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Simple Summary: Artificial intelligence (AI) technology has been advancing rapidly in recent years
and is being implemented in society. The medical field is no exception, and the clinical implementation
of AI-equipped medical devices is steadily progressing. In particular, AI is expected to play an
important role in realizing the current global trend of precision medicine. In this review, we introduce
the history of AI as well as the state of the art of medical AI, focusing on the field of oncology. We also
describe the current status of the use of AI for drug discovery in the oncology field. Furthermore,
while AI has great potential, there are still many issues that need to be resolved; therefore, we would
provide details on current medical AI problems and potential solutions.

Abstract: In recent years, advances in artificial intelligence (AI) technology have led to the rapid
clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped
medical devices have already been approved by the Food and Drug Administration (FDA) in the
United States, and the active introduction of AI technology is considered to be an inevitable trend
in the future of medicine. In the field of oncology, clinical applications of medical devices using AI
technology are already underway, mainly in radiology, and AI technology is expected to be positioned
as an important core technology. In particular, “precision medicine,” a medical treatment that selects
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the most appropriate treatment for each patient based on a vast amount of medical data such as
genome information, has become a worldwide trend; AI technology is expected to be utilized in the
process of extracting truly useful information from a large amount of medical data and applying it to
diagnosis and treatment. In this review, we would like to introduce the history of AI technology and
the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and
challenges of AI technology in the medical field.

Keywords: machine learning; deep learning; artificial intelligence; precision medicine; radiology;
pathology; omics

1. Introduction

The rapid progress in machine learning technologies, especially deep learning, along with the
development of information infrastructure technologies such as the graphics processing unit (GPU),
and the development of public databases, have made it possible to make use of large scale data called
big data and have aroused a great deal of interest in artificial intelligence (AI) technology worldwide [1].
Historically, AI research has been conducted for a relatively long time, and the term “artificial intelligence”
was already being used as an academic term by the 1950s [2]. However, AI research has not been a smooth
road, and it has gone through a difficult period known as the AI winter period. The current boom is
being dubbed the third AI boom [3], but this one differs from the previous booms in which many AI
technologies in that it is being implemented in society. Face recognition technology based on AI technology
is actively being used in airports and other areas, and AI is currently being used in various fields of society,
including voice recognition, automatic translation, and automated driving. In fact, more than 60 medical
devices with AI have been approved by the FDA in the United States, and the aggressive introduction
of AI technology into the medical field in the future is inevitable. The field of oncology is no exception
to this trend, and several AI-equipped medical devices are already being used for clinical applications,
especially in radiology.

Current AI uses machine learning technology as the core technology [1]. Machine learning techniques
are methods that learn from sample data, find patterns in these, and apply them to new data for analysis
and prediction [4]. Whereas traditional statistics is often used primarily for explanatory purposes, machine
learning uses it primarily for predictive purposes. There is a variety of machine learning techniques,
which can be divided into two main types: supervised and unsupervised learning [5]. Supervised learning
is a method of extracting features from given information to make predictions, which can be divided
into classification and regression problems. The classification problem is used to predict discrete data,
for example, distinguishing between benign and malignant tumors [4]. The regression problem is used to
predict continuous data, for example, contrast effects. Unsupervised learning is a method of summarizing
similarities for a given set of data on a problem for which no answer has been given. Because the
classification problem of supervised learning is close to diagnosis, it is also considered to be the most
familiar problem for clinicians, such as radiologists [4]. Deep learning technology is a part of machine
learning technology; it currently holds great promise in the medical field. Deep learning techniques are
used for medical image classification, image quality improvement, and segmentation because they are
particularly good for image analysis. There are various types of deep learning techniques, and depending
on the type of data to be handled, it is necessary to select the structure of the neural network that best
suits the data [4]. Typical deep learning techniques used in medical imaging include convolutional neural
networks for image classification [6], recurrent neural networks for reporting tasks [7], and a U-net for
image segmentation [8].

In the field of oncology, the promotion of “precision medicine,” which refers to the medical care
optimized for each patient by extracting important information from medical big data, especially genomic
information, has become a global trend. “Precision oncology” and “precision cancer medicine” are also
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increasingly being used as academic terms [9–13]. However, the selection of treatment options based
on a targeted-gene panel (TGP) coupled with next-generation sequencing, which is the core method of
precision medicine, has become a major issue in promoting precision medicine because there is only
a limited number of patients for whom the most appropriate treatment is suggested [14–16]. In order
to increase the number of patients who may benefit from precision medicine, it is considered essential
to extract pertinent information from additional medical data, including whole genome and epigenome
information, in addition to limited genetic mutation information. However, the amount of information
that needs processing has increased significantly; for example, whole genome analysis can yield up to
3 billion base pairs of information. To analyze these very large data efficiently and accurately, the use of
cutting-edge AI and information and communications technology (ICT) technologies is required.

In this review, we introduced the history of AI technology and discussed how AI technology is
currently being applied in the medical field and implemented in society, with a focus on the field of
oncology. In addition, while AI technology has great potential, it is still associated with many issues
that need to be resolved. We discussed the current issues in the field of medical AI and what kind of
efforts are needed to continue to resolve these issues.

2. History of Artificial Intelligence and Its Application in Medicine

2.1. From the 18th Century to the 19th Century: Bayes’ Theorem and Pierre-Simon Laplace

In 1763, ”An Essay towards solving a Problem in the Doctrine of Chances,” including theorems of
conditional probability which form the basis of Bayes’ Theorem, was published [17]. This work is based
on the mathematical theory of probability by the Reverend Thomas Bayes, with multiple revisions
and additions by his friend Richard Price, and was not published until 2 years after Thomas Bayes’
death. Meanwhile, the theory itself did not receive attention for a while after publication. In 1814,
Pierre-Simon Laplace, a French scholar and polymath, set out a mathematical system of inductive
reasoning based on probability as follows: where event Aj ∈ {A1, A2, . . . , An} exhausts the list of
possible causes for event B, Pr(B) = Pr(A1, A2, . . . , An). Then:

Pr(Ai |B) = Pr(Ai)
Pr(B |Ai)∑

j Pr (A j
)
Pr(B |A j)

(1)

This formula is now widely known as Bayes’ Theorem. Pierre-Simon Laplace used what would now
be considered Bayesian methods to solve many statistical problems, and a number of Bayesian methods
have been developed by later authors. On the other hand, as the frequentist statisticians, represented
by Karl Pearson, Ronald Fisher and Jerzy Neyman, came to be at the core of statistics, Bayesianism
was considered unfavorable by many statisticians based on philosophical and practical considerations.
As a result, the term “Bayesian method” was not commonly used to describe such a method until the
1950s. However, with the advent of powerful computers and new algorithms (especially the significant
contribution of the Markov chain Monte Carlo method), Bayesian methods are still being used in statistics
in the 21st century [18,19].

2.2. The Birth of AI, First AI Boom, and First Phase of the AI Winter

When computers became accessible in the mid-1950s, several scientists intuitively realized that two
machines that could manipulate numbers could also manipulate symbols, and that the manipulation of
symbols could represent the essence of human thought. This became a new way of approaching “thinking
machines.” In 1956, Dr. John McCarthy proposed the name “Artificial Intelligence (AI)” at the Dartmouth
Workshop, and the study of AI as an academic field was launched [2,20]. The years after the Dartmouth
Conference were an era of discovery, and the momentum was such that computer scientists were galloping
through new horizons. Programs developed in this era relied on reasoning and exploration, and even the
best computers of the time, which were developed at great expense, could only solve problems in a very
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limited domain because the amount of computation they could handle was very small; however, they were
still “astounding” to people at the time. The computers showed people how to solve algebra problems,
prove geometry theorems, and learn to speak English [21]. However, in the 1970s, AI was subjected
to criticism and shrinking funding. One reason was that the AI researchers failed to properly assess
the difficulty of the problem they were facing. Expectations of the results were too optimistic and high;
however, the results failed to meet these expectations, and funding for AI research largely disappeared.

2.3. The Second AI Boom and Second Phase of the AI Winter

In the 1980s, knowledge representation became a focus of AI research as “expert systems,” a form
of AI program, were adopted by companies around the world [21–23]. An expert system is a program
that answers questions and solves problems in a specific domain of knowledge and uses logical rules
extracted from expert knowledge. Early examples include the Dendral (1965), which identifies compounds
from spectrometer measurements and was developed by Dr. Edward Feigenbaum and colleagues [24],
and MYCIN (1972), which diagnoses contagious blood diseases and was developed by Dr. Edward
Shortliffe and colleagues [25]. MYCIN used a fairly simple reasoning engine and had a knowledge base
consisting of about 500 rules [26]. This expert system asked the physician a number of questions that
could be answered with a simple “yes/no” answer or some kind of written answer and finally gave a list
of the names of bacteria that could be responsible (in order of probability), the confidence level of each,
reasons why they were considered in the list, and the recommended course of drug therapy [27]. Despite
its success, MYCIN is now sometimes regarded as an example of the risks of creating ad hoc probabilistic
frameworks, such as in artificial intelligence lectures. One of the reasons for this is that MYCIN’s depth of
inference was limited because of the noise introduced by the confidence coefficient system. This problem
can be prevented by adopting a rigorous probabilistic framework, such as the Bayesian estimation [28].

The growing interest in AI in the 1980s was temporary and followed the classic pattern of the
bubble economy. In the end, expert systems were only effective in very limited circumstances, and in
the 1980s and early 1990s, AI research again ran into a funding crisis.

2.4. The Third AI Boom and Era of Deep Learning

In 2006, deep learning using auto-encoders was invented by the Dr. Jeffrey Hinton group [29].
This invention was a major breakthrough in AI because it could extract features without human intervention,
eliminating the need for human knowledge representation. In addition, this invention also solved the
problem of symbolic grounding, which was caused by human knowledge representation. In 2010, the term
“big data” was proposed in response to the increasing amount of data transfer through the Internet. The 2012
ImageNet Large Scale Visual Recognition Competition (ILSVRC) competition for object recognition rates,
which featured a major breakthrough in large-scale GPU-based deep learning (led by Dr. Jeffrey Hinton’s
research team on Alex-net) [30], and Google’s announcement in the same year of its success in recognizing
a cat from YouTube images using deep learning, led to a renewed interest in artificial intelligence research
around the world [31]. AI technology is actively used in the medical field as well, and its effectiveness has
been demonstrated in various results such as medical image analysis and omics analysis [1,32–39]. In the
field of oncology, the introduction of AI is also being actively studied in tumor screening, including lung and
breast cancer [40,41]. Practically, as of 2020, more than 60 AI-powered medical devices have been approved
by the US FDA (Table 1). One important thing that sets the third AI boom apart from the previous AI
booms is that it is actually being implemented in society. Dr. Demis Hassabis, the CEO and co-founder of
DeepMind, mentioned that throughout the history of AI, we have repeatedly climbed up and down the
wrong ladder, but it is important that we have finally arrived at the “right ladder.” Additionally, Bayesian
statistics is also currently receiving a lot of attention due to the advances in AI technology. The reason for
this is that in Bayesian statistics, the probability is set at the beginning, and subsequently the probability at
that point of time can be changed as more information becomes available. This phenomenon itself resembles
the “learning ability” of humans. It is this feature of Bayesian statistics that is the basis of deep learning and
machine learning, which is an important feature of AI.
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Table 1. List of AI-equipped medical devices approved by the US FDA.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

1 K140933 AliveCor Heart Monitor
(AliveCor)

An ECG recording device using
machine learning techniques to
detect abnormal heart rhythms.

Cardiovascular 08/15/2014 Class II
(510(k))

2 K143468 QbCheck
(Qbtech)

A non-invasive test using AI for
diagnosis and treatment of ADHD

in children.
Neurology 03/22/2016 Unclassified (510(k))

3 K160016 Steth IO
(StratoScientific)

An acoustic device using AI to aid
in the identification of abnormal

heart and lung sounds.
Cardiovascular 07/15/2016 Class II

(510(k))

4 K163253 Arterys Cardio DL
(Arterys)

A software using deep learning to
visualize and quantify

cardiovascular MR images.
Radiology 01/05/2017 Class II

(510(k))

5 K161328 CANTAB Mobile
(Cambridge Cognition)

An iPad-based
memory-assessment tool for older

adults.
Neurology 01/13/2017 Class II

(510(k))

6 K162627 EnsoSleep (EnsoData)
An AI sleep scoring and analysis

solution that automates event
detection during sleep.

Neurology 03/31/2017 Class II
(510(k))

7 * K162574 AmCAD-US (AmCad
BioMed Corporation)

A software to visualize and
quantify ultrasound image data

with backscattered signals.
Radiology 05/30/2017 Class II

(510(k))

8 * DEN170022 QuantX (Quantitative
Insights)

An AI-equipped diagnosis system
to aid in accurate diagnosis of

breast cancer.
Radiology 07/19/2017 Class II

(De Novo)

9 K172311 BioFlux Device (Biotricity) A remote patient monitoring
platform with AI. Cardiovascular 12/15/2017 Class II

(510(k))

10 K171056 WAVE Clinical Platform
(Excel Medical Electronics)

A patient surveillance and
predictive algorithm platform

using AI.
Cardiovascular 01/04/2018 Class II

(510(k))
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

11 * K173542 Arterys Oncology DL
(Arterys)

An AI-based, cloud-based medical
imaging software that

automatically measures and tracks
lesions and nodules in MRI and CT

scans.

Radiology 01/25/2018 Class II
(510(k))

12 DEN170073 ContaCT (Viz.AI) An AI algorithm to analyze CT
scans and detect signs of stroke. Radiology 02/13/2018 Class II

(De Novo)

13 K170540 DM-Density (Densitas)

A machine learning application
that provides on demand
automated breast density

assessments at point-of-care.

Radiology 02/23/2018 Class II
(510(k))

14 P160007 Guardian Connect System
(Medtronic MiniMed)

A continuous glucose monitor
with AI assistance. Clinical Chemistry 03/08/2018 PMA

15 DEN180001 IDx-DR (IDx)
A software program that uses an
AI algorithm to analyze retinal

images.
Ophthalmic 04/11/2018 Class II (De Novo)

16 K173931 MindMotion GO
(MindMaze)

A gamified neurorehabilitation
therapy platform using AI. Physical Medicine 05/17/2018 Class II

(510(k))

17 K180455 NeuralBot (Neural
Analytics)

A lucid robotic ultrasound system
for brain blood flow assessment. Radiology 05/22/2018 Class II

(510(k))

18 DEN180005 OsteoDetect (Imagen
Technologies)

A computer-aided detection and
diagnostic software that uses an AI

algorithm to analyze
two-dimensional X-ray images for

signs of distal radius fracture.

Radiology 05/24/2018 Class II
(De Novo)

19 K173821 LungQ (Thirona
Corporation)

A lung quantification software to
analyze chest CT scans. Radiology 06/05/2018 Class II

(510(k))

20 DEN170043 DreaMed Advisor Pro
(DreaMed Diabetes)

An AI-powered technology to
seamlessly treat patients remotely

with its virtual diabetes
management service.

Clinical Chemistry 06/12/2018 Class II
(De Novo)
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

21 K172983 HealthCCS (Zebra Medical
Vision)

An AI-powered software that can
be used to evaluate calcified

plaques in the coronary arteries.
Radiology 06/13/2018 Class II

(510(k))

22 K173780
EchoMD Automated

Ejection Fraction Software
(Bay Labs)

A system that enables fully
automated AI echocardiogram

analysis.
Radiology 06/14/2018 Class II

(510(k))

23 K180647 BriefCase (Aidoc Medical)
An AI algorithm to detect and

triage abnormal findings in
non-enhanced head CT images.

Radiology 08/01/2018 Class II
(510(k))

24 DEN180042
Irregular Rhythm

Notification Feature
(Apple)

An application to detect irregular
heart rhythms in pulse rate data

collected by the Apple Watch
photoplethysmograph sensors.

Cardiovascular 09/11/2018 Class II
(De Novo)

25 DEN180044 ECG App (Apple)

Applications to detect atrial
fibrillations and sinus rhythms in
ECG data from an Apple Watch

and display the results on an
iPhone.

Cardiovascular 09/11/2018 Class II
(De Novo)

26 K173872 FibriCheck (Qompium)
A smartphone application for the

detection of heart rhythm
disorders such as atrial fibrillation.

Cardiovascular 09/28/2018 Class II
(510(k))

27 K181771 RightEye Vision System
(RightEye)

A cloud-based system that uses
objective eye movement

measurements to aid in the
evaluation of Parkinson’s disease.

Neurology 09/28/2018 Class II
(510(k))

28 * K182034 Arterys MICA (Arterys)
An AI-based platform for

analyzing medical images such as
MRI and CT.

Radiology 10/17/2018 Class II
(510(k))
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

29 K182177 Accipio Ix (MaxQ-AI)

An AI-enabled software workflow
tool that aids in identifying acute

intracranial hemorrhage and
prioritizing the treatment of

strokes or head trauma.

Radiology 10/26/2018 Class II
(510(k))

30 K181939 icobrain (icometrix)

A software that extracts clinically
meaningful information from brain
CT or MRI scans of patients with
multiple sclerosis, dementia or

brain injury.

Radiology 11/06/2018 Class II
(510(k))

31 K180432
AI-ECG Platform

(Shenzhen Carewell
Electronics)

A software package which is a
distributed ECG auto analysis

system designed to assist in
measuring and interpreting 12-lead
resting ECG with an AI algorithm.

Cardiovascular 11/19/2018 Class II
(510(k))

32 K182218
FerriSmart Analysis System

(Resonance Health
Analysis Service)

An automated system for
measuring liver iron concentration. Radiology 11/30/2018 Class II

(510(k))

33 * K182336 SubtlePET (Subtle Medical)

An AI-powered technology that
enables centers to deliver a faster

and safer patient scanning
experience, while enhancing exam

throughput and provider
profitability.

Radiology 11/30/2018 Class II
(510(k))

34 K173681 reSET-O (Pear
Therapeutics)

A Prescription Digital Therapeutic
(PDT) platform for the treatment of

Opioid Use Disorder.
Neurology 12/10/2018 Class II

(510(k))

35 K181861 Embrace (Empatica)

An epilepsy smartband that
detects patterns in motion and

physiological signals that may be
associated with generalized

tonic-clonic seizures, and
immediately alerts caregivers.

Neurology 12/20/2018 Class II
(510(k))
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

36 K182130 iSchemaView RAPID
(iSchemaView)

An AI-enhanced advanced medical
imaging for stroke. Radiology 12/27/2018 Class II

(510(k))

37 K182564 Quantib ND (Quantib) An AI solution that helps
radiologists read MRI brain scans. Radiology 12/27/2018 Class II

(510(k))

38 K182456 Study Watch (Verily Life
Sciences)

A wearable device to record, store,
transfer, and display ECG rhythms. Cardiovascular 01/17/2019 Class II

(510(k))

39 K182344 RhythmAnalytics
(Biofourmis Singapore)

An AI-powered software to detect
irregular heart rhythms when ECG

data are uploaded.
Cardiovascular 03/07/2019 Class II

(510(k))

40 * K183285 cmTriage (CureMetrix) An AI-based triage software for
mammography. Radiology 03/08/2019 Class II

(510(k))

41 K181823 KardiaAI (AliveCor)
An AI-based software analysis

library to assess ambulatory ECG
rhythms from adult subjects.

Cardiovascular 03/11/2019 Class II
(510(k))

42 K181352 Loop System (Spry Health)
A tool to collect and transfer

physiological data of patients in
the home environment.

Cardiovascular 03/29/2019 Class II
(510(k))

43 * K183202
Deep Learning Image
Reconstruction (GE
Medical Systems)

A deep learning-based CT image
reconstruction technology. Radiology 04/12/2019 Class II

(510(k))

44 K181988 eMurmur ID (CSD Labs)

A software screening device that
uses a smartphone, electronic

stethoscope and machine learning
to automate the detection of heart

murmurs.

Cardiovascular 04/17/2019 Class II
(510(k))

45 K190362 HealthPNX (Zebra Medical
Vision)

A radiological computer-assisted
triage and notification software

system.
Radiology 05/06/2019 Class II

(510(k))
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

46 * K183046

Aquilion ONE
(TSX-305A/6) V8.9 with
AiCE (Canon Medical
Systems Corporation)

A device to acquire and display
cross-sectional volumes of the

whole body, including the head,
with the capability of imaging

whole organs in a single rotation.

Radiology 06/12/2019 Class II
(510(k))

47 * K191384 RayCare 2.3 (RaySearch
Laboratories)

An oncology information system
used to support workflows,

scheduling and clinical
information management for
oncology care and follow-up.

Radiology 07/08/2019 Class II
(510(k))

48 K183322
physIQ Heart Rhythm and

Respiratory Module
(physIQ)

A device for the calculation of
heart rate and heart rate variability,
the detection of atrial fibrillation

and the determination of
respiration rate using ambulatory

ECG and triaxial accelerometer
data.

Cardiovascular 07/10/2019 Class II
(510(k))

49 K191272
Current Wearable Health

Monitoring System
(Current Health)

A device for reusable bedside,
mobile and central

multi-parameter, physiologic
patient monitoring of adult

patients in professional healthcare
facilities.

Cardiovascular 07/12/2019 Class II
(510(k))

50 K182384 ACR | LAB Urine Analysis
Test System (Healthy.io)

A device for the semi-quantitative
detection of albumin and

creatinine in urine, using a
smartphone application, a

proprietary Color-Board, and ACR
Reagent Strips.

Clinical Chemistry 07/26/2019 Class II
(510(k))
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Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

51 K183271
AI-Rad Companion

(Pulmonary) (Siemens
Medical Solutions USA)

An image processing software that
provides a quantitative and

qualitative analysis from
previously acquired CT DICOM

images to support radiologists and
physicians in the evaluation and

assessment of lung disease.

Radiology 07/26/2019 Class II
(510(k))

52 K183282 Biovitals Analytics Engine
(Biofourmis Singapore)

An AI-based software engine used
with continuous biometric data

from already cleared sensors
measuring heart rate, respiratory
rate, and activity in ambulatory
patients being monitored in a
healthcare facility or at home,

during periods of minimal activity.

Cardiovascular 08/15/2019 Class II
(510(k))

53 K183268
AI-Rad Companion

(Cardiovascular) (Siemens
Medical Solutions USA)

An image processing software that
provides quantitative and
qualitative analysis from

previously acquired CT DICOM
images to support radiologists and
physicians in the evaluation and

assessment of cardiovascular
diseases.

Radiology 09/10/2019 Class II
(510(k))

54 K190815 BrainScope TBI
(BrainScope Company)

A portable, non-invasive,
non-radiation emitting, point of
care device intended to provide
results and measures to support

clinical assessments and aid in the
diagnosis of concussion/mild

traumatic brain injury (mTBI).

Neurology 09/11/2019 Class II
(510(k))

55 K191688 SubtleMR (Subtle Medical)
An image processing software that

can be used for image
enhancement in MRI images.

Radiology 09/16/2019 Class II
(510(k))



Cancers 2020, 12, 3532 12 of 33

Table 1. Cont.

No. FDA Approval
Number Product Name (Company) Description Regulation

Medical Specialty Decision Date Regulatory Class
(Submission Type)

56 * K191994 ProFound AI Software V2.1
(iCAD)

A CAD software device intended
to be used concurrently by

interpreting physicians while
reading digital breast

tomosynthesis (DBT) exams from
compatible DBT systems.

Radiology 10/04/2019 Class II
(510(k))

57 K191713

CS-series-FP
Radiographic/Fluoroscopic

Systems with Optional
CA-100S/FluoroShield

(Omega Medical Imaging)

A modification device to provide
an automated region of interest

that reduces exposure to the
patient and operator.

Radiology 10/04/2019 Class II
(510(k))

58 K191171 EchoGo Core (Ultromics)

A software for use in
quantification and reporting of

results of cardiovascular function
to support physician diagnosis.

Radiology 11/13/2019 Class II
(510(k))

59 * K192287 Transpara (ScreenPoint
Medical)

A device for use as a concurrent
reading aid for physicians

interpreting screening
mammograms from compatible

FFDM systems to identify regions
suspicious for breast cancer and

assess their likelihood of
malignancy.

Radiology 12/10/2019 Class II
(510(k))

60 K192004 Eko Analysis Software (Eko
Devices)

A software to provide support to
the physician in the evaluation of
patients’ heart sounds and ECG’s.

Cardiovascular 01/15/2020 Class II
(510(k))

61 DEN190040 Caption Guidance (Caption
Health)

A software to assist in the
acquisition of cardiac ultrasound

images.
Radiology 02/07/2020 Class II

(De Novo)

*: The product involved in the field of oncology. Abbreviations: AI, artificial intelligence; US FDA, United States Food and Drug Administration; CT, computed tomography; MRI,
magnetic resonance imaging; DICOM, Digital Imaging and Communications in Medicine; ECG, electrocardiogram; FFDM, full-field digital mammography; ADHD, attention deficit
hyperactivity disorder.
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3. Introducing AI Technology in Oncology

3.1. Radiology

In terms of the medical applications of AI, radiology is one of the areas where AI technology
has been maximally adopted [42]. In fact, most of the medical devices with AI approved by the
FDA that are related to oncology are in the field of radiology (Table 1). The reason for this is that
deep learning technology is prominent in image analysis, and radiation image analysis is one of the
historically advanced ICT fields such as computer-assisted detection/diagnosis (CAD), which has
a strong affinity for AI [43]. Figure 1 shows a typical CADx workflow for detecting prostate cancer [44].
In cancer diagnosis, CAD has been expected to improve productivity in image reading by improving the
diagnostic accuracy and reproducibility of image reading, as well as reducing the reading time [45,46].
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Approved by the FDA in May 2017, AmCAD-US (AmCad BioMed Corporation) is a software
device that visualizes and quantifies the statistical distribution of backscattered signals echoed by
tissue compositions in the body from ultrasound systems [47]. AmCad BioMed Corporation has
also developed and received FDA approval for AmCAD-UT, primarily for the detection of thyroid
cancer [48]. In July 2017, the Second Reader type CADx (QuantX) by Quantitative Insights received its
first FDA approval [49]. This device is designed to target breast magnetic resonance imaging (MRI)
and assist physicians in the differential diagnosis of breast cancer. In January 2018, Arterys Oncology
DL (Arterys), which can help clinicians to rapidly measure and track lesions and nodules on MRI and
computed tomography (CT) scans, received FDA approval [50]. This device was developed to support
the diagnosis of solid tumors in general, and is in the first stage of clinical application for liver and lung
cancer. In November 2018, SubtlePET (Subtle Medical), an AI-based high-speed positron emission
tomography (PET) imaging technology, was approved by the FDA [51]. SubtlePet is an AI technology
that enables four times faster imaging, especially during PET imaging, which plays an important role
in cancer diagnosis. In March 2019, cmTriage (CureMetrix) was approved by the FDA for the triage
of mammography images [52]. cmTriage is a workflow optimization tool that allows radiologists to
customize, sort, and prioritize mammography worklists, allowing them to prioritize cases that require
immediate attention. In addition, cmTriage can be used to optimize clinical workflows by sending
suspicious cases to experienced radiologists or by immediately notifying them of suspicious cases
even just before a patient is discharged. In April 2019, Deep Learning Image Reconstruction (DLIR: GE
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Medical Systems) was approved by the FDA for use as a specialized deep neural network (DNN) to
generate TrueFidelity CT images [53]. TrueFidelity CT imaging has the potential to improve reading
reliability in patients of all ages in a wide range of clinical applications, including head, systemic,
and cardiovascular applications. In June 2019, the Advanced Intelligent Clear-IQ Engine (AiCE:
Canon Medical Systems Corporation) was approved by the FDA [51]. AiCE is a state-of-the-art image
reconstruction technique for CT designed using deep learning, which uses a process that discriminates
between noise and signal components to selectively remove noise while maintaining spatial resolution.
By using AiCE, a high noise reduction effect can be obtained while maximizing the spatial resolution
of the CT scanner. In addition, a high noise reduction effect is achieved in low-contrast regions while
maintaining the granularity, and stable image quality improvement is achieved even in low-dose
regions. ProFound™ AI Software V2.1 (iCAD), approved by the FDA in October 2019, is a CAD
software that assists physicians during digital breast tomosynthesis (DBT) [54]. The system is capable
of detecting soft tissue density (masses, architectural distortions, and asymmetries) and calcifications
within 3D DBT slices, with the aim of improving breast cancer detection rates and making a more
accurate diagnosis. Approved by the FDA in December 2019, Transpara (ScreenPoint Medical) is an AI
system that specializes in image interpretation in mammography [54]. Studies on the Transpara system
showed that using this system to assist in image interpretation can significantly improve the area
under the receiver operating characteristic curve (AUC) and diagnostic sensitivity without increasing
the interpretation time. Additionally, the AUC of the Transpara system alone was comparable to the
average AUC of radiologists.

3.2. Endoscopy

Endoscopic images are also an important target of AI analysis. In particular, given that Japanese
medical equipment manufacturers hold a 99.1% share of the global market for endoscopes, endoscopic
AI development is being actively conducted in Japan [55]. At present, there is an example of clinical
implementation of endoscopic AI in Japan after receiving regulatory approval from the Pharmaceuticals
and Medical Devices Agency (PMDA) [56]. We also developed a real-time endoscopic diagnostic
support system for the detection of colorectal cancer (CRC) and precancerous lesions using AI
technology in order to improve the lesion detection rate by colonoscopy, eliminate technology gaps
among physicians, and prevent missed lesions [36]. When developing endoscopic AI, we planned
to first target CRC; one of the reasons was its high frequency. The latest data show that CRC affects
about 130,000 people in Japan annually, and the number of deaths exceeds 50,000 per year [57].
Additionally, the number continues to rise. Meanwhile, CRC and other cancers of the gastrointestinal
tract can be controlled if they are detected early with endoscopic intervention. In fact, in the United
States, the results of the National Polyp Study reported in 1993 and its cohort study reported in
2012 demonstrated that the endoscopic removal of adenomatous polyps, a precursor lesion to CRC,
reduced the morbidity of CRC by 76–90% and mortality by 53% [58,59]. Therefore, endoscopy is actively
used for physical examination as well as gastric and colorectal cancer screening, and when adenomatous
polyps are found in the colon, they are removed endoscopically. In other words, two things are
important for the prevention of CRC: (1) undergoing a colonoscopy; and (2) not missing a lesion during
the examination. Interventions to increase the uptake of countermeasure screening are necessary to
promote colonoscopy. However, the process from colonoscopy to polypectomy consists of five major
stages: 1. lesion detection, 2. qualitative and quantitative diagnosis, 3. treatment, 4. pathological
diagnosis, and 5. surveillance. This means that the first thing to do is not to miss any lesions during
the examination. The endoscopist can easily detect the so-called “polyps” if they are protruding in
shape; however, flat-shaped lesions or lesions that are the same color tone as the surrounding mucosa
are less visible and require a certain amount of experience for detection. In addition, the colon has
many anatomical blind spots and requires techniques to observe the lumen in every corner of the
colon, including between the mucosal folds in the wall. For these reasons, a colonoscopy is a test in
which there is a technical gap on the part of the physician, which can be a major source of concern
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for the patient. Using the latest technology of deep learning, the Department of Endoscopy at the
National Cancer Center’s Central Hospital trained AI on a large number of endoscopic images of
early-stage colorectal cancer and precancerous lesions accumulated to date. In order to study a large
number of unbiased cases, we first collected at least one still image of each consecutive early-stage
colorectal cancer and precancerous lesion over a period of time. The location of the lesions in the
images was then checked, and a line was drawn at the boundary between the surrounding mucosa and
each lesion with a marker for all lesions, thus surrounding the lesions. Although it might seem to be
a simple and steady task, it was important that there were no mistakes during this work because these
data were used as training data for deep learning. We used our own convolutional neural network
as a deep learning technique [36]. In conventional machine learning, the extraction of the lesion
features in images is done manually by humans, but in deep learning, AI automatically generates
a variety of lesion features. The input images are extracted as features in the convolution and pooling
layers and their classification is presented in the output layer. Moreover, the AI automatically learns
from the training data using the back-propagation method. A performance evaluation test on the
developed AI system was performed on 705 images with lesions and 4135 images without lesions
obtained at our hospital over a period of time that were not used for training. For the evaluation
study, the researchers involved in the analysis of the AI were completely blind to lesion and clinical
information. The overall sensitivity and specificity of the AI for colorectal lesions were 98.8 and 99%,
respectively, and a correct answer was considered to be correct if the AI correctly detected the location
of the lesion. Furthermore, we succeeded in analyzing a single frame of video (lesion detection and
result display) within 33 milliseconds (30 frames per second). Therefore, we believe that the system
has reached a stage where it can be developed for clinical implementation as an endoscopic diagnostic
support system [36].

3.3. Pathological Images

Pathological diagnosis is the final diagnosis of a lesion and therefore plays an important role
in determining the subsequent treatment strategy and the effectiveness of treatment. However,
there is currently a shortage of pathologists in the United States, United Kingdom, Japan, Canada,
and other countries around the world, and this has become a problem for maintaining the quality
of medical care in each country [60,61]. Under these circumstances, research and development in
pathological diagnosis using AI technology is of paramount importance. However, there are some
problems that need to be solved, such as how to standardize the pathological images, because the
methods for preparing pathological specimens and staining methods vary from institution to institution.
Therefore, pathological diagnosis using AI technology has not yet been actively introduced into clinical
practice. However, there is no doubt that the utilization of AI for pathological diagnosis is one way
to compensate for the shortage of pathologists, and it is likely that pathological diagnosis using
AI technology will gradually advance in clinical practice in the future. An important finding on
pathological diagnosis using AI technology was recently published by New York University, USA [62].
In this study, Coudray et al. trained a large number of high-definition digitally imaged pathology
glass slide specimen images (also known as Virtual Slides) using a deep learning algorithm called
InceptionV3 for histopathological classification (lung cancer (adenocarcinoma and squamous cell
carcinoma) and normal lung). The results revealed a very high accuracy with 0.97 AUC for tissue
classification [62]. Both frozen and formalin-fixed paraffin-embedded sections were available for
analysis as specimens. Furthermore, using the developed AI analysis system, six gene mutations,
STK11, EGFR, FAT1, SETBP1, KRAS, and TP53, could be accurately predicted from the pathological
images (AUC: 0.733–0.856). These results suggest that the analysis of pathological virtual slide images
using AI technology may enable the accurate classification of lung cancer tissues and prediction
of genetic mutations. As a next step, it is important to conduct prospective studies to ensure the
robustness of results across institutions; however, this is not limited to pathological image analysis,
and we believe that this should apply to all medical image analysis systems that utilize AI technology.
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3.4. Skin Images

Skin cancer is the most common malignancy in Western countries, with melanoma in particular
accounting for the majority of skin cancer-related deaths worldwide [63]. Melanoma is a highly
malignant skin cancer of melanocyte origin that is similar in shape to a mole; therefore, it is very
important to distinguish between moles (benign) and melanomas (malignant). The early detection
of skin cancer, including melanoma, is particularly crucial because the early detection of skin cancer
makes it easier to treat and significantly improves prognosis [64]. However, melanoma is sometimes
difficult to diagnose clinically because of its similarity to other brown to black pigmented lesions
such as pigmented nevi, seborrheic keratosis, and basal cell carcinoma. Consequently, we developed
a skin tumor determination system for brown to black pigmented lesions [33]. In this study, out of
the data of 120,000 images of patients seen at our hospital from 2001 to 2017, we extracted images of
brown to black pigmented skin lesions (malignant melanoma and basal cell carcinoma for malignant
tumors, nevus pigmentosus, senile pigmentation, seborrheic keratosis, hematoma, and hemangioma
for benign tumors), which were the diseases to be analyzed. After the extraction, each image was
annotated by a dermatologist with a bounding-box to indicate the location in the image where the
lesion was located. We then applied general object detection techniques to train a neural network to
predict the location and type of lesion in the image. At the end of the training, the AI predicted the
type of lesion for validation data (images not used for training), while clinicians (10 dermatologists and
10 non-specialists) were also tested using the same images. The results showed that the discrimination
accuracy of the AI was comparable to that of dermatologists as well as non-specialists. Our goal is to
make our skin tumor determination system available to the public so that users can become more aware
of their own symptoms and skin tumors in general. Additionally, we hope to establish a framework
that encourages them to seek medical attention when necessary. This can help reduce the proportion
of patients with advanced stages of the disease and reduce the rising cost of healthcare.

Esteva et al. also attempted to classify skin diseases using AI by analyzing a database of about
130,000 images and their corresponding 2000 diseases, using one of the deep learning algorithms,
convolutional neural network [65]. In this study, 127,463 images were trained and validated, and 1942
images were used to compare the diagnoses by AI and dermatologists. The results showed that the
AUC values of 135 skin cancer cases and of 130 melanoma cases diagnosed by AI were 0.96 and 0.94,
which were almost the same as that of the diagnosed by dermatologists [65].

4. Application of Machine Learning and Deep Learning Techniques to Omics Analysis

With the completion of the International Human Genome Project in 2003 [66], we entered an era
known as the post-genome era, and the momentum for the application of genomic information in
medicine has increased. As a result, the term “genomic medicine” has emerged, proposing a new
type of medical treatment that provides patients with optimal treatment options based on the genome
information [67]. In 2015, the Precision Medicine Initiative was announced by US President Barack
Obama for cancer and rare diseases, dividing patients/potential sufferers into subgroups of disease
morbidity and developing appropriate treatments and prevention methods for each group [68].
This initiative had a great impact on the global medical policy, and since then, the establishment of
precision medicine has become one of the major goals of research in the field of oncology. However,
the current state of precision medicine has many problems that need to be addressed. One of the
main problems is that although the provision of optimal anticancer drugs based on TGP is the current
mainstay of precision medicine, the number of patients who receive the most appropriate treatment
is low [14–16]. Increasing the number of patients who benefit from precision medicine is considered
an important issue; however, it is believed that treatment selection based on the current TGPs alone is
insufficient to address this issue [15]. It is essential to integrate whole genome sequencing (WGS) data as
well as other omics data, such as epigenomic, proteomic, and metabolomic data, for multimodal analysis.
In particular, recent rapid advances in epigenomic analysis techniques have revealed that cancer
cells accumulate a variety of epigenomic abnormalities in addition to genetic abnormalities [69–82].
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Epigenomic aberrations have a significant impact on the characteristics of cancer from the early
stages of development to developmental progression [83–99]. In addition, owing to development and
progress in medical epigenetics, which targets epigenome abnormalities, it is important to analyze the
pathogenesis of cancer with an appropriate consideration of epigenetic information [100–104].

As mentioned above, in order to promote precision medicine, it is necessary to take into account
omics information such as epigenomic information and WGS information in addition to genomic
information obtained by panel inspection, and this is a huge amount of data. In order to efficiently and
accurately analyze this vast amount of medical big data, that is, in a sense, beyond human capabilities,
it is essential to utilize the most advanced AI and ICT technologies. In particular, as we have previously
mentioned, machine learning and deep learning technologies have the following four features, and are
expected to play an important role in the multimodal analysis of medical big data [1]:

a. Multimodal learning: different types of medical data (e.g., genomic, epigenomic, and proteomic
data) can be integrated and treated as inputs;

b. Multitasking learning: multiple different tasks can be learned simultaneously by sharing parts
of the model;

c. Representational and semi-supervised learning: acquire a way to represent data from large
amounts of unlabeled data, making it possible to learn from small amounts of labeled data;

d. It is possible to capture higher order correlations of inputs.

The above properties have led to the introduction of machine learning and deep learning techniques
in medical large data analysis. In particular, machine learning and deep learning techniques are being
widely used for dimensionality reduction and feature extraction in the stage of extracting important
information from vast amounts of data, as well as for the stratification of patients based on the extracted
features (Figure 2). For example, a method for dimensionality reduction using an autoencoder has
been proposed for large amounts of multi-omics data [105], and we have also used this method
to stratify lung cancer patients [32]. In this study, we combined RNA-seq and miRNA expression
data from The Cancer Genome Atlas (TCGA), while focusing on lung adenocarcinoma (LUAD)
with clinical information and performed a multi-omics analysis using an autoencoder. Consequently,
we successfully subclassified patients according to survival (categorizing good and poor lung cancer
prognosis groups). The classifier was developed using estimated labels derived from patient subtypes,
the support vector machine (SVM) gave the best classification results, with an accuracy of 0.82 for the
test data set. These subtypes were used to rank genes based on their RNA expression levels. The top
25 genes were investigated to identify the mechanisms that influence patient prognosis. Bioinformatics
analysis showed that the expression levels of six of the 25 genes (ERO1B, DPY19L1, NCAM1, RET,
MARCH1, and SLC7A8) were associated with survival in LUAD patients, and pathway analysis
indicated that major cancer signaling pathways were altered in the subtypes. Expanding on this
method, we identified survival-related subtypes of non-small cell lung cancer from six categories of
TCGA multi-omics datasets (miRNA, mRNA, DNA methylation, somatic mutation, copy number
variation, and reverse phase protein array) [106]. As a result, the subtype named the Integrated
Survival Subtype, which combined the six types of data, successfully separated the poor and good
prognosis groups of lung cancer patients with a statistically significant difference. We also confirmed
that this was independent of the histopathological classification. In addition, the predicted subtypes
were able to distinguish between high- and low-risk patients. Through the above studies, we presented
a new potential multi-omics analysis to accurately predict the prognosis of lung cancer patients.
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There are also several challenges in the application of deep learning for medical omics data,
such as genomic data. First, the dimensions of the input are in orders of magnitude larger than the
number of samples (Large p, Small n Problems) [107], and the model tends to overfit the training
dataset. Second, the contribution of each input variable to the prediction is usually difficult to interpret
because of the multiple nonlinear operations. Third, genetic data may not be characterized by an innate
structure. To mitigate these problems, we proposed a genomic analysis method using a modified
diet network by adding per-element input scaling [34]. The original concept of Diet Networks,
with transposed data matrices as inputs to the auxiliary network, can significantly reduce the number
of parameters in a fully connected layer [108]. The effectiveness of our proposed method was assessed
in a binary classification task based on the somatic mutation profile of lung cancer histopathology,
i.e., adenocarcinoma and squamous cell carcinoma [34]. The dataset consisted of 950 cases and was
subjected to 5-fold cross-validation to assess the performance of the model. The results showed that
the prediction accuracy was about 80%, and the addition of per-element input scaling contributed
significantly to the stability of the learning process [34]. The latent representation obtained inside the
model allowed us to interpret and predict relationships between somatic mutation sites.

For the realization of precision medicine, predicting the effects of anticancer drugs is a vital issue,
and attempts have been made to predict the effects of large-scale omics data using machine learning and
deep learning techniques [109–114]. Shukla et al. analyzed the chromosome arm aneuploidy (CAA)
profiles of 23,427 tumors to identify the aspects of tumor evolution, including the order in which CAAs
can occur and the CAAs that can predict tissue-specific metastases [115]. In this study, the authors used
machine learning techniques (deep neural network models) to identify 31 CAAs that powerfully altered
the response to 56 chemotherapy drugs in cell lines representing 17 cancer types. The authors also
found 1024 potentially lethal drug interactions. Notably, CAAs significantly outperformed mutations
and local deletions/amplifications combined in predicting the drug response [115]. Thus, CAAs have
the potential to predict cancer prognosis, shape tumor evolution, metastasis, and drug response and
thus advance precision oncology.

The Bruton tyrosine kinase inhibitor ibrutinib is an effective treatment for patients with chronic
lymphocytic leukemia (CLL); however, there is extensive heterogeneity in this disease. Rendeiro et al.
attempted to predict the response to ibrutinib treatment by analyzing multi-layered omics data
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(immunophenotyping, single-cell RNA-seq, and ATAC-seq) together with clinical information using
machine learning techniques [116]. Non-malignant B cell changes reflected changes in the CLL
cells, with CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and myeloid cells responding in
a cell type-specific manner [116]. They also identified a gene expression signature that captures
the ibrutinib-induced widespread downregulation of immune cell function and the acquisition of
a quiescent state in response to ibrutinib therapy. There was patient-specific variability in the speed
of execution of the program, and this variability could be used to predict patient-specific dynamics
of the response to ibrutinib based on the pre-treatment patient sample [116]. This study revealed
time-dependent cellular, molecular, and regulatory effects on the therapeutic inhibition of B-cell
receptor signaling in CLL using machine learning multi-omics analysis and established a widely
applicable method for epigenomic/transcriptomic-based therapeutic monitoring.

Recently, the establishment of precision oncology based on large-scale omics analysis using
machine learning and deep learning techniques has been actively studied; however, the research is still
in its infancy. One of the current problems is that the biological properties of a gene mutation vary
depending on the function of the gene and the location of the mutation, but we have not been able to
take such detailed information into account, and all the mutations are lumped together for analysis.
In the future, we need to consider methods to effectively introduce this kind of domain knowledge into
the analysis. In addition, omics information, such as genomic and epigenomic information, has a large
number of parameters compared to the number of samples, which is always a problem (Large p,
Small n Problems) [107]. This makes it difficult to analyze the raw data as it is, and dimensionality
reduction is necessary. An important point is the need to select a model that allows the compression
of parameters without compromising the expressive power of the model; therefore, further study is
needed. The explanatory and interpretive nature of the results also requires further exploration and is
discussed in detail in Section 6.2. Furthermore, recent studies have identified important molecular
mechanisms/signaling pathways in cancer development and progression [71,117–138], and several
pathway analysis methods have been reported to elucidate the true nature of cancer and identify drug
targets by using features extracted from large-scale data. The methodology is correct, and several results
have been published that have contributed greatly to the development of the field of oncology [139–150].
However, it should be adequately recognized that there are limitations to the results obtained by
a dry lab approach, and it is important to validate the results obtained by the dry lab approach using
appropriate wet lab experiments (cell-level studies or animal-level studies using mice). By feeding
back the results of the wet lab experiments to the dry lab approach, it is expected that the accuracy of
the results of the dry lab approach itself can be improved. This can be said of AI in general, and no
matter how much progress AI makes in the future, it is very risky for humans to rely on AI’s judgment
for everything. We believe that there should always be a human verification step. Ideally, we should
have an accurate understanding of the strengths and weaknesses of humans and AI, making it possible
to learn together and complement each other.

5. Drug Development Using Machine Learning and Bayesian Statistics in Oncology

Drug development is a costly and time-consuming process that can last up to 15 years.
The development pipeline starts with the initial phase 0, comprising basic research or drug discovery.
The next three stages (phase I, phase II, and phase III) are clinical trials, while phase IV includes
a pharmacovigilance study. Phase I involves the study of dose-toxicity and short-term side effects;
the determination of drug performance occurs in phase II and phase III and involves comparing the
drug to standard therapies for the disease being studied. Phase IV is to monitor the long-lasting side
effects of the drug. The major challenge in the drug development process is the high failure rate and
consequent financial loss in the final stages of development [151]. With the recent advances in AI
platforms and machine learning techniques, it is now possible to fasten the pace of development as well
as reduce the likelihood of failure. The machine learning models such as support vector machine,
random forest, Bayes’ theorem, and many others find application in all the stages of drug development
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leading to accurate prediction and insights (Figure 3) [152]. The Bayesian approach is an emerging
technique used by medical researchers in the field of oncology drug development. The issues of case
fatality, survival analysis, dropouts from clinical observations, and complex computational problems
can be effortlessly handled using Bayesian techniques. In the era of big data, the Bayesian statistical
approach is better suited for combining the current data with prior knowledge and for creating posterior
probabilities for both drug effectiveness and its safety [153].
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Figure 3. Application of machine learning and Bayesian statistics in different phases of drug development.

The mathematical method using Bayesian statistics can be implemented at the design stage,
during the conduct of the trial, at the analysis stage, for post-marketing surveillance purposes,
and in meta-analysis. Recently, Bayesian Analysis to determine Drug Interaction Targets (BANDIT),
an integrative big data approach, was developed for drug target prediction, validation for clinical
development, and drug repurposing. This machine learning algorithm identified a novel microtubule
inhibitor with activity against breast cancer cells that were resistant to all other clinically approved
anti-microtubule drugs [154]. The Bayesian adaptive design can also be applied in phase I oncology
trials, which are conducted in a small number of patients to determine the maximum tolerated dose
(MTD) of the drug molecule [155]. A multicentered and non-randomized Bayesian adaptive design
study on the γ-secretase inhibitor MK-0752 in combination with gemcitabine was conducted in patients
with pancreatic ductal adenocarcinoma and successfully determined the safety of the combination
treatment as well as identified the recommended dose for the phase II trial [156]. Yan et al. proposed
an intuitive Bayesian keyboard decision method, which relies on the posterior distribution of the
toxicity probability and can identify the true MTD with high accuracy [157]. The development of the
oncology drugs usually involves a proof-of-concept study (PoC) at the end of the phase I or phase II
trial. The PoC study is carried out to obtain an early evidence of the clinical efficacy using a small
number of patients. Using a Bayesian framework, the decision making in PoC can be more effective
since the direct estimation of evidence is possible for the effect of interest [158]. The Bayesian design
can also shorten the duration of a cancer clinical trial by integrating the phase II/III trials into a single
confirmatory study. Recently, ComPAS, a novel adaptive shrinkage method was developed using
Bayesian model selection and hierarchical methods. This model allows for the dropping of ineffective
drugs and the addition of new combinations to ongoing clinical pipelines based on accumulating trial
data in an adaptive and seamless fashion [159].

The flexibility of the Bayesian statistics also makes it suitable for the network meta-analysis of
pooled data that allows for the simultaneous comparison of multiple treatments. The characteristics
of such pooled data are random from trial to trial, differing in the size of the trial, study design,
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and methodology. The random effects are best handled using Bayesian statistics, which can help to
address unanswered questions from controversial clinical trials. The Bayesian network meta-analysis
has been applied to assess the role of immunotherapies and targeted therapies in advanced melanoma.
This model compared the therapies using the hazard ratio for the overall survival and progression-free
survival and the odds ratio for the response rate and probabilities of the drug outperforming others.
This meta-analysis suggested that combined BRAF-MEK targeted therapy is optimal for BRAF-mutant
patients and can enhance the favorable outcomes in advanced melanoma [160].

Although the Bayesian method has been applied effectively in all phases of drug development in
oncology, it is associated with several challenges. The application of the Bayesian method requires
decision making regarding prior information, information obtained from the trial and the mathematical
model to be used, at the initial design stage itself. A change in the prior information and the quality of
the data at a later stage might affect the scientific validity of the trial results. It has been suggested
that the type of statistical analysis used in cancer clinical trials should be determined at an earlier
stage. The Bayesian adaptive design may suffer from operational biases; thus, the confidentiality
of the data needs to be maintained [161]. The recent advances in machine learning algorithms and
computational speed have made it possible to carry out calculations for complex Bayesian models.
Furthermore, the integration of machine learning methods and statistical tools in drug development
pipelines might decrease the cost and time of drug development and also enhance the development of
precision medicine for cancer treatment.

6. Issues to Be Overcome in the Application of AI to Oncology

The importance of AI technology has been recognized worldwide, and several countries are
promoting AI research as a national policy. Considering its great potential, there are high expectations
from AI technology, and it is likely that AI technology will be increasingly introduced in the oncology
field in the future. Despite the great potential of AI technology, there is still a number of challenges
that need to be overcome. Therefore, we described the key challenges that need to be overcome on an
ongoing basis.

6.1. Overfitting

In machine learning and deep learning techniques, overfitting refers to a situation where the
training error is small, but the generalization error (the error in determining unknown data) is not
small. Particularly in the medical field, where the amount of training data is limited, it is always
necessary to carefully judge the generalization performance of the constructed model. We feel that
validation is especially important when aiming for the clinical implementation of medical devices with
AI; we need to confirm the general performance of these devices through clinical trials more carefully
than we have done with conventional medical devices.

6.2. Black Box Problem

Since the analysis process of the machine learning and deep learning techniques is very complex,
a black box problem arises in that humans cannot understand the analysis process of the results
obtained. The presence of a black box in the system makes it difficult for the designer or user to predict
the behavior of the system at the time of design or use and hinders the safety of the system. In Europe,
the General Data Protection Regulation (GDPR), which came into force in May 2018, included an article
(Article 22) requiring the transparency of AI; consequently, it is necessary to address the black box
issue in terms of GDPR regulation compliance [162]. The following three approaches are mainly
implemented to improve the interpretability of machine learning and deep learning.

Deep explanation: deep learning state analysis to generate attention heat maps and natural
language explanations [163–165].

Interpretable models: machine learning using originally interpretable models (to improve the
accuracy of white-box machine learning) [166,167].
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Model induction: Create an interpretive model externally that approximates the behavior of
black-box machine learning [168–170].

6.3. Discrepancies among Facilities, especially in Medical Imaging (Domain Shift and Domain Adaptation)

Medical imaging analysis is prone to facility characteristics (e.g., different manufacturers of
devices, different model numbers of devices, differences in protocols, and differences in operators),
and, we along with others, have observed in various studies that the accuracy of predicting data from
other facilities is significantly reduced when a trainer built by training on data from one facility is
used to predict data from another facility. In general, this problem is called the domain shift problem,
and it is an important issue that needs to be resolved for the promotion of medical AI [171–174].
As an important study, we present the results of the analysis and validation of a large number of chest
X-ray images using deep learning techniques, published by Pooch et al. [175]. They attempted to
evaluate models trained independently on each of A, B, and C, using three large datasets from the U.S.
National Institutes of Health (A: 112,120 images), Stanford University Hospital (B: 224,316 images),
and the Massachusetts Institute of Technology (C: 379,920 images), with all of the A, B, and C data.
When the data were evaluated by splitting the data into 80% training (10% of which were validated)
and 20% testing, it was found that the models trained with the data from the same facility as the
test data were more accurate, whereas the models trained with data from a different facility were
found to be less accurate [175]. The results of this study show that even with such a large set of data,
the generalization performance may not be properly evaluated owing to overfitting for each of the
datasets. This can be attributed to the fact that the learning sets are independent of each other due to
domain shifts. In other words, it was suggested that the model trained with data from each facility
was overestimated when tested only with data from the same facility.

Domain adaptation has been proposed as one of the methods to solve the domain shift problem
and is being actively studied [172,176–187]. Domain adaptation is a type of transfer learning in which
knowledge obtained from a domain with sufficient labeled training data (source domain) is applied to
a target domain that lacks sufficient information (target domain) to learn things such as discriminators
that work with high accuracy in the target domain (here, a domain is a collection of data). There are
several contexts of domain adaptation, and it is necessary to select an appropriate method for the
target task.

Unsupervised domain adaptation: the training sample includes a set of labeled source examples,
a set of unlabeled source examples, and a set of unlabeled target examples.

Semi-supervised domain adaptation: we also consider a “small” set of labeled target examples.
Supervised domain adaptation: all examples considered are assumed to be labeled.
As an example of the application of domain adaptation to medical image analysis, Qin et al.

recently published an interesting study on the multi-center computer-assisted diagnosis of lymph nodes
using unsupervised domain adaptation networks based on cross-domain confounding representation
(Figure 4) [188]. In general, in order to achieve a robust, high performance computer-aided diagnostic
system for lymph nodes, CT images may be collected from multicenter data, which can lead to model
isolation based on different data source centers (the domain shift problem described above). However,
the lymph node data variation adaptation problem related to the domain adaptation problem in deep
learning is different from the general domain adaptation problem because the size of CT images
is typically larger and the data distribution is more complex. Therefore, domain adaptation for
this problem needs to take into account the shared feature representation of each region, as well as
the conditioning information, so that the adaptive network can capture a significant discriminative
representation in the domain invariant space. In this study, the authors extracted domain-invariant
features based on cross-domain confounding representations, and proposed a cycle-consistency
learning framework that encourages the network to retain class conditioning information through
cross-domain image translations [188]. Figure 4A shows a conceptual diagram of the method adopted
in this study. This method provided a better and more stable performance than did the conventional
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domain adaptation methods such as gradient reversal layer [189], maximum mean discrepancy [190],
and Generate To Adapt [191] for high-resolution medical images with complex feature distribution.
Figure 4B shows the process of extracting the cross-region confounding representation of the entire
network and the classification cycle consistency after image reconstruction through the source image
phase. Compared with the performance of different domain adaptation methods, this method achieved
at least 4.4 percentage points higher accuracy for multicenter lymph node data. This method enables the
stable domain adaptation of high-resolution images in complex medical fields. Experimental results on
simple data distributions also show the generality of the proposed method. Furthermore, the stability
of the learning process makes it possible to easily obtain the optimal model under the target domain,
which may further realize the integration of multidisciplinary medical data.
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Figure 4. Illustration of the proposed network in Reference 188 (Qin et al., 2020); this is a modified
figure from the reference. (A) Illustration of the proposed method: a cross-domain confounding
representation is generated by constraining the cross-domain mapping reconstruction. (B) Domain
confounding representation through cross-domain mapping and classification cycle consistency.
Encoder F and decoder G constitute the variational automatic encoder (VAE) architecture for
unsupervised representation learning. The D module constitutes the GAN discriminator and the C
module constitutes the classifier.

Judging from the concept of Bayesian statistics, which is to make predictions based on the prior
distribution of probabilities, it can be concluded that having a single algorithm with generalized
performance for events with different prior distributions of probabilities from one facility to another
is in itself a difficult task. Since AI technology is different from other technologies in that it has the
ability to learn on its own, we believe that it is necessary to re-learn and optimize the training data,
including the characteristics of each facility, in order to increase the potential of AI as much as possible.
In this case, because medical devices themselves continue to evolve, which is a characteristic that
conventional medical devices do not have, a multifaceted study that includes not only research and
development but also the formulation of guidelines and legislation is necessary.
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7. Concluding Remarks and Future Perspectives

In this review article, we described the application of AI technologies in the field of oncology,
focusing on machine learning and deep learning technologies. Given that more than 60 types of
AI-equipped medical devices have already been approved by the FDA, we believe that AI technology
will be used as a core technology in the field of oncology and that the clinical implementation of
this technology will steadily increase. Compared with medical image analysis, the introduction of
machine learning and deep learning technologies for omics analysis, such as genomics and epigenomics,
has lagged behind. However, with the realization of precision medicine as a goal all over the world,
the utilization of AI technologies for omics analysis is expected to progressively rise in the future.
Furthermore, as we have mentioned in this review, the introduction of AI in drug discovery is
an important direction. Nevertheless, as mentioned previously, AI technology still has many problems
that need to be addressed. Accordingly, it is important not to have excessive expectations of AI
technology but to always calmly and objectively understand the advantages and disadvantages of the
technology and steadily apply it to medicine. If humans become dependent on AI as a result of the
development of AI, it will not lead to the establishment of an ideal human society. We believe that
the ideal situation is for humans and AI to work together to improve the quality of cancer treatment
and research.
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