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Abstract: Ga2O3/4H-SiC n-n isotype heterojunction diodes were fabricated by depositing Ga2O3 thin
films by RF magnetron sputtering. The influence of annealing atmosphere on the film quality and
electrical properties of Ga2O3 layers was investigated. X-ray diffraction (XRD) analysis showed a
significant increase in the peak intensities of different faces ofβ-Ga2O3 {(−201), (−401) and (002)}. X-ray
photoelectron spectroscopy (XPS) measurement showed that the atomic ratio of oxygen increases
under high-temperature annealing. Moreover, an N2-annealed diode exhibited a greater rectifying
ratio and a lower thermal activation energy owing to the decrease in oxygen-related traps and
vacancies on the Ga2O3 film and Ga2O3–metal interface.
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1. Introduction

Wide bandgap (WBG) semiconductors find applications in high-power transistors and light
detectors. Among the more promising WBG materials, gallium oxide (Ga2O3) is uniquely transparent
to visible and ultraviolet light [1–3]. It has a bandgap ranging from ~4.6 to ~4.9 eV, resulting in a
high electric breakdown field strength of ~8 MV/cm. The Baliga’s figure of merit (BFOM) of Ga2O3 is
3400, which is roughly four times higher than that of gallium nitride [4,5]. Ga2O3 has five crystalline
modifications (α, β, γ, δ, and ε), among which the monoclinic β-phase is most stable. Metastable
Ga2O3 films can be obtained by thermal annealing and can be subsequently converted into β-Ga2O3

in a relatively convenient manner. Ga2O3 is natively n-doped in the range of 1016–1018 cm−3 due to
oxygen vacancies and can be further n-doped to free carrier densities by adding Si, Sn, or Ge [6–11].

Recrystallization through thermal annealing helps reduce oxygen-related charge traps and is
generally an effective method for improving the quality of Ga2O3 [12,13]. Therefore, investigating
the annealing process for Ga2O3 is a promising research direction. Polycrystalline Ga2O3 films on
glass or sapphire substrates have been converted from amorphous phase through high-temperature
annealing [14–16]. Hexagonal silicon carbide (4H-SiC; bandgap of ~3.26 eV) can be used as a substrate
to grow β-Ga2O3 layers [17]. Hexagonal silicon carbide (a, b = 3.10 Å and c = 10.12 Å) has a low lattice
mismatch of ~2 % with Ga2O3 (a = 12.33 Å, b = 3.04 Å, and c = 5.80 Å). It also and exhibits a higher
thermal conductivity (~4.5 W/cm·◦C) than other WBG materials such as GaN (~1.3 W/cm·◦C) and
Ga2O3 (0.5 W/cm·◦C), making it a suitable substrate for high power applications.

In this work, heterojunction diodes were fabricated by depositing Ga2O3 on a 4H-SiC substrate
and annealing the diodes under different annealing gases. The effects of the applied annealing gas on
the material properties of the resulting Ga2O3 thin films and the electrical performance of the diodes
manufactured from this material are investigated.
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2. Materials and Methods

As a substrate for the gallium oxide film, we used a n-type 4H-SiC wafer (doping concentration:
5 × 1016 cm−3), with a layer of epitaxially grown 4H-SiC (n-type; 1.0 × 1019 cm−3), as shown in Figure 1.
After cleaning the SiC wafer with SPM solution (H2SO4:H2O2 = 4:1), we stripped the native silicon
dioxide (SiO2) layer using a buffered oxide etch (BOE). A 200-nm-thick nickel film cathode was formed
on the bottom side of the SiC wafer by E-beam evaporation. After Ni deposition, the samples were
annealed at 950 ◦C in N2 for 10 min by rapid thermal annealing (RTA) for forming ohmic contacts.
Gallium oxide thin films were then deposited by radio frequency (RF) sputtering of a Ga2O3 (99.99%
purity) target. Before deposition, the chamber was evacuated to 2.0 × 10−6 Torr. The films were grown
on the epitaxial 4H-SiC layer under 35 mTorr at a pure argon mass flow rate of 4.6 sccm. The RF power
was 140 W, and the films were deposited on room temperature. The thickness of the deposited films
ranged from 100 to 250 nm. The SiC wafers, with the deposited Ga2O3 films, were annealed at 800 ◦C
for 40 min under different atmospheres (pure oxygen and nitrogen gas). An electrode was formed by
deposition of 120 nm of nickel on the Ga2O3 layer.
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higher than those of the other samples, as nitrogen appears to improve the crystal quality of the Ga2O3 
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Figure 1. Structure of Ga2O3/4H-SiC heterojunction diode and fabrication flow.

3. Results

3.1. Material Properties

To compare the influence of different annealing atmospheres on the crystallinity of Ga2O3

deposited on the 4H-SiC substrates, X-ray diffraction (XRD) θ–2θ scans were performed on the
as-grown, O2 and N2–annealed samples. As shown in Figure 2, all the sample sets show reflections
corresponding to polycrystalline Ga2O3 with a monoclinic structure from Rietveld refinement by
using General Structure Analysis System (GSAS) [18,19]. All the manufactured samples give β-Ga2O3

diffraction peaks corresponding to (−201), (−401), and (002) faces. The crystal structures remained
stable. In fact, the peak intensities were further enhanced after annealing. In particular, the peak
intensities corresponding to the (−201) and (−401) faces significantly increased after N2 annealing.
As explained in the literature, Ga and O atoms migrate under high-temperature annealing and thus
help improve the crystallinity of Ga2O3. Furthermore, dangling bonds related to oxygen defects at
grain boundaries can be passivated by N2 annealing by incorporating nitrogen atoms at gallium or
oxygen lattice sites [20,21]. Consequently, the diffraction peak intensities of the N2-annealed samples
are higher than those of the other samples, as nitrogen appears to improve the crystal quality of the
Ga2O3 [22,23].
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Figure 4 shows the XPS spectra of the O 1s peaks of the three different sample sets. The peaks 
were calibrated using C 1s at 284.6 eV, in which the O 1s peaks were fitted using two Gaussian peaks, 
corresponding to Ga2O3 and GaOx phases, respectively. After annealing in O2 and N2 atmosphere, the 
peak intensity of the GaOx phase decreases, whereas that of the Ga2O3 phase increases. The GaOx 

Figure 2. XRD spectra of samples and refinement results of Ga2O3 annealed under different atmosphere.

Figure 3a shows the optical transmittance spectra of the samples for wavelengths between 200
and 400 nm. All the samples exhibit a high transmittance (over ~80 %) at wavelengths longer than
300 nm. The oxygen concentration in the Ga2O3 crystals will affect the charge states, which in turn
will influence such electrical parameters as bandgap and, consequently, the transmittance [24,25].
The optical bandgap is extracted from the linear part of the graph, shown in Figure 3b, for (αhν)2 = 0,
where hν is the photon energy, and α is the coefficient of absorption. α = ln(100/T)/d, where T and d is
the transmittance and thickness (120 nm) of the Ga2O3 films, respectively. For the as-grown samples,
the bandgap of the Ga2O3 film is found to be ~5.01 eV. The bandgaps of the samples annealed under
O2 and N2 atmosphere are ~4.91 and ~4.89 eV, respectively. The bandgap of the N2-annealed sample is
close to the typically reported bandgap value of ~4.9 eV for β-phase Ga2O3 [26].
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different atmospheres.

Figure 4 shows the XPS spectra of the O 1s peaks of the three different sample sets. The peaks
were calibrated using C 1s at 284.6 eV, in which the O 1s peaks were fitted using two Gaussian peaks,
corresponding to Ga2O3 and GaOx phases, respectively. After annealing in O2 and N2 atmosphere, the
peak intensity of the GaOx phase decreases, whereas that of the Ga2O3 phase increases. The GaOx
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peak is reported to have a connection with oxygen vacancies [26]. The magnitude of the peak intensity
corresponding to the GaOx phase was reduced, from 37.5% for the as-grown sample to 20.3% and
13.6% for the O2 and N2-annealed samples, respectively. This is considered to indicate a decrease in
the number of defects, such as oxygen vacancies and oxygen sites. The atomic ratios of O to Ga in the
samples are 1.40, 1.43 and 1.42 for as-grown, O2 and N2 annealed Ga2O3. These different stoichiometric
ratios indicate that an increased concentration of O2 in the annealing gas can somewhat raise the
number of oxygen atoms in the films.
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3.2. Electrical Properties

Figure 5 shows the graph of 1/C2 as a function of the reverse voltage bias applied to the
Ga2O3/4H-SiC diodes. The built-in voltage (Vbi) and doping concentration can be extracted from the
extrapolated graph of 1/C2 versus the voltage. Vbi is calculated from the V-axis intercept of the fitted
graph. The doping concentration is derived from the slope of 1/C2–V using Equation (1).

1
C2 =

2
qA2

εGa2O3NGa2O3 + εSiCNSiC

NGa2O3NSiCεGa2O3εSiC
(Vbi −V) (1)

The extracted values of Vbi and doping concentration of the Ga2O3 thin films are 0.47, 0.86, and
1.01 V and 9.59× 1015, 1.62× 1016, and 2.01× 1016 cm−3 for the as-grown, O2-annealed, and N2-annealed
samples, respectively. The Vbi and doping concentration values increased after annealing, because
of the decrease in oxygen-related traps. The increase in the built-in voltage can be attributed to the
changes in the dopant concentration and the concentration of interface states of Ga2O3.
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Figure 6 shows the typical I–V characteristics of the fabricated Ga2O3/4H-SiC n-n diodes both in
the logarithmic and linear scales. As shown in the figure, the as-grown diode has a high leakage current
(~1.60 × 10−5 A) and a low rectifying ratio (~3.0 × 103) measured at forward (3 V) and reverse biases
(−3 V). The rectifying behavior of the O2 and N2-annealed diodes is improved. The different samples
exhibit a similar leakage current value of approximately 8.1 × 10−11 A. The N2-annealed diode exhibits
a higher on-current when a forward voltage is applied, with a rectifying ratio of ~5.0 × 107, which
may be related to the reduced oxygen trap concentrations after annealing. The threshold voltages of
the diodes are ~1.55, ~1.47, and ~1.27 V for the as-grown, O2 and N2-annealed samples, respectively.
The ideality factor at room temperature can be extracted from Equation (2).

I = IO

[
e

V
ηKBT − 1

]
(2)

Here, I and V are the forward current and voltage, respectively, I0 is the saturation current, kB is
Boltzmann’s constant, T is the absolute temperature, and η is the ideality factor. The ideality factor is
significantly reduced after the annealing process; the ideality factor of the N2-annealed diode is 2.8,
which is half that of the O2-annealed diode. The lower ideality factor and the higher built-in voltage of
the annealed diodes are attributed to the improved crystallinity and interface properties.
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The thermal activation energy (EA) is obtained from the ln (IO)–1/kT plot shown in Figure 7.
The graph was plotted in the temperature range of 298–523 K with a temperature step of 25 K, where
IO is the reverse saturation current at −3 V, and T and k are the absolute temperature and Boltzmann’s
constant, respectively. The extracted activation energy from the experimental measurements are related
to trap states at the metal–Ga2O3 interfaces and the barrier heights. Low activation energy values
suggest a high concentration of the trap states at the interface, which results in increased trap-assisted
tunneling or thermionic emission probabilities across the barrier. As shown in Figure 6, the extracted
activation energy of the devices increases after annealing. In particular, the activation energy of the
N2-annealed sample (0.504 eV) is twice that of the as-grown sample. The improved rectifying ratio of
the N2-annealed diode is also attributed to the increased activation energy.
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We fabricated polycrystalline β-Ga2O3/4H-SiC heterojunction diodes annealed under different
gas atmospheres (O2 and N2). The material and electrical properties of the diodes were investigated
to understand the effects of the different annealing gases on the device characteristics. X-ray
diffraction peaks corresponding to the different faces of β-Ga2O3 {(−201), (−402), and (002)} were
observed to significantly increase, while the bandgap somewhat decreased to ~4.9 eV after annealing.
The post-annealing decrease in the GaOx peak intensity indicates a decrease in the number of oxygen
vacancies. With regard to the electrical properties, the leakage current decreased nearly 1000 times
after annealing. To summarize, the N2-annealed sample exhibited higher rectifying ratio and built
in voltage, decreased threshold voltage, lower ideality factor, and higher activation energy than the
as-grown and O2-annealed samples. Therefore, we conclude that the performance of N2-annealed
diodes at high temperatures is more stable due to higher activation energy compare with built-in
voltage due to a lower concentration of trap states.
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