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Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis
and effective timely treatment. These challenges have prompted the development of multiple machine learning
methods to help improve the management of this disease. These methods utilize anatomical and physiological
data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed
patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and
machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and
machine learning to study depression; and (3) suggests directions for future depression-related studies.
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1. Introduction

Major depressive disorder has an estimated lifetime prevalence of
approximately 17%, and has significant effects on quality of life, co-
morbid medical conditions, suicide risk, and healthcare utilization
(Andrade et al., 2003). The diagnosis ofMDD is largely based on applica-
tion of criteria from the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM), and clinician judgment. Upon diagnosismost patients are
started on first-line antidepressant agents which is largely a trial and
error process, as initial pharmacotherapy treatment is only effective in
approximately 50% of patients (Papakostas, 2009). Non-responding pa-
tients will often require multiple drug trials, which can result in persis-
tence of symptoms for months.

This variability in treatment response is likely related to depres-
sion being an epiphenomenal manifestation of multiple neural
pathological processes. This etiological heterogeneity means that
objective biomarkers of disease are often less informative than
the presence of depressive symptomatology itself. Therefore, diag-
nosis based on symptom-based criteria (i.e. DSM) becomes essen-
tial, as treating a patient's biomarkers makes little sense in the
absence of distressing psychiatric symptoms. However, the study
and application of such disease state biomarkers may be valuable
in the development of methods that could be extended to other
aspects of depression management. Specifically, the utility of
biomarkers is likely more valuable in the early identification of
treatment non-response, as symptom remission is known to lag be-
hind changes in underlying neural function (Aizenstein et al, 2014;
Hsieh et al., 2002; Lui et al., 2011; Mayberg et al., 1997).

Identified biomarkers representing the biological substrates of MDD
have been derived from multiple domains including neuroimaging,
neuropsychological testing, genetics, and proteomics (Douglas and
Porter, 2009; Laje et al., 2007; Miller et al., 2009). With respect to neu-
roimaging, magnetic resonance imaging (MRI) in particular has demon-
strated its capacity for non-invasively studying brain structure and
function in depressed patients. The different underlying brain charac-
teristics associatedwith depression are probedwith variousMRImodal-
ities that can be broadly separated into structural and functional
imaging methods, which differ with respect to numerous scanning pa-
rameters. Further differentiation of image analysis and processing
methods allow for a wide range of data collection regarding anatomic
volumes, hemodynamic response within various neural structures and
circuits, demyelinating white matter hyperintensity lesions, and overall
neuronal cellular integrity.

As each of these neuroimaging measures only likely represents one
facet of depression's complex underlying biology, their collective as-
sessment is much more informative than if performed individually.
This has prompted many groups to simultaneously investigate multiple
neuroimaging domains in depression for the increased perspective it
can afford (de Kwaasteniet et al., 2013; Khalaf et al., 2015; Steffens
et al., 2011). Moreover, with more formalized systematic aggregation
of neuroimaging biomarkers, it may be possible to make significant ad-
vancements in our understanding and management of MDD. Multiple
machine learning techniques have been utilized to classify patients
based on disease state and treatment response. For example, one of
the earliest reports demonstrating machine learning's potential in
MDD by Haslam and Beck (1993) used a categorization algorithm to
classify patients into syndromal subtypes using the Beck Depression
Inventory item scores. Much of the previous work has been predicated
on effectively applying machine-learning techniques to clinical chal-
lenges that have yet to be addressed by othermeans. Most prominently,
prediction of treatment non-response has become an opportune target
for such methods. A sensitive, specific, and reliable machine-learning
technique which identifies MDD patients who are unlikely to respond
to the current antidepressant agent being trialed, would allow clinicians
to preemptively intervene in such patients by either switching agents or
pursuing more definitive treatments such as electroconvulsive therapy
(ECT). With such a valuable potential clinical application, the current
state of neuroimaging-basedmachine learning inMDDwarrants exam-
ination. It will be the objective of this article to (1) provide an overview
of the various machine learning methodologies in use, (2) review
existing literature employing machine-learning in MDD, (3) elucidate
technical obstacles, and (4) explore future directions.

1.1. Magnetic resonance imaging modalities

This review focuses on MRI modalities as they are most extensively
found to be incorporated in depression related machine learning litera-
ture. Themost commonMRImodalities used to study brain structure in-
clude T1-weighted imaging, T2-weighted imaging, andDiffusion Tensor
Imaging (DTI). To study brain function, functional MRI (fMRI) is gener-
ally used. Each of theMRI modalities helps examine different aspects of
the brain. T1-weighted images are used to study cortical regions
because of its high gray–white tissue contrast that allows formore accu-
rate labeling of gray matter regions. These images can be used to assess
the severity of atrophy in cortical regions by studying regional volume
differences and changes. T2-weighted images are used to study white
matter hyperintensities (WMHs), which are indicative of ischemic or
pre-ischemicwhitematter changes. Both local and globalWMHvolume
measures have been implicated in the development and potentiation of
depression, especially late life depression (Herrmann et al., 2008). DTI
images are used to gain an understanding of the brain from a micro-
scopic level and study the diffusion of molecules in brain tissues. Two
important measures acquired from DTI images include mean diffusivity
(MD) and fractional anisotropy (FA), which signify the displacement
and directionally of diffusion in tissue, respectively. These measures
help evaluate the tissue integrity by helping determine cortical regions
where diffusion is significantly decreased and dispersed due to lesions.
Finally, fMRI images are used to study brain activity aswell as functional
connectivity between different cortical regions by exploiting underlying
blood flow (Le Bihan et al., 2001; Blink, 2004; Vink et al., 2007).

1.2. Machine learning

Machine learning is used to test the potential of eachMRImeasure as
a relevant biomarker of depression. Machine learning consists of a
group of methods used to develop prediction models from empirical
data to make accurate predictions about new data. Depending on the
data three possible types of learning can be employed, including super-
vised learning, semi-supervised learning, and unsupervised learning.
Supervised learning is performed if all of the data is labeled; semi-
supervised learning is performed when there is unlabeled data along
with labeled data; and, unsupervised learning is performed when all
of the data is unlabeled. Learningmethods can be categorized into linear
and nonlinear methods. Linear methods are simpler, while nonlinear
methods are more flexible in nature. For supervised and semi-
supervised learning, the methods can be further categorized as
classification- or regression-based methods. Classification-based
methods attempt to classify the data by discrete and categorical
labels, while regression-based methods fit the data to a continuous
function and thus work with continuous labels for the data. For unsu-
pervised learning, the methods are primarily categorized as clustering
methods—which group the data into clusters based on underlying
similarities (Ghahramani, 2004; Kapitanova and Son, 2012; Muller
et al., 2003). Since past studies have primarily used supervised learning
methods, this paper will focus on reviewing supervised learning related
studies.

1.3. Validation measures

Validation measures are used to assess howwell a model developed
by a learning method will perform on new unseen data. To compute
these measures, the trained prediction model is first applied to a test
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data set and predictions of labels/categories for each instance are ac-
quired. Then, the validation measures are computed by comparing
these predictions with actual labels if they are available. The validation
measures differ based on the type of framework used for the learning
method.

For classification-based frameworks, some common validationmea-
sures include accuracy, specificity, sensitivity, and receiver operating
characteristic curve—which consists of true positive rates (i.e. sensitivi-
ty) as a function of false positive rates (i.e. 1—specificity). The accuracy
measure helps evaluate how accurately the prediction model classifies
the test data overall. The specificity and sensitivity measures assess
how accurately the prediction model classifies each label of the test
data, and the receiver operating characteristic curve illustrates the over-
all performance of the learning method. Confusion matrices can also be
used when labeled data is available, especially for models with more
than two labels. A confusion matrix will help summarize how well the
predictionmodel distinguishes sampleswith different labels. The confu-
sion matrix is a K × K matrix for K labels, where one side of the matrix
represents actual labels and the other side represents predicted labels
(Baldi et al., 2000).

For regression-based frameworks, some common validation mea-
sures include correlation coefficients and mean squared error. The
correlation coefficients and their corresponding significance values
(i.e. p-value) help demonstrate howwell the model predictions are cor-
related with the actual label values, and the mean squared error helps
evaluate the level of error in the model predictions (Baldi et al., 2000;
Meyer, 2012).
1.4. Machine learning with real-world data

Due to the nature of real-world data, several problems are encoun-
tered when trying to use learning methods to estimate an optimal
prediction model that can generalize well to (i.e. make accurate predic-
tions on) unseen data. More often than not, real-world data is high-
dimensional (i.e. each sample has a large number of features) and
limited in sample size, both of which can cause problems with estimat-
ing an accurate learning model. Also, learning methods often face a
trade-off between high bias and high variancewhen attempting to esti-
mate a model for empirical data. High bias indicates that the learning
method is learning an incorrect model, while high variance indicates
that the learning method is learning a random model. Each of these
can cause the model to underfit (i.e. model is too simple) or overfit
(i.e. model is too complex and does not generalize well for representing
future unseen data points) the data (Domingos, 2012; Le Borgne, 2005).
In order to estimate anoptimal predictionmodel given these limitations
of real-world data, studies utilize feature reduction and cross-validation
methods.
1.4.1. Feature reduction
Feature reduction methods are used to reduce the number of

features in high-dimensional data to a limited number of most
relevant features for estimating a more accurate prediction model.
These methods can be primarily categorized into supervised and un-
supervised methods. Supervised methods require labeled data as
they perform feature reduction with the help of the labels. These
methods are primarily used to perform feature selection (i.e. select
the most relevant features from a larger set of input features) and
thus reduce the noise in the input data. Unsupervised methods, on
the other hand, perform feature reduction based solely on informa-
tion available in the features included in the data. These methods
are primarily used for feature extraction where features are selected
based on patterns found among the input features; this helps to
reduce the dimensionality of the input data (Mwangi et al., 2013;
Reif and Shafait, 2014).
1.4.2. Cross-validation
Cross-validation is used to estimate the accuracy of a prediction

model created by the learning method(s) of choice. There are several
techniques for performing cross-validation including k-fold cross-
validation, holdout, and leave-one-out cross-validation. The latter two
techniques can be essentially considered variants of k-fold cross-
validation. This technique first divides the data into k equal sized sets.
Then it performs the following: (1) classifies one of the k sets as the
test set, while combining the others to form the training set; (2) uses
the learning method to estimate a model that describes the data by
training on the training set; (3) tests the estimated model on the test
set; and (4) computes appropriate validation measure(s) to determine
the model's precision. This process is reiterated for k-iterations, each
time classifying a different set as the test set without repetition. Lastly,
the validation measure(s) values from all the iterations are averaged
to evaluate the overall performance of the learning method.

When the available data set has a considerably large sample size, one
way to perform cross-validation is to utilize the holdout approach. This
is essentially a k-fold cross-validation technique where k equals one.
When the available data set has too small of a sample size, a leave-
one-out cross-validation method is used. With this method a k-fold
cross-validation method is used where k is equal to the sample size of
the data (Kohavi, 1995).

1.4.3. Integration of feature reduction and cross-validation
When using both feature reduction and cross-validation together,

feature reduction should be performed at every iteration of cross-
validation to avoid biasing the prediction model with information
from the test set data. After performing feature reduction, the resulting
dataset is used as an input to the learning method for estimating an
optimal prediction model at every iteration of cross-validation. The
average accuracy of prediction models from every iteration of the
cross-validation determines the ability of the combined feature reduc-
tion and learning methods to estimating an optimal prediction model
for a given dataset.

2. Past studies

Several past studies that have successfully explored predictive
models for diagnosis and treatment response of depression. Below is a
survey of studies found based on the following criteria: (1) the study fo-
cuses on studying depression and/or its treatment response; (2) the
study uses magnetic resonance image related features for a supervised
machine learning method; and (3) the study estimates a prediction
model for depression, a measure of depression, and/or its treatment re-
sponse. See Tables 1a–b and 2a–b for a brief summary of these studies
and the methods they used.

3. Discussion

To the best of our knowledge the number of articles that use ma-
chine learningmethods for studying depression is limited. Additionally,
at a quick glance of the past studies presented in Tables 1 and 2, the
methods used across these articles vary enough to make it difficult to
draw comparisons simply based on the results. Thus, in this section
we attempt to evaluate the methods used by the past studies.

3.1. Sample size

A common limitation across all past studies is sample size. The sam-
ple size used by past studies is small compared to what is optimal for
machine learning methods to minimize the variance in assessments of
accuracy, sensitivity, and specificity. This is especially true for the
studies attempting to predict depression treatment response. Given
the difficulty of recruiting depression patients for treatment protocols
within a geographical area, the limitation of a small sample size is



Table 1
Past studies predicting depression diagnosis.

Author Patient sample Features
[Imaging modality]

Feature reduction method Cross-validation method Machine learning method Results
(Note: highest accuracies
presented)

Costafreda et al.
(2009)

– 37 depressed
– 37 non-depressed

– Smoothed gray matter voxel-based
intensity values [T1-weighted]

– Voxel based morphometry
– Filter method using ANOVA

– Leave-one-out cross-validation – Support vector machines – Accuracya: 67.6%
– Sensitivityb: 64.9%
– Specificityc: 70.3%

Fu et al. (2008) – 19 depressed
– 19 non-depressed

– Smoothed whole brain voxel-based
blood oxygen level dependent response
during
an implicit sad facial affect recognition task
[fMRI]

– Filtering based on prior knowledge of
anatomical regions that differ in activity
between patient and controls during
processing of emotional faces
– Principal component analysis

– Leave-one-out cross-validation – Support vector machines
(linear kernel)

– Accuracya: 86%
– Sensitivityb: 84%
– Specificityc: 89%

Hahn et al.
(2011)

– 30 depressed
– 30 non-depressed

– Smoothed whole brain voxel-based blood
oxygen level dependent response during 3
depression related functional
MRI tasks [fMRI]

– n/a – Leave-one-out cross-validation – Single-Gaussian process classification
– Integration of Gaussian process
classification and decision tree
– Support vector machines (linear kernel)
for comparisond

– Accuracya: 83%
– Sensitivityb: 80%
– Specificityc: 87%

Marquand et al.
(2008)

– 20 depressed
– 20 non-depressed

– Smoothed whole brain voxel-based blood
oxygen level response during a verbal
working
memory fMRI task [fMRI]

– Principal component analysis – Leave-one-out cross-validation – Support vector machines (linear kernel) – Accuracya: 68%
– Sensitivityb: 65%
– Specificityc: 70%

Mourao-Miranda
et al. (2011)

– 19 depressed
– 19 non-depressed

– Smoothed whole brain voxel-based and
region-based blood oxygen level dependent
response
during implicit sad facial affect recognition
task

– n/a – Leave-one-out cross-validation – One-class support vector machines
(Non-linear kernel)

Mwangi et al.
(Jan 2012)

– 30 depressed – Smoothed whole brain voxel-based
intensity
values [T1-weighted]

– Filtering out voxels from brain
regions
that differed significantly between
patients
recruited from different centers

– Leave-one-out cross-validation – Relevance Vector Regression (Evaluation
of BDI and HRSD scores)

Correlation Coefficient
(p-values)
– BDI scores: r = 0.694
(p b 0.0001)
– HRSD scores: r = 0.34
(p = 0.068)
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Mwangi et al.
(May 2012)

– 30 depressed
– 32 non-depressed

– Smoothed whole brain voxel-based
intensity
values [T1-weighted]

– Voxel based morphometry – Leave-one-out cross-validation – Relevance Vector Machines (Non-linear
Gaussian Kernel)
– Support vector machines (Non-linear
Gaussian Kernel)

RVM:
– Accuracya: 90.3%
– Sensitivityb: 93.3%
– Specificityc: 87.5%
SVM:
– Accuracya: 87.1%
– Sensitivityb: 86.7%
– Specificityc: 87.5%

Nouretdinov
et al. (2011)

– 19 depressed
– 19 non-depressed

– Smoothed whole brain voxel-based blood
oxygen level dependent signal changes
during observation of increasing levels
of sadness [fMRI]

– n/a – Leave-one-out cross-validation – Support vector machines (linear kernel)
with general probabilistic classification
method (transductive conformal
predictor)

– Accuracya: 86.9%
– Sensitivityb: 89.4%
– Specificityc: 84.2%

Rondina et al.
(2013)

– 30 depressed
– 30 non-depressed

– Smoothed whole brain voxel-based blood
oxygen level dependent response during
passive viewing of emotional faces [fMRI]

– Survival Count on Random
Subsamples (SCoRS)
SCoRS is compared to other methods:
– Recursive Feature Eliminationd

– Gini Contrastd

– t-testd

– Leave-one-out cross-validation – Support vector machines (linear kernel) – Accuracya: 72%
– Sensitivityb: 77%
– Specificityc: 67%

Rosa et al.
(2015)

Dataset 1
Fu et al. (2008)
– 19 depressed
– 19 non-depressed
Dataset 2
Hahn et al. (2011)
– 30 depressed
– 30 non-depressed

– Region-based functional connectivity
(sparse compared to non-sparse
network-based features) [fMRI]

– n/a –
Leave-one-subject-per-group-out
cross-validation

– Sparse L1-norm support vector
machines (linear kernel)
– Non-sparse L2-norm support
vector machines (linear kernel)
for comparisond

Dataset 1
– Accuracya: 78.95%
– Sensitivityb: 68.42%
– Specificityc: 89.47%
Dataset 2
– Accuracya: 85.00%
– Sensitivityb: 83.33%
– Specificityc: 86.67%

Zeng et al.
(2012)

– 24 depressed
– 29 non-depressed

– Region-based resting state functional
connectivity [fMRI]

– Filter method using Kendall tau
rank correlation coefficient

– Leave-one-out cross-validation – Support vector machines (linear kernel) – Accuracya: 94.3%
– Sensitivityb: 100%
– Specificityc: 89.7%

BDI = Beck Depression Inventory (self-rated). fMRI = functional magnetic resonance imaging. HRSD = Hamilton Rating Scale for Depression (clinician-rated). RVM = relevance vector machines. SVM = support vector machines.
a Overall classification accuracy.
b Percent depressed patients identified.
c Percent non-depressed patients identified.
d Results of methods uses for comparison are not presented.
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Table 2
Previous studies predicting depression treatment response.

Author Patient sample Features
[Imaging modality]

Feature reduction
method

Cross-validation
method

Machine learning
method

Results
(Note: highest accuracies
presented)

Costafreda
et al.
(2009)

– 9 responders
– 9 non-responders

– Smoothed gray matter
voxel-based intensity values
[T1-weighted]

– Voxel based
morphometry
– Filter method using
ANOVA

– Leave-one-out
cross-validation

– Support vector machines – Accuracya: 88.9%
– Sensitivityb: 88.9%
– Specificityc: 88.9%

Liu et al.
(2012)

– 17 responders
– 18
non-responders

– Gray and white matter
smoothed voxel-based
intensity values
[T1-weighted]

– Multivariate pattern
analysis
– Searchlight algorithm
– Principal component
analysis

– Leave-one-out
cross-validation

– Support vector machines
(linear kernel)

– Accuracya: 82.9%

Marquand
et al.
(2008)

– 9 responders
– 9 non-responders

– Smoothed whole brain
voxel-based blood oxygen level
dependent response during a
verbal working memory fMRI
task [fMRI]

– Principal component
analysis

– Leave-one-out
cross-validation

– Support vector machines
(linear kernel)

– Accuracya: 69%
– Sensitivityb: 85%
– Specificityc: 52%

Nouretdinov
et al.
(2011)

– 9 responders
– 9 non-responders

– Smoothed voxel-based
intensity values [T1-weighted]

– n/a – Leave-one-out
cross-validation

– Support vector machines
(linear kernel) with general
probabilistic classification
method (transductive
conformal predictor)

– Accuracya: 83.3%
– Sensitivityb: 77.8%
– Specificityc: 88.9%

a Overall classification accuracy.
b Percent responders identified.
c Percent non-responders identified.
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quite understandable. With respect to fMRI research, multiple efforts to
create repositories to which individual groups can contribute data have
attempted to address the broader issue of small sample sizes within neu-
roimaging research. These include the 1000 Functional Connectomes Pro-
ject, the International Neuroimaging Data-Sharing Initiative, and the
OpenfMRI Project, which are supported by the National Institutes of
Health and the National Science Foundation. While these repositories
are an encouraging step, lack of uniformity between contributing sites
with respect to imaging parameters may introduce bias that impairs the
sensitivity of studies which aggregate the data. Ideally, acquisition and
processing parameters will progressively become more standardized
throughout the neuroimaging research community, allowing for more
meaningful data pooling. Nonetheless, in the meantime, it may be valu-
able to continue conductingmachine learning studieswith available sam-
ple sizes to refine prediction models.

3.2. Features

Features used by past studies have primarily focused on extracting
information from T1-weighted imaging and fMRI. The use of these
features in an initial attempt to model depression diagnosis and treat-
ment response is in accordance with past neuroimaging-based studies
that have predominantly found anatomical changes and altered brain
activity to be valuable biomarkers of major depression (Dunlop and
Mayberg, 2014; McGrath et al., 2013).

3.3. Learning method(s)

All past studies, except one which is a regression-based study
(Mwangi et al., Jan 2012), have used support vector machines or a var-
iant method as either their primary method or as a means of compari-
son with their primary method. Given the literature on machine
learningmethods, support vectormachines are a popularmethod as ob-
served among depression studies. Support vector machines draw its
popularity from its useful strengths – especially when working with
real-world data – including a reliable theoretical foundation and its in-
sensitivity to high-dimensional data. Nevertheless, there are other
methods that may perform equally well or better depending on the na-
ture of the data (Wu et al., 2008).

However, there is variability as to whether a linear or non-linear
learning method was used among these past studies. According to
support vector machine literature, if the number of samples is signifi-
cantly less than the number of features – which may be the case for
several of these studies – non-linear learning methods do not signifi-
cantly affect the results and it may be better to simply use linear learn-
ing methods (Hsu et al., 2010; Raudys and Jain, 1991). Thus, to avoid
complexity and chances of overfitting, linear learning methods may be
optimal.

3.4. Feature reduction method(s)

Compared to other methods, the past studies show the greatest het-
erogeneity in their selection of feature reduction methods. Neverthe-
less, the most commonly used methods fall into the category of
supervised feature selection methods. Given the small sample sizes
used by the past studies and the literature indicating that the perfor-
mance of feature selection improves with an increase in sample size
(Jain and Zongker, 1997), performing supervised feature selection
methods on the small dataset may be suboptimal. Hypothetically, a
more effective approach for obtaining a model that generalizes well
over unseen data, as used by Fu et al. (2008), may be to perform feature
selection based on biomarkers already shown to be associated with
major depression and its treatment response by larger studies. Howev-
er, this requires further testingwith larger test sets to gain amore objec-
tive understanding of which feature reduction methods produce an
optimal model given smaller datasets.

Some past studies have also used an unsupervised feature reduction
method, namely principal component analysis. Once again, it may be
more effective to perform unsupervised feature reduction methods on
larger datasets as they providemore information for generalizing popu-
lation trends accurately (Osborne and Costello, 2004).

3.5. Cross-validation method

Most past studies have used the leave-one-out cross-validation
method. This is not surprising as it is themost popularmethod for stud-
ies with small sample sizes (e.g. proof-of-concept studies). Compared to
several other cross-validation methods, the leave-one-out cross-
validation method provides the learning method with more data for
training a prediction model. Thus, it is utilized when the available data
is limited due to a small sample size. Nevertheless, it is associated
with high variancemaking it unreliable for obtaining accurate estimates
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of a predictionmodel for larger-scale studies (Elisseeff and Pontil, 2002;
Refaeilzadeh, et al., 2009).

4. Future directions

Based on the discussion in the previous section of past studies, in this
section we suggest some potential directions to explore for future
studies.

4.1. Larger sample sizes

So far most past depression prediction studies have used a small
sample size; especiallywhen predicting depression treatment response.
Even though a small sample size provides an initial direction for devel-
oping a predictionmodel, a larger sample size is valuable for developing
a more robust prediction model that generalizes well to the wider pop-
ulation. By building a larger database for training a prediction model
(such as collaborative databases like the Alzheimer's Disease Neuroim-
aging Initiative), the variations observed amongdepression patients can
be more thoroughly incorporated which in the future may result in
models with true clinical utility.

As the studies begin to use larger datasets, the methods employed
will likely begin to vary and demonstrate improved validation mea-
sures. More specifically, the k-fold cross-validation method can be
used with larger k-values instead of leave-one-out to allow for larger
test sets on which to test prediction models and improve the generaliz-
ability of the models. The feature reduction methods will also improve
in performance as they are shown to be affected by sample size. Last
but not least, the selection of learning methods that work effectively
with larger datasets is also more extensive. More details on selecting
learning methods are provided under the Learning method(s) section
below.

4.2. Learning method(s)

To accurately learn a framework or problem, it is not only important
to select the right features, but also to select the right learning method.
Sometimes, in order to create a larger sample sizewith a limiteddataset,
it may be useful to incorporate unlabeled data.

Thus, the first step is to determine whether the given data to be
learned consists of labeled instances only, a mixture of labeled and un-
labeled instances, or unlabeled instances only. Consequently, this will
determine whether to use a supervised, semi-supervised, or unsuper-
vised learning method, respectively. If data consist of a mixture of la-
beled and unlabeled instances, it would be beneficial to determine
whether or not the unlabeled instances would help the learning meth-
od. If the unlabeled data does not sufficiently increase the overall sam-
ple size, it may be better to exclude it. The second step is to determine
the goal (e.g. classification, regression, or clustering) of the learning
method. The third step is to decidewhether the nature of the data is lin-
ear or non-linear. Generally, when the data size is small, it is better to
use a linearmethod to avoid overfitting. However, if the data size is suf-
ficiently large, it may be beneficial to test non-linear methods to allow
for more flexibility in the learning. The fourth step is then to select the
learning method from the narrowed down options.

Since no one learningmethod is the best for all applications, it may be
useful to test multiple methods. When selecting a learning method for a
given framework or problem, one should consider evaluating several dif-
ferent aspects of themethod including: computation time, underlying as-
sumptions, interpretability, complexity, flexibility, optimization ability,
and previous applications by other studies. If there are still too many op-
tions of methods to choose from, it may be helpful to use machine learn-
ing libraries (e.g. LIBSVM, LIBLINEAR) or software (e.g. MATLAB, Python
scikit-learn, WEKA) for testing the performance of different methods on
the data. Conversely, if there are too few options, it may be beneficial to
modify (e.g. add constraints, regularize, combine methods (including
learning, feature reduction, and/or boosting methods)), existing learning
methods to make them more suitable for learning the given data. These
and related techniques for selecting learningmethods have been success-
fully utilized by Bibi and Stamelos (2006), Frank et al. (2004) andKotthoff
et al. (2012).

4.3. Parameter(s) selection

Parameter selection is a method that very few past studies (e.g.
Mourao-Miranda et al., 2011; Mwangi et al., May 2012; Rosa et al.,
2015) have utilized to optimize their results. However, this may relate
to it being a more effective method on larger datasets, which would
have greater variability in data than smaller datasets. In this section,
we discuss the effects and implementation of parameter selection.

It is useful to perform a parameter selection process because some-
times slight changes to a certain parameter's values of a given learning
method cause considerable variability in the resulting prediction
model. Selection of a parameter that somehow regulates the complexity
(e.g. regularization parameters, which penalize complexity and target
the overfitting problem) of the prediction model developed by the
learning method is especially important. This is because, as discussed
earlier, the complexity of a prediction model determines whether it
overfits or underfits the data, which impacts its generalizability. The
most common approach used for parameter selection is cross-
validation to determine optimal parameter values (Lim and Yu, 2013).

However, a cross-validation technique is most-likely already being
used to evaluate the overall generalization-based performance of a
learning method. Thus to perform parameter selection, a nested inner
cross-validation loop would need to be implemented. For this inner
cross-validation loop, the training set at every iteration of the outer
cross-validation loop is used as the full data set on which parameter se-
lection is performed. This inner cross-validation loop would be imple-
mented between steps one and two of the 4-step process of the k-fold
cross-validation technique described in the Introduction section.

Any of the cross-validation techniques described in the “Cross-
validation” section or any variant of these techniques (e.g. estimation
stability with cross validation) can be used for the inner cross-
validation loop to perform parameter selection. The only difference is
that instead of iterating through different test sets, the parameter selec-
tion method iterates through each of the pre-defined set of possible pa-
rameter values. At every iteration, it uses the same training and test set
to estimate a model that describes the data and assess the precision of
the model by computing appropriate validation measures respectively.
The parameter value that results in the most precise model is then se-
lected as the optimal parameter value. The selected parameter value is
then used to train the full data set (i.e. the training set of the outer
cross-validation loop) for step 2 from the 4-step process of the k-fold
cross-validation technique (Kohavi and John, 1995; Lim and Yu, 2013).

The process of selecting multiple parameters' optimal values is sim-
ilar to the process used to select oneparameter's optimal value. The only
difference is that the cross-validation method iterates through each
possible set of values from each parameter to find the optimal set. All
possible combinations of a set of parameters' values are identified
from pre-defined options of values for each parameter using the grid
search technique (Bergstra and Bengio, 2012).

4.4. Variation in features

Although T1-weighted imaging and fMRI biomarker have been pri-
marily associated with depression, there are more recent studies that
have shown the relevance of DTI biomarkers (Dunlop and Mayberg,
2014; Schneider et al., 2011). Additionally, non-imaging measures
have also been studied as potential biomarkers for depression and its
treatment response (Lopresti et al., 2014; Thase, 2014). Thus it would
be intriguing to study how multi-modal MRI features in conjunction
with non-imaging measures affect prediction models of depression
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and its treatment response. Given the non-linearity of the brain's func-
tionality, it is likely that a non-linear relation between these features
may produce optimal prediction models as is shown by a preliminary
study on late-life depression (Patel et al., 2015).

4.5. Clinical application

The longer term goal for this burgeoning field will be to identify and
coalesce around a specific machine-learning technique or set of related
techniques that have demonstrated significant accuracy, precision, sen-
sitivity, and specificity in identification of treatment non-response at
baseline or early in a treatment course.While such a scenario is unlikely
to occur for a number of years, support vector machines and a few other
supervised learning algorithms are currently showing promise in this
area. Notwithstanding, when a sufficiently effective method has been
thoroughly validated through preliminary studies, progressing to clini-
cal trials will be necessary to demonstrate whether this technology
will actually benefit patients. Specifically, future clinical trials will
need to establish that machine-learningmethods can successfully iden-
tify depressed patients unlikely to respond to the current agent being
trialed, and that clinicians' use of this information results in improved
outcomes for patients (i.e. decreased latency between diagnosis and re-
mission). The latter will presumably result from clinicians either
switching to other agents or attempting different treatment modalities,
such as ECT or cognitive–behavioral therapy. With only 50% of patients
experiencing treatment response to first-line agents, and an adequate
antidepressant trial requiring several weeks before symptom improve-
ment becomes evident, machine-learning methods have the potential
to significantly reduce the duration of patient suffering. Outside
the scope of depression, these techniques have shown promise in
predicting treatment response in other various other psychiatric dis-
eases, including schizophrenia and obsessive–compulsive disorder
(Khodayari-Rostamabad et al., 2010; Salomoni et al., 2009). Therefore,
advances in development of machine-learning are likely to have wide-
ranging implications throughout psychiatry, regardless of the specific
disease to which they are first applied.
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