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This data article presents the microstructural data as well as the
mechanical properties of the CrCoNi medium-entropy alloy (MEA).
The data presented in this article are related to the research article
entitled “Analysis of strengthening due to grain boundaries and
annealing twin boundaries in the CrCoNi medium-entropy alloy”,
see Ref. Schneider et al., 2019. This article can be referred to for the
analysis and interpretation of the data, as well as their comparison
to other datasets in literature. Microstructural data available in the
present paper are backscattered electron micrographs for sixteen
different grain sizes. Also available are pdf reports of grain size
analysis (annealing twin boundaries were neglected) and crystal-
lite sizes (including annealing twin boundaries) as well as data
describing the number of annealing twin boundaries per grain (n),
corresponding Taylor factors (M) and average annealing twin
thicknesses (t). Additionally, raw data of stress-strain curves at five
different temperatures [77 K, 293 K, 473 K, 673 K and 873 K] are
given for all sixteen grain sizes, which may be used for further
research, e.g. data mining, machine learning and other analytical
methods. Mechanical data such as yield stresses (s0.2%), Hall-Petch
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1. Data

The data presented in this section summarize microstructural data (e.g. mean grain size (d), mean
crystallite size (c), number of annealing twin boundaries per grain (n), Taylor factors (M) and average
annealing twin thickness (t)) obtained for the equiatomic CrCoNi alloy after heat treatments at tem-
peratures between 1073 K and 1473 K for durations ranging from 15 min to three weeks (see Table 1).
Different methods were used to assess the grain size, namely the Heyn lineal intercept method using
BSEmicrographs and electron backscatter diffraction (EBSD), see Ref. [1]. These results are compared in
Table 2. Mechanical properties of samples tested in compression having the same grain sizes as listed in
Table 1 and resulting Hall-Petch parameters are given in Tables 3 and 4, respectively. Results of 1-D
discrete dislocation dynamics (1-D DDD) simulations, conducted to shed light on the relative contri-
butions of grain boundaries and annealing twin boundaries to the materials overall strength are
presented in Table 5. Additionally, raw tensile stress-strain curves obtained at temperatures between
77 K and 873 K, BSE micrographs of recrystallized microstructures as well as pdf reports of grain and
crystallite size distributions are given in attached files.
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Table 1
Mean grain size (d), crystallite size (c), number of annealing twin boundaries per grain (n), Taylor factors (M) and average
thickness of annealing twins (t) after heat treatments at different temperatures (T) and times. The parameter d counts only the
grain-boundary intersections whereas c is determined by counting intersection with both grain and annealing twin boundaries.

T (K) time (min) d (mm) c (mm) n (�) Magnification M t (mm)

1073 15 3.2 ± 0.4 1.3 ± 0.1 1.5 ± 0.12 500 2.99 0.4 ± 0.01
1073 120 4.2 ± 0.1 2.0 ± 0.1 1.1 ± 0.06 400 3.04 0.6 ± 0.02
1073 180 5.3 ± 0.4 2.3 ± 0.1 1.0 ± 0.15 400 2.99 0.8 ± 0.03
1173 10 4.5 ± 0.6 2.2 ± 0.1 1.3 ± 0.07 400 3.07 0.7 ± 0.02
1173 15 5.7 ± 0.5 2.5 ± 0.2 1.2 ± 0.04 400 3.10 0.9 ± 0.03
1173 20 5.4 ± 0.4 2.9 ± 0.1 0.9 ± 0.04 400 3.04 1.0 ± 0.03
1173 30 7.1 ± 0.4 3.2 ± 0.2 1.3 ± 0.04 300 3.05 1.1 ± 0.03
1173 45 8.4 ± 0.1 4.0 ± 0.1 1.1 ± 0.01 300 3.06 1.5 ± 0.05
1173 60 8.7 ± 0.5 4.8 ± 0.4 0.8 ± 0.03 300 3.08 1.5 ± 0.04
1173 120 13 ± 2 5.7 ± 0.4 1.2 ± 0.15 300 3.09 1.8 ± 0.05
1173 180 16 ± 1 6.9 ± 0.4 1.4 ± 0.06 200 3.09 2.4 ± 0.07
1273 60 33 ± 2 15.8 ± 0.8 1.1 ± 0.01 75 3.08 5.9 ± 0.18
1273 180 42 ± 1 18.5 ± 0.3 1.2 ± 0.01 75 3.10 7.5 ± 0.23
1373 30 61 ± 5 23 ± 1 1.7 ± 0.1 65 3.08 8.7 ± 0.26
1473 30 115 ± 8 42 ± 2 1.8 ± 0.01 70 3.29 13 ± 0.39
1473 30240 174 ± 10 50 ± 3 2.5 ± 0.03 75 3.26 22 ± 0.65
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Please note, that due to the high resolution (4096 pixels � 3775 pixels) of the BSE micrographs, the
upload limit (500MB) of “Data in Brief”was exceeded. Therefore, out of four BSEmicrographs per grain
size, only one image is given in the attached files. However, to make all high quality BSE images
available for machine learning, all BSEmicrographs can be downloaded from https://ruhr-uni-bochum.
sciebo.de/s/kyYFnQ1UonJc7Wx. The BSE micrographs can also be sent on request via a link or per e-
mail.
2. Experimental design, materials, and methods

Backscatter electron (BSE) micrographs were taken using a scanning electron microscope (SEM) of
type Quanta FEI 650 ESEMwith an accelerating voltage of 15e30 kV and aworking distance of ~10mm.
Mean grain sizes (d) and mean crystallite sizes (c) were determined using the Heyn linear intercept
method. For each micrograph, four equidistant and parallel lines of identical length were used for the
Table 2
Comparison of the mean grain size (excluding twin
boundaries) obtained by the linear intercept method
(dLIM) with that determined by EBSD (dEBSD).

dLIM (mm) dEBSD (mm)

3.2 ± 0.4 2.0 ± 0.4
4.2 ± 0.1 3.4 ± 0.1
4.5 ± 0.6 4.0 ± 0.6
5.3 ± 0.4 4.0 ± 0.4
5.7 ± 0.5 4.6 ± 0.5
5.4 ± 0.4 6.4 ± 0.4
7.1 ± 0.4 5.8 ± 0.4
8.4 ± 0.1 7.4 ± 0.1
8.7 ± 0.5 8.4 ± 0.5
13 ± 2 13.2 ± 1.7
16 ± 1 17.5 ± 1.3
33 ± 2 33 ± 1.6
42 ± 1 37 ± 0.7
61 ± 5 61 ± 3
115 ± 8 126 ± 5
174 ± 10 173 ± 10
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Table 3
Yield stresses s0.2% for sixteen grain (d) and crystallite (c) sizes obtained at five different temperatures.

d (mm) c (mm) s0.2% (MPa)

77 K 293 K 473 K 673 K 873 K

3.2 ± 0.4 1.3 ± 0.1 833 ± 17 682 ± 14 592 ± 12 504 ± 10 346 ± 7
4.2 ± 0.1 2.0 ± 0.1 748 ± 15 545 ± 11 465 ± 9 421 ± 8 278 ± 6
5.3 ± 0.4 2.3 ± 0.1 749 ± 15 563 ± 11 458 ± 9 409 ± 8 281 ± 6
4.5 ± 0.6 2.2 ± 0.1 719 ± 14 530 ± 11 429 ± 9 400 ± 8 305 ± 6
5.7 ± 0.5 2.5 ± 0.2 714 ± 14 507 ± 10 419 ± 8 387 ± 8 283 ± 6
5.4 ± 0.4 2.9 ± 0.1 685 ± 13 505 ± 10 411 ± 8 353 ± 7 281 ± 6
7.1 ± 0.4 3.2 ± 0.2 650 ± 13 440 ± 9 364 ± 7 317 ± 6 258 ± 5
8.4 ± 0.1 4.0 ± 0.1 e 424 ± 9 357 ± 7 303 ± 6 238 ± 5
8.7 ± 0.5 4.8 ± 0.4 634 ± 13 415 ± 8 325 ± 7 290 ± 6 219 ± 4
13 ± 2 5.7 ± 0.4 578 ± 12 378 ± 8 296 ± 6 258 ± 5 188 ± 4
16 ± 1 6.9 ± 0.4 566 ± 11 360 ± 7 279 ± 5 232 ± 5 189 ± 4
33 ± 2 15.8 ± 0.8 484 ± 10 290 ± 6 221 ± 4 184 ± 4 197 ± 4
42 ± 1 18.5 ± 0.3 475 ± 10 275 ± 6 200 ± 4 167 ± 3 142 ± 3
61 ± 5 23 ± 1 447 ± 9 263 ± 5 181 ± 4 141 ± 3 122 ± 2
115 ± 8 42 ± 2 438 ± 9 241 ± 5 169 ± 3 134 ± 3 112 ± 2
174 ± 10 50 ± 3 454 ± 9 234 ± 4 157 ± 3 114 ± 2 e
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assessment. Following the procedure in ASTM E-112, each line intersected at least 50 grains, resulting
in 500e1000 intercepts per micrograph. Four backscatter electron (BSE) micrographs, taken at loca-
tions spaced 1 mm apart between the center and the outer surface of the annealed rods were used per
material state. In the related article, mean grain and crystallite sizes are calculated as the average of
four independent measurements and the error bars correspond to the mean deviation from this mean
value, similar to the procedure reported in Ref. [2]. The heat treatments described in section 2.1 in
Ref. [1] yielded 16 different grain sizes (d), as listed in Table 1. Also listed in the table are the crystallite
sizes (c), which include both annealing twin boundaries and grain boundaries, as well as the number of
Table 5
Critical resolved shear stresses t0.2% at room temperature for seven different crystallite sizes (c) obtained by compression ex-
periments and 1-D discrete dislocation dynamic (1-D DDD) simulations. For the simulations eight different combinations of
grain boundary strength and annealing twin boundary strength (tg/tt) were considered.

c (mm) t0.2% (MPa) t0.2% (MPa)

Experiment 0.8/0.8 1.0/0.7 1.3/0.6 1.65/0.5 2.2/0.3 2.8/0.0 0.4/0.9 0.0/0.94

1.3 ± 0.1 223 ± 7 247 251 251 247 251 247 249 251
2.0 ± 0.1 178 ± 5 221 224 218 223 219 215 215 215
2.9 ± 0.1 165 ± 5 169 165 167 167 163 163 163 164
4.0 ± 0.1 139 ± 4 155 151 151 153 153 149 153 153
6.9 ± 0.4 118 ± 4 121 119 119 121 119 117 119 119
18.5 ± 0.3 90 ± 3 97 97 97 97 97 95 97 95
42 ± 2 73 ± 2 73 73 73 73 73 71 73 73

Table 4
Hall-Petch parameters s0 and ky and the critical boundary strength tc for five different temperatures.

T (K) s0 (MPa) ky (MPa mm1/2) tc (GPa)

d c d c d c

77 340 ± 6 330 ± 7 842 ± 25 601 ± 17 2.5 ± 0.3 1.3 ± 0.1
293 150 ± 4 135 ± 4 815 ± 17 598 ± 12 2.5 ± 0.2 1.3 ± 0.1
473 80 ± 3 68 ± 3 775 ± 14 565 ± 10 2.4 ± 0.2 1.3 ± 0.1
673 50 ± 2 35 ± 3 746 ± 13 545 ± 9 2.4 ± 0.2 1.3 ± 0.1
873 50 ± 10a 30 ± 10a 600 ± 60a 470 ± 50a 1.7 ± 0.4a 1.0 ± 0.3a

a based on the three largest grain/crystallite sizes only.
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annealing twin boundaries per grain (n), associated Taylor factors (M) and the average thickness of
annealing twins (t). Their detailed size distributions are provided in the supplementary material. In
Table 2 the grain sizes shown in Table 1 were remeasured using EBSD (for further details see Ref. [1])
and compared to those assessed using the Heyn lineal intercept method.

Compression tests were performed in a Zwick Roell XForce Z100 machine at temperatures ranging
from 77 K to 873 K and at an engineering strain rate of 10�3 s�1. Plastic strains of ~16e22% were
applied. The resulting raw data, which are given as Excel sheets, are named in such a way that all
relevant information can be seen directly in the following order: alloy composition, heat treatment
(temperature and time) and temperature at which the compression test was conducted (e.g.
CrCoNi_1173 K_30min_873 K). These names are also provided in the first row of the Excel file. From the
second to the fifth row, information such as diameter and height (¼ gauge length) of the sample
measured prior to deformation, and the cross-head speed are given. Additionally, for each measured
point, different parameters were recorded: time (first column), force (second column), cross-head
displacement (third and fourth column) and the temperature (fifth column). For further details on
the experimental methods the reader is referred to section 2 of the related article [1]. The yield stresses
obtained in compression at five different temperatures [77 K, 293 K, 473 K, 673 K and 873 K] are
summarized in Table 3 for all sixteen grain sizes (shown in Table 1). From these data, Hall-Petch pa-
rameters such as the intrinsic lattice strength (s0) and the Hall-Petch slope (ky) as well as the critical
boundary strength (tc) were calculated for five temperatures and the results are listed in Table 4.
Additional 1-D DDD simulations were performed to study the relative contributions of grain and
annealing twin boundaries to the overall strength of the CrCoNi alloy and compare it to the experi-
mental data. These results are, for eight different combinations of grain boundary strength and
annealing twin boundary strength (tg/tt) listed in Table 5.
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