-inflammatory drive. However, further
work will be required to determine which of these DAG mol-
ecules, if any, are responsible for conveying muscle wasting
actions. In an attempt to address this, future studies may in-
volve treating cultured muscle cells with different DAG
molecules/stereoisomers in order to determine their effects
on myogenesis and/or muscle atrophy. Alternatively, further
work may also incorporate detailed lipidomic analysis of var-
ious intramuscular DAG species in tissue isolated from animal
models of muscle wasting, as well as monitoring potential
changes in their abundance following interventions that are
known to increase muscle mass (e.g. PUFA dietary provision
or increased physical activity). Indeed, if such studies were
to reveal a key role for DAG accumulation in the development
of skeletal muscle atrophy, subsequent work may then in-
volve determining the origin of such DAG species, for exam-
ple by inhibiting the activity of enzymes implicated in DAG
formation during triacylglycerol (TAG) synthesis (e.g. glycerol
phosphate transferase (GPAT), acylglycerolphosphate acyl-
transferase (AGPAT), and lipin), or by altering the activity of
enzymes implicated in TAG and/or DAG hydrolysis (e.g. adi-
pose triglyceride lipase (ATGL) or HSL). To this end, previous
work by Badin and co-workers reported elevated ATGL pro-
tein abundance in skeletal muscle of type 2 diabetic individ-
uals vs. lean control subjects, as well as reduced muscle HSL
expression in obese individuals.57 In addition, the authors of
the same study further demonstrated that overexpressing
ATGL or inhibiting HSL activity in human primary myotubes
resulted in the accumulation of cellular DAG and an associ-
ated impairment in insulin signalling. However, whether
these changes in DAG levels are linked to muscle atrophy
was not determined in this study.

As well as modulating PKB/Akt and/or mTORC1 directed
signalling, fatty acids and/or their derived lipids may further
contribute to muscle wasting by modulating nutrient (amino
acid) transport and/or associated signalling. For example, pre-
vious work by our own group and others has demonstrated
the ability of ceramide to down-regulate the expression
and/or activity of key nutrient transporters, including the
neutral amino acid transporter SNAT2 (SLC38A2).58,59 By
doing so, fatty acids acting through such lipid intermediates
may act to impair amino acid uptake, thereby contributing
to a loss in muscle mass. Interestingly, in a separate study
by our group, incubation of rat L6 myotubes with linoleic acid
(C18:2) was shown to restrain adaptive upregulation of
SNAT2 expression and activity in response to amino acid
starvation.60 Notably, this fatty acid induced reduction in
System A transport activity was mediated through increased
ubiquitination and proteasomal degradation of SNAT2 pro-
tein.60 Conversely, in a separate study by Li and co-workers,
the mRNA expression of the amino acid transceptors LAT1
(an L-type amino acid transporter) and SNAT2 were reported
to be up-regulated in the longissimus dorsi of pigs fed dietary

n-6 and n-3 PUFAs.61 Hence, it is possible that fatty acids
and/or their derived lipids may function to modulate adap-
tive strategies which are used by tissues such as skeletal
muscle, in order to maximize or minimize nutrient uptake
during conditions of fasting or nutrient deprivation.

Role of unsaturated fatty acids in
maintaining skeletal muscle size and
mass

Importantly, current literature describes evidence to suggest
that unsaturated fatty acids may act to counter pro-atrophic
mediators, including those triggered following exposure to
saturated fatty acids. For example, MUFAs and PUFAs have
been reported to prevent palmitate-induced reductions in
insulin sensitivity as well as conveying anti-inflammatory ef-
fects in skeletal muscle cells.55,62,63 Indeed, NF-kB dependent
transcriptional regulation has been implicated in promoting
disuse muscle atrophy in rat soleus muscle by increasing
FoxO mediated activation of the MuRF1 promoter.64 More-
over, a recent study demonstrated that diminished anabolic
signalling in skeletal muscle of aged mice coincided with the
accumulation of intramuscular ceramide and DAG, as well as
increased TNF-α mRNA abundance.65 Interestingly, feeding
fish oil to weaning piglets, which resulted in the enrichment
of EPA, DHA, and total omega-3 PUFA content within gastroc-
nemius muscle, coincided with a reduction in muscle TNF-α
levels and reduced expression of Toll-like receptor 4 (TLR4),
a target receptor for saturated fatty acids which stimulates
pro-inflammatory signalling in response to its activation.66

Notably, TLR4 stimulation by its ligand lipopolysaccharide
has been reported to induce muscle catabolism in C2C12
myotubes through activation of the ubiquitin–proteasome
and autophagy–lysosome pathways.67 In addition, DHA treat-
ment of human muscle cells co-cultured with macrophages
has been shown to attenuate macrophage-induced protein
content of Fn14, a positive modulator of MuRF-1 expres-
sion.68,69 Therefore, based on these findings, it is conceivable
that the reported anti-inflammatory actions of unsaturated
fatty acids in skeletal muscle cells may contribute, at least in
part, to their ability to preserve muscle mass and/or function.

Notably, these protective actions may be linked to im-
provements in mitochondrial function, the impairment of
which has been suggested to contribute to diet and/or
age-induced muscle atrophy.27,70,71 For example, a recent
study by Roseno and colleagues reported that a short-term
(3week) high fat diet augmented denervation muscle atrophy
in mice by inducing protein degradation in mitochondria-rich
soleus, but not in glycolytic EDL muscle.27 Notably, 14 day
denervation induced a loss in mitochondrial protein content
in the soleus but not the EDL, regardless of diet. Therefore,
these findings suggest that denervation-induced loss of
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mitochondria and high fat diet-induced impairment of
mitochondrial function may combine to promote skeletal
muscle atrophy.27 In contrast, an independent study by Tardif
and co-workers demonstrated that aged rats fed an oleate-
enriched diet display marked improvements in insulin
sensitivity as well as increased muscle protein synthesis, con-
comitant with increased expression of genes implicated in
stimulating mitochondrial β-oxidation including peroxisome
proliferator-activated receptor (PPAR)α and PPARβ, as well
as CPT-1β.72,73 Moreover, C2C12 myotubes treated with the
PUFAs linolenic acid and ALA have been shown to exhibit
increased activation of AMPK, another key positive regulator
of mitochondrial β-oxidation.74 In addition, DHA has also
been reported to inhibit protein degradation in C2C12
myotubes through a PPARγ-dependent pathway.75 Indeed,
enhanced and/or preserved mitochondrial oxidative capacity,
as previously reported in response to sole or co-provision of
unsaturated fatty acids, may also help prevent the intramus-
cular accumulation of lipotoxic intermediates such as cer-
amide which have been implicated in promoting muscle
atrophy.36,55,76,77 Furthermore, it is possible that PUFA sup-
plementation may act to alter muscle contractile and meta-
bolic properties, for example by promoting a shift from fast
glycolytic to slow (oxidative) fibre types. To support this idea,
previous work has demonstrated that feeding Wistar rats a
diet enriched in n-3 PUFAs results in the upregulation of pro-
teins implicated in the activation of oxidative metabolism
(e.g. mitochondrial uncoupling protein 3 and PPARγ coactiva-
tor 1-α (PGC1α)) in EDL muscle (a fast-type dominant muscle
tissue).78 Interestingly, this PUFA-mediated metabolic shift
also coincided with reduced protein levels of the fast-type
MyHC-2b (myosin heavy chain 2b) isoform in EDL muscle.
Therefore, it is conceivable that a PUFA-mediated shift
towards a slow oxidative muscle fibre type may contribute,
at least in part, towards beneficial gains in muscle mass
and/or metabolic function.

Alternatively, regulation of muscle mass by lipids may also
involve modulation of autophagy, a homeostatic mechanism
which facilitates the degradation and recycling of proteins
and organelles through the lysosomal machinery.79 Notably,
increased autophagic degradation has been reported to coin-
cide with muscle atrophy in various conditions and/or pathol-
ogies including cancer,80 denervation,81 as well as ageing.80,82

Moreover, short-term (3week) high fat feeding has been
shown to increase the abundance of autophagosome markers
in denervated soleus of mice.27 In accord with this, Yuzefovych
and co-workers demonstrated increased autophagy in L6
myotubes following palmitate provision.36 Therefore, al-
though a direct link has yet to be established in vivo, it is con-
ceivable that altered protein turnover via autophagy may, at
least in part, mediate lipid-induced alterations in muscle mass.

It should also be highlighted that certain unsaturated fatty
acids can alter the proliferation rate of satellite cells which
function as myogenic progenitor cells required for muscle

growth and regeneration. For example, DHA and EPA have
been shown to inhibit proliferation of C2C12 myoblasts as
well as satellite cells isolated from turkey muscle.83,84 Nota-
bly, these growth suppressing actions have been linked to
reduced levels of cyclin E and CDK2, proteins which play a
critical role in cell cycle progression, as well as suppressed ac-
tivation of ERK1/2, a mitogen-activated protein kinase impli-
cated in promoting cell growth and division.84,85 In contrast,
feeding dystrophic δ-sarcoglycan deficient hamsters a diet
enriched in ALA (an omega-3 PUFA) was demonstrated to in-
crease satellite cell proliferation and differentiation in EDL
muscle, concomitant with improved muscular histology.33

Notably, these beneficial responses coincided with the ability
of ALA to increase the proportion of α-MHC positive
myofibres in skeletal muscle of dystrophic hamsters, along
with a reduction in β-MHC expression, thereby contributing
to the preservation of a more physiological α/β MHC ratio.
Moreover, in the same study, supplementation of dietary
ALA was also shown to prevent the aberrant cytoplasmic ac-
cumulation of key membrane proteins in the adductor mus-
cles of dystrophic hamsters including caveolin-3, a protein
involved in regulating cell adhesion and membrane repair,
as well as being implicated in the control of muscle differen-
tiation and insulin induced signalling.33,86,87 Indeed, given the
fact that aberrations in caveolin-3 function and/or localiza-
tion have been associated with various skeletal muscle dis-
ease phenotypes,88–92 it is plausible that fatty acids and/or
their lipid derivatives may influence satellite cell proliferation
and/or muscle differentiation, at least in part, by altering the
function and/or subcellular localization of caveolin isoforms,
as well as other key structural membrane components.

The effects of fatty acids upon muscle mass and differenti-
ation may also be mediated through a number of derived
lipid metabolites. For example, the ability of the PUFA arachi-
donic acid (C20; 4n-6) to increase the size, myonuclear con-
tent and protein content of C2C12 myotubes has been
shown to be mediated through cyclooxygenase-2 (COX-2) ac-
tivity, implying dependency on downstream prostaglandin
synthesis.93 In accord with this, arachidonic acid induced
growth of C2C12 myocytes was reported to coincide with in-
creased secretion of the eicosanoids PGF(2α) and PGE.293 It is
noteworthy that several studies have also documented the
positive role that prostaglandins play in promoting early cell
surface events, including cell–cell adhesion, which subse-
quently mediate the fusion of myoblasts into myotubes.94,95

Indeed, important follow-up studies may involve determining
the exact identity of the molecular targets through which
prostaglandins mediate their actions, for example by acting
upon G-protein linked prostanoid receptors (e.g. EP1).94,96

In contrast, another arachidonic acid derived lipid metabolite
known as 2-arachidonoylglycerol (2-AG), a key endogenous
lipid ligand of the endocannabinoid system, has recently been
reported to inhibit differentiation of primary human satellite
cells and murine C2C12 myoblasts by targeting the G-protein
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coupled cannabinoid receptor 1, and its subsequent inhibition
of Kv7.4 channels.97 Therefore, the possible involvement of
such lipid intermediates in regulating muscle catabolism in
response to certain pathological conditions cannot be
excluded.

Lipid modulation of muscle mass and
function: a human perspective

It is well established that there is a progressive loss in skeletal
muscle mass and its regenerative capacity in response to
aging in humans.9,98,99 Moreover, increased adiposity as
observed in aging has been linked to altered muscle protein
synthetic responses in aged individuals.100 Therefore, it is
conceivable that changes in lipid levels and/or composition
may contribute to muscle atrophy in these conditions. To
support this idea, there is evidence to suggest that modifying
dietary composition may impact upon muscle mass and/or
function in humans. For example, a study by McGlory and
co-workers reported that consumption of fish oil increased
the omega-3 PUFA content of muscle (Vastus lateralis) in
healthy male individuals, which coincided with elevated
expression of anabolic signalling proteins including mTOR.101

Moreover, inclusion of dietary MUFAs and PUFAs has been
reported to reduce the expression of lipogenic genes in
skeletal muscle of insulin resistant subjects, concomitant with
reduced fractional synthetic rates of intramuscular DAG and
triacylglycerols.102 Notably, these beneficial responses may
be linked to improvements in insulin sensitivity conveyed by
dietary supplementation of omega-3 PUFAs in humans.103–105

As well as dietary interventions, resistance training has
also been reported to enhance skeletal muscle innervation
in obese older adults, as well as downregulating atrophic
markers in skeletal muscle of mice in various models of atro-
phy.106,107 Moreover, a study by Mikkelsen and colleagues
demonstrated significantly increased thigh muscle area in
aged individuals which had undergone life-long endurance
(running) exercise, compared with age-matched untrained
counterparts.108 In accord with these findings, physical exer-
cise training was shown to normalize the levels of atrophic
modulators TNF-α, Murf-1 and atrogin-1/MAFbx in the myo-
cardium following the induction of heart failure in rats.109

Therefore, increased physical activity may be used as an alter-
native and/or additional strategy to counteract the deleteri-
ous effects of aging and/or obesity upon muscle mass loss,
potentially through countering lipid-induced insulin resis-
tance and/or chronic low grade inflammation in skeletal
muscle.108,110–114 Intriguingly, it has been previously reported
that dietary supplementation with unsaturated fatty acids
may also act to improve physical performance and/or en-
hance the beneficial metabolic effects associated with exer-
cise, particularly in sedentary or untrained individuals.115 To

support this idea, low dietary intake of tuna fish oil has been
shown to promote resistance to muscle fatigue in rats,
concomitant with a selective increase in DHA membrane
phospholipid content within gastrocnemius muscle.116,117

Therefore, a more integrated approach involving modifica-
tions to dietary fat consumption as well as increased physical
exercise may provide a more effective strategy to alleviate
the deleterious effects associated with muscle atrophy.

Conclusions and future perspectives

To conclude, there is growing appreciation that fatty acids
and/or their lipid derivatives can play an important role in
modulating skeletal muscle mass and function. Collectively,
the evidence presented in this review indicates that saturated
fatty acids act to convey detrimental effects upon muscle
function, for example by impairing or inducing protein syn-
thesis and catabolism, respectively (see Figure 2). In contrast,
a number of different unsaturated fatty acids have been
shown to counteract many of the pro-catabolic actions asso-
ciated with saturated fatty acid provision (Figure 3). However,
further work will be required to delineate the pathways and
processes underlying fatty acid-induced muscle atrophy, as
well as those mediating improvements in muscle function in
response to the provision of unsaturated fatty acids (i.e. in-
creased protein synthesis, reduced atrophy, improved meta-
bolic function) (Figure 3). To this end, strategies aimed at
altering intramuscular lipid content and/or composition un-
der those conditions which can promote muscle wasting
(e.g. increased obesity, ageing, physical inactivity), for exam-
ple by suppressing the accumulation of lipid mediators such
as ceramides (e.g. through inhibiting de novo ceramide syn-
thesis) or prostaglandins (e.g. by inhibiting COX-2 activity),
may provide useful insight into the role that distinct classes
of lipids play in the modulation of muscle mass and function.
Importantly, such work is likely to involve the use of relevant
animal models or human subjects that would require to take
into consideration factors such as genetic background as well
as dietary composition and caloric intake. In addition, these
studies may also involve determining potential lipid induced
alterations to muscle architecture and fibre type composition
which can influence muscle strength, as well as monitoring
changes in intramuscular signalling and metabolites within
specific muscle fibre types. Allied to this, further work explor-
ing the role of fatty acids and lipid intermediates in regulating
the proliferation, differentiation and/or function of human
muscle derived satellite cells and primary myotubes would
need to be performed in order to make appropriate compar-
isons with data obtained in other experimental models (e.g.
C2C12 myotubes), which have been shown to exhibit func-
tional differences (e.g. in their level of maturation).118 Collec-
tively, data obtained from such studies may lead to the
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development of novel therapeutic strategies to counteract
muscle atrophy, and/or improve regenerative capacity follow-
ing injury or disease.
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