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ABSTRACT
Fruit house microbial communities that are unique from the rest of the plant. While
symbiotic microbial communities complete important functions for their hosts, the
fruit microbiome is often understudied compared to other plant organs. Fruits are
reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus
they are directly tied to plant fitness. Fruit microbial communities may, therefore, also
impact plant fitness. In this study, we assessed how bacterial communities associated
with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial
scales (<0.5 km). A majority of the studies conducted on plant microbial communities
have been done at large spatial scales and have observedmicrobial community variation
across these large spatial scales. However, both the environment and pollinators play
a role in shaping plant microbial communities and likely have impacts on the plant
microbiome at fine scales. We collected fruit samples from eight sampling locations,
ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using
16S rRNA gene amplicon sequencing. Overall, we found no differences in observed
richness or microbial community composition among sampling locations. Bacterial
community structure of fruits collected near one another were not more different than
those that were farther apart at the scales we examined. These fine spatial scales are
important to obligate out-crossing plant species such as S. carolinense because they are
ecologically relevant to pollinators. Thus, our results could imply that pollinators serve
to homogenize fruit bacterial communities across these smaller scales.

Subjects Bioinformatics, Ecology, Microbiology, Molecular Biology, Plant Science
Keywords Solanum carolinense, Bacteria, Microbiome, Fruit microbiome, Spatial distance

INTRODUCTION
Plants, like other organisms, host diverse communities of microorganisms that are typically
dominated by bacteria (Stone, EA & Jackson, 2018). Bacteria associated with above-ground
portions of plants (the phyllosphere) play an important role in host development and
health (Gibbons & Gilbert, 2015;Grover et al., 2011; Richardson et al., 2009; Selosse, Baudoin
& Vandenkoornhuyse, 2004). Thus, understanding how these bacterial communities are
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formed and the factors that shape changes in these communities can lead to important
insights about plant health. This is especially true when we consider tissues like fruits,
which are directly tied to plant fitness (Compant et al., 2011; Eck et al., 2019; Nelson, 2018;
Tewksbury et al., 2008). Despite this importance, few studies have examined patterns of
bacterial community diversity among fruits (Compant et al., 2011;Miura et al., 2017).

A first step in understanding what shapes plant-associated microbial communities is
characterizing variation over time and space. The tendency for communities to become
increasingly dissimilar with distance is often referred to as ‘‘distance decay’’ (Finkel et al.,
2012;Morrison-Whittle & Goddard, 2015;Peay, Garbelotto & Bruns, 2010), which have been
observed in microbial communities (Feng et al., 2019). Viewed through an evolutionary
lens, this pattern of community turnover could arise from two distinct mechanisms:
local adaptation and dispersal limitation (Bell, 2010). In the first case, communities
change concordantly with niche turnover along an abiotic or biotic gradient. In the
latter case, community change occurs in the absence of an underlying environmental
or resource gradient, exhibiting geographical patterns (Barreto et al., 2014). Studies of
phyllosphere microbes have found mixed evidence for these mechanisms. For instance, a
recent study of Tamarix leaves found that bacterial community structure was influenced
by both geographic distance and environmental heterogeneity (Finkel et al., 2012). Yet, it
is challenging to find generalizable patterns, as most studies of phyllosphere communities
focus on leaves over large spatial scales, maximizing the potential to detect community
differences, even though not all studies find evidence of distance decay. For example, a
study of Pinus spp. at distances ranging from 1,800–2,400 km found no evidence that
microbial communities became more distinct with increasing distance (Redford et al.,
2010). In contrast, a recent study of Magnolia grandiflora leaves at distances up to 452 m
found that microbial communities did become more distinct the further away they were
(Stone & Jackson, 2016).

While widespread, bacteria may not be evenly distributed over large spatial scales
(Bahram et al., 2018;Delgado-Baquerizo et al., 2018). Microbial communities on plants can
be regulated by local biotic and abiotic conditions, including plant host species, geographic
location, light, temperature, wind, and humidity (Berg et al., 2014; De Vries et al., 2012). In
addition, the factors that shape bacterial distribution at global scales, such as soil pH and
temperature (Bahram et al., 2018; Delgado-Baquerizo et al., 2018), may be more nuanced
or attenuated at local levels (Igwe & Vannette, 2019; Storey et al., 2018). Further, the factors
shaping microbial diversity may interact across scales to influence community assembly
within particular communities, e.g., rhizosphere versus leaves (Levin, 1992). For example,
using genetic mutants, Lebeis et al. (2012) demonstrated that Arabidopsis plants are capable
of structuring soil bacterial communities. In contrast, Ottesen et al. (2016) found that in
the tomato phyllosphere when host and other biotic factors were ruled out using plastic
plants, bacterial communities were similar between the plastic plants and normal controls.

Studies at finer spatial scales are more limited (Stone & Jackson, 2016), and even fewer
studies have been conducted in fruit microbial communities (Miura et al., 2017). Fruit
microbial communities are likely shaped by a combination of biotic and abiotic factors
similar to those that shape the leaf microbial communities. Yet, recent studies have also
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shown that fruit and flower microbial communities differ from other above ground plant
tissues (Ottesen et al., 2013; Rasmann et al., 2012; Shade, McManus & Handelsman, 2013).
One possible explanation for this is that these tissues interface directly with pollinators,
biotic sources of additional microbes (Russell et al., 2019), especially in obligate outcrossing
species (Wei & Ashman, 2018). Since pollinators transfer microbes from one flower to the
next (Ushio et al., 2015), they may contribute to homogenizing microbial communities
locally at these finer spatial scales.

Fruit and flowers are especially warranted to studies at finer spatial scales, as pollinator
interactions are most likely to impact these tissues (Rebolleda-Gómez et al., 2019; Ushio
et al., 2015; Zemenick, Vannette & Rosenheim, 2021). Recent studies found that plant
communities with a similar floral visitor community have similar microbes (Rebolleda-
Gómez & Ashman, 2019; Zemenick et al., 2019). However, they found that while flowers
were hubs for arthropod visitation, flowers did not necessarily serve as hubs for microbes,
which suggests a degree of host sorting (Zemenick, Vannette & Rosenheim, 2021) which
supports the idea that floral visitors shape microbial communities. However, little is
known regarding how this could impact fruit microbial communities.

Here, we hypothesized that bacterial communities associated with fruit that are spatially
closer to one another will be more similar. This is because they are more likely to share a
similar environment and be exposed to the same pollinator, since pollinators are known
to visit multiple flowers. To address this hypothesis, we sampled the fruit of Carolina
horsenettle, Solanum carolinense, a native herbaceous perennial weed that is an obligate
outcrossing species, at a fine scale (under 450 m) and compared bacterial community
composition at different distances to determine if we observed distance decay in the
bacterial communities associated with fruit.

MATERIALS & METHODS
Study species: Solanum carolinense
Solanum carolinense L. (Solanaceae) is a native herbaceous perennial weed found
throughoutmost of the easternUnited States. This species reproduces both via underground
horizontal roots (rhizomes) and by seed. Inflorescences are in clusters of 1–12 blossoms
and are frequently perfect and functionally hermaphroditic. Solanum carolinense is known
to be an obligate out-crosser, meaning that it cannot self-pollinate and relies on pollinators,
specifically buzz pollinators, for fertilization (Hardin et al., 1972). Bombus impatiens, the
eastern bumblebee, is a common pollinator of S. carolinense in the eastern United States.
Fruits of S. carolinense are yellow to orange in color and 1–2.5 cm in diameter, and the
reproductive season for S. carolinense is from late summer until the first frost (Bassett
& Munro, 1986). S. carolinense was chosen for this study because it grows in a variety of
habitats and can be found at relatively high abundances locally. S. carolinense is closely
related to Solanum lycopersicum, so this work could indirectly provide insights into bacterial
community similarities in commercially important Solanum species.
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Figure 1 Sampling locations and number of plants collected from each location. Sampling locations in
Blacksburg, VA. Blue circles indicate Solanum carolinense locations sampled. Map on the lower left corner
shows the sampling location, indicated in blue, in relation to the eastern United States. Map was created
using Google Earth, Maps Data: Google, c© 2021.

Full-size DOI: 10.7717/peerj.12359/fig-1

Sampling, processing, and DNA extraction
A total of 23 fruit samples, from nine different sampling locations of S. carolinense, were
collected from around Blacksburg, VA, USA on November 15th, 2017 (Fig. 1, Table S1).
The use of the site was approved by the Department of Parks and Recreation of the
town of Blacksburg. Sample locations ranged in distance from 2 to 450 m apart, and the
total number of individual plants sampled ranged from 2 to 5 individuals/site. Since, S.
carolinense is a perennial species that can spread via underground rhizomes generating
clusters of clonal plants it is possible that multiple of S. carolinense in a collection site are
genetically identical. One fruit sample per S. carolinense ramet was collected aseptically in
50 ml falcon tubes and stored at −80 ◦C until DNA extraction. Prior to DNA extraction,
samples were sliced using EtOH flame sterilized forceps and scalpels so that the sample
included both surface and internal microbes. The samples were then disrupted with beads.
DNA was extracted from samples using the DNeasy PowerSoil R© Kit (Qiagen USA catalog
no. 12888-100).

Library preparation
LNA PCR
Mitochondria and chloroplast from plant tissues pose a challenge when investigating
plant microbial communities, as they share an evolutionary history with bacteria and
contain 16S rRNA genes (Sakai & Ikenaga, 2013). Thus, many of the primers used to
analyze bacterial community structure will also bind and amplify mitochondria and
chloroplast DNA (Ghyselinck et al., 2013). To reduce the amount of mitochondrial and
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chloroplast amplification in our samples, we used an initial locked nucleic acid (LNA)
PCR with the primers 63f-mod and 1492r (Ikenaga et al., 2016; Yu et al., 2016). The LNA
mixture contained: 12.5 µL Premix Hot Start Accustart II Supermix, 1.0 µL 63f-mod
primer (20 pmol/ µL), 1.0 µL 1492r (20 pmol/µL), 2.0 µL LNA-Mit63 (20 pmol/µL),
2.0 µL LNA-Mit1492 (20 pmol/µL), 2.0 µL LNA-Pla63c (20 pmol/µL), 2.0 LNA-Pla 1492b
(20 pmol/µL), 1.5 µL sterile water, and 1.0 µL of DNA template (Table S2). LNA PCR
was performed in sets of eight, which consisted of seven samples and one negative control
without DNA template per run. The amplification conditions were 94 ◦C for 1 min to
denature the DNA, followed by 30 cycles of 94 ◦C for 1 min, 70 ◦C for 1 min to anneal the
LNA oligonucleotides, 54 ◦C for 1 min to anneal primers, and 72 ◦C for 2 min, and a final
extension step of 72 ◦C for 10 min. PCR products and negative controls were visualized
using a 1.5% agarose gel to ensure that samples had amplified correctly.

Illumina 16S PCR
We then amplified the V4 region of the 16S rRNA gene, using primers 515f and an
individually barcoded 806R, with the LNA product as the template. PCR was run in
duplicate (two 25 µL reactions) along with a negative control that did not contain any
template DNA. The PCR mixture contained: 12 µL UltraClean PCR grade H2O, 10 µL
of 5 Prime Hot Master Mix, 0.5 µL of forward primer 515f and 0.5 ul of reverse primer
806R (barcoded), and 2 µL of template DNA (Table S2). The amplification conditions
were: 94 ◦C for 3 min for the initial denaturation, followed by 30 cycles of 94 ◦C for 45 s,
50 ◦C for 1 min, and 72 ◦C for 90 s, and a final extension of 72 ◦C for 10 min. Following
PCR, the duplicate samples were combined and were run on an 1.5% agarose gel to ensure
that samples had amplified correctly. Concentrations for the samples were recorded using
a Qubit Fluorometer 2.0 with the HS DNA kit. Equimolar amounts of each sample were
then pooled and cleaned using the Qiaquick PCR purification kit. Amplicon sequencing
was completed at the Dana Farber Cancer Institute at Harvard University using 250 bp
single end reads on the Illumina Mi-Seq.

Identifying ASVs
Demultiplexed raw reads were processed in the R computing environment (R Core
Team 2020). The package manager Bioconductor Martin (2018) was used to implement
packages, including DADA2 1.12.1Martin (2018), ggplot2 3.2.1 (Wickham, 2015), DESeq2
1.24.0 (Love, Huber & Anders, 2014), phyloseq 1.28.0 (Mcmurdie & Holmes, 2013), and
vegan 2.5-6 (Oksanen et al., 2019). Raw reads were quality processed using methods
laid out in the DADA2 tutorial Martin (2018). The reads were first visualized using the
‘‘plotQualityProfile’’ function in DADA2, which allowed us to monitor for low quality
reads. No trimming was necessary, so wemaintained the full 250bp of the reads for analyses.
The ‘‘learnErrors’’ function was then used to evaluate the error rate of the data set. The
‘‘derepFastq’’ function was used to combine identical sequences into unique sequences,
and from this a table of amplicon sequence variants (ASVs) was generated using the
‘‘makeSequenceTable’’ function.

Chimeric reads were removed using the ‘‘removeBimeraDenovo’’ function, which
identified 1,700 chimeras out of 4,225 input ASVs (Table S3). Taxonomy was assigned to
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the remaining ASVs using the ‘‘assignTaxonomy’’ function in DADA2 and the SILVA v123
database (Quast et al., 2013). Samples that could not be assigned to bacterial phyla were
removed, which resulted in a total of 15 phyla remaining. Any mitochondria or chloroplast
reads that persisted, along with unclassified reads, were also removed. After processing and
quality control, our dataset consisted of 1874 ASVs across all 23 samples. From this final
ASV set, phyla with read counts <10 were removed (Mcmurdie & Holmes, 2013). After
this step, our dataset consisted of 1846 ASVs across all 23 samples including the following
phyla: Acidobacteria, Actinobacteria, Armatiomonadetes, Bacteroidetes, Firmicutes, and
Proteobacteria.

Richness and beta diversity
Comparisons of ASVs among each sampling location were conducted using observed
richness and Shannon alpha diversity indices using the ‘‘plot_richness’’ function and
visualized using phyloseq in R. Observed richness indicates the number of ASVs and
provides information on the number of ASVs that are found within each sample per site.
Shannon’s diversity index considers both ASV richness and evenness. Faith’s phylogenetic
diversity was calculated using the ‘‘estimate_pd’’ function in btools (Battaglia, 2020). A
Kruskal–Wallis rank sum test was used on both observed richness and Faith’s phylogenetic
diversity to analyze differences between each of the sites.

To assess differences in bacterial community composition among locations,we compared
beta diversity using two distance metrics: Bray–Curtis dissimilarity and Jaccard index.
Bray–Curtis dissimilarity is based on ASV relative abundance, while Jaccard is based only
on presence/absence of ASVs. Differences in Bray–Curtis dissimilarity and Jaccard were
analyzed using PERMANOVA and were visualized using PCoA plots.

To test for spatial patterns of dissimilarity among locations, we conducted a Mantel test
to estimate the correlation between two matrices. We chose to use the Mantel test because
it allows us to compare spatial relationships with bacterial community composition and
is commonly used in ecology. We used the Mantel test to look for correlations between
the Bray–Curtis dissimilarity matrix and the spatial distance matrix among all 23 samples,
where samples within each site were considered to have a distance of 0 m. Pearson’s
product-moment correlation was used to test for differences. One of the assumptions of
PERMANOVA is that sample size is equal with similar dispersion between samples. Sincewe
knew that we had uneven sampling we tested the heterogeneous variance among microbial
communities. This was tested using the function ‘‘betadisper’’, which is a multivariate
analog of Levene’s test for homogeneity of variances.

To look for core bacterial communities, we assessed which ASVs were most prevalent
and their relative abundances. We conducted this using the ‘‘core_members’’ function
from the microbiome package Battaglia (2020). We set our parameters such that ASVs
needed to be present in at least 60% of the samples and had a relative abundance of at least
0.10%.
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Figure 2 Relative abundance of microbial communities by sampling location. Relative abundance of
bacterial orders that constituted >2% of S. carolinense fruit microbiome, by sample location.

Full-size DOI: 10.7717/peerj.12359/fig-2

RESULTS
To describe the composition of the bacterial communities associated with fruit tissue from
each sampling location, we estimated relative abundances of different bacterial orders
(Fig. 2). The orders Enterobacteriales, Sphingomonadales, Sphingobacteriales, Rhizobiales,
Cytophagales, and Micrococcales were found to make up the greatest proportion of the
relative abundance found at each sampling site (Fig. 2). Interestingly, some differences
in abundance were found across sites. The orders Micrococcales, Caulobacterales, and
Betaproteobacteriales were present in some sites and not found at others. Micrococcales
was found at sites 2, 4, and 5, and Caulobacterales was found at sites 2, 5, and 7.
Both Micrococcales and Caulobacterales were found at relatively low abundances
compared to other prominent taxa. Betaproteobacteriales was found at relatively low
abundances at all the sites except site 1. Flavobacteriales was also found at relatively
low abundance but found at all the sites sampled. The most common bacterial genera
by relative abundance were: Aureimonas, Chryseobacterium, Dyadobacter, Hymenobacter,
Methlobacterium, Mucilaginibacter, Neorhizobium, Pantoea, Pedobacter, Pseudomonas,
Rosenbergiella, Sphingomonas, Spirosoma, and Tatumella; these all had a relative abundance
of ≥ 0.1%.

Bacterial community analysis
Shannon diversity, observed richness, and Faith’s phylogenetic diversity were then
calculated for each sample location using abundance data to determine richness and
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 Figure 3 Alpha diversity of microbial communities associated with S. carolinense fruit sample loca-
tions.Observed richness, Shannon, and Faith’s phylogenetic diversity by sampling locations.

Full-size DOI: 10.7717/peerj.12359/fig-3

evenness (Fig. 3). Although there was some separation of mean values in alpha diversity
across sites, none of these differences were significant for observed richness (p = 0.2173,
DF = 7, chi-squared = 9.5226) or Faith’s phylogenetic diversity via Kruskal–Wallis rank
sum test (p = 0.1879, DF = 7, chi-squared = 10.012). The high values observed in mean
alpha diversity likely result from high variation within sites (Fig. 1).

Similarly, Bray–Curtis dissimilarity of S. carolinense fruit did not reveal any differences
in bacterial community structure across sampling locations (PERMANOVA, p = 0.711,
DF = 22, R2

= 0.3033). PCoA analysis revealed that the first two components of variation
explained a combined 29.1% (18.3% and 10.8% respectively) of the variation in bacterial
community composition, however we did not find any significant clustering of samples
by site (Fig. 4). For example, samples from the same location (color in Fig. 4) tended to
be dispersed across the axes of variation. Likewise, no differences in bacterial community
composition among sampling locations was identified using the Jaccard index (Figure S1,
PERMANOVA, p = 0.688, R2

= 0.30896). These findings were supported by a Mantel test
of Bray–Curtis dissimilarity index and calculated spatial distances that failed to detect a
relationship between bacterial diversity and distance (Fig. 5 Pearson’s, Mantel statistic r:
0.03343, p = 0.302, DF = 22). Together, these results suggest that fruit bacterial diversity
is not differentiated at this spatial scale.

To investigate the proportion of shared taxa among samples from all sites, we conducted
an analysis of the core microbial community and found that just 25 ASVs were present in
at least 60% of the samples with a relative abundance > 0.10% (Fig. 6). The top five taxa
that dominated the core microbial communities, as determined by a relative abundance

Heminger et al. (2021), PeerJ, DOI 10.7717/peerj.12359 8/20

https://peerj.com
https://doi.org/10.7717/peerj.12359/fig-3
http://dx.doi.org/10.7717/peerj.12359#supp-4
http://dx.doi.org/10.7717/peerj.12359


 
 
Figure 4 Beta diversity (Bray–Curtis) of sample locations. PCoA results illustrating distances among
microbial communities associated with S. carolinense fruit, colored by sample locations (Bray–Curtis,
PERMANOVA, p= 0.711, DF= 22, R2

= 0.3033). The axes indicate the percentage of variation in the
data with axis 1 (the first component) representing 18.3% of the variation and axis 2 (the second compo-
nent) representing 10.8% of the variation.

Full-size DOI: 10.7717/peerj.12359/fig-4

 
 

Figure 5 Mantel test.No observable relationship between Bray–Curtis Dissimilarly and spatial distance
(geographic distance Euclidean) was detected between bacterial diversity and distance (r: 0.03343, p =
0.302).

Full-size DOI: 10.7717/peerj.12359/fig-5
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Figure 6 Core microbial communities.Microbial genera that were present (prevalence) in at least 60%
of the samples at a relative abundance of at least 0.10%.

Full-size DOI: 10.7717/peerj.12359/fig-6

of > 1.0% and prevalence > 50% were Aureimonas spp., Pantoea spp., Sphingomonas spp.,
Hymenobacter spp., and Pedobacter spp. Thus, 0.0135% of ASVs we identified in our analysis
were found in the majority of fruit and less than half of these were found with a relative
abundance > 0.30%. Finally, we found that Aureimonas spp. persisted with a very high
prevalence >90% at relative abundance levels up to 1.0%.

DISCUSSION
The advent of non-culture based microbial community profiling has led to a wealth of
information about patterns and scales of community diversity among bacteria that form
close associations with plant organs (Compant et al., 2011; Junker et al., 2011; Ottesen et al.,
2016; Shade, McManus & Handelsman, 2013). Non-pathogenic fruit-associated bacteria
have received less attention, yet these communities have important implications for
host fitness. This study provides a first glimpse into the composition of fruit bacterial
communities of S. carolinense. This study also is the first to explore patterns of bacterial
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community structure of fruit in natural populations at fine spatial scales. This is one
of the first studies to be conducted in fruit at such a fine spatial scale. We found that
bacterial community richness and diversity are similar at distances up to 450m, and there
is no correlation between community structure and distance, suggesting no evidence of
distance-decay at these fine spatial scales. Factors such as microenvironment or biotic
interactions (pollinators, seed predators, etc.) may, therefore, be more important for
shaping patterns of bacterial diversity among fruit. It is also possible that a lack of genetic
diversity among host plants (S. carolinense can and does reproduce clonally through
rhizomes) could account for a lack of distance decay. However, because rhizome growth is
generally limited to about 1.25 m (Kiltz, 1930) from the ramet, we would expect to reduce
variation at the site level (Imaizumi et al., 2006), which was not apparent in this study.
Still, the role of host-genotype level filtering in shaping fruit microbial communities in this
system remains an open question.

As with other studies, we found that fruits are colonized by a diverse array of bacteria.
In our study, we found that the Enterobacteriales, Rhizobiales, and Cytophagales orders
comprised about 63% of the relative abundance across all samples. Within these orders,
the most frequently identified genera were Pantoea, Aurantimonas, andMethylobacterium.
In other plant hosts, different genera seem to dominate. For instance, fruits of congeneric
tomatoes (Solanum lycopersicum) are dominated by the genera Xanthomonas, Rhizobium,
and Pseudomonas (Ottesen et al., 2013); the only overlapping genus identified in our
study was Sphingomonas. These findings reinforce the importance of host species
(Igwe & Vannette, 2019; Knief et al., 2010; Ottesen et al., 2016; Wei & Ashman, 2018) and
environment (Knief et al., 2010) in shaping bacterial communities in fruit. Despite the
substantial variation in diversity, we identified 25 ASVs that were present in a majority of
samples (>60%) (Fig. 6). Subsetting these further we identified five taxa that were present
in nearly every sample with a relative abundance > 0.10%, Aureimonas spp., Pantoea spp,
Sphingomonas spp., Hymenobacter spp., and Pedobacter spp. These top five taxa have all
previously been reported from different plant tissue samples. Aureimonas spp. have been
identified in the phyllosphere of Galium album (Aydogan et al., 2016), the bark of Populus
spp. (Li et al., 2018), and, recently in Actinidia deliciosa (Ares et al., 2021). Pantoea spp.
have been identified as endophytes in the stems of tomatoes, Solanum lycopersicum (Dong
et al., 2019). Pantoea spp. can also cause internal fruit rot in Cucurbitaceae (Kido et al.,
2008). Sphingomonas spp. have been found in tomato specifically on the lower stems and
leaves (Ottesen et al., 2013), can cause disease in Cucurbitaceae (Buonaurio, Stravato &
Cappelli, 2001), and can be endophytes that produce gibberellins (Latif Khan et al., 2014).
Hymenbobacter spp. have been observed on Hedera spp. (Smets et al., 2016) and in the
phyllosphere of Galium album (Aydogan et al., 2016). Pedobacter spp. have been observed
in the phyllosphere of Solanum tuberosum, which is closely related to our study species
(Manter et al., 2010), as well as the leaves of Arabidopsis thaliana (Qi et al., 2021).

Comparing bacterial community diversity, we found a great deal of variation within and
among sites (Figs. 3 and 4). This variation was not partitioned by site or distance (Fig. 5)
and is consistent with diverse source pools and environmental filtering (Rebolleda-Gómez
& Ashman, 2019). It is important, however, to consider these findings with the caveat that
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reduced sample sizes negatively impact alpha diversity statistics (Willis, 2019). Thus, while
widespread, bacterial taxa may not be evenly distributed over large spatial scales (Bahram
et al., 2018; Delgado-Baquerizo et al., 2018).

Environment is an important source and factor shaping leaf microbial communities
across fine spatial scales. This has been observed by Stone & Jackson (2016) found that
bacterial communities associated with the leaves of Magnolia grandiflora exhibited a
distance-decay relationship across a similar distance to the present study (1–452 m).
Ultimately, Stone & Jackson (2016) conclude that subtle differences in environmental
conditions contributed to differences in microbial communities. The lack of distance-
decay in the present study may be for several reasons. Our sampling may not have covered
a sufficient range nor elevation (17 m) in environmental variation however we did have
variation in slope and aspect (north and west facing) (Fig. 1).

Host species and genotype may also play a role in shaping microbial communities
associated with the plant (Laforest-Lapointe, Messier & Kembel, 2016; Redford et al., 2010).
However, there has been contrasting evidence in Solanum lycopersicum leaves, suggesting
that the host plant is not different from a controlled plastic plant (Ottesen et al., 2016). In
addition, plant organsmay also play a role in the interactions shaping distance decay. Several
studies have documented distinct microbial communities across plant tissues (Compant
et al., 2011; Junker & Keller, 2015; Ottesen et al., 2013; Shade, McManus & Handelsman,
2013), including different tissues within the same organ (Hayes et al., 2021). This also
means that microbial communities associated with particular plant organs may have a
different set of organizing rules (Rebolleda-Gómez & Ashman, 2019; Wei & Ashman, 2018;
Zheng & Gong, 2019). For instance, flowers and fruits that rely on pollinators, which
spread microbes, may not display distance decay at finer spatial scales. Another important
consideration is the production of secondary compounds within the fruit. As with other
members of the Solanaceae S. carolinense fruit contain steroidal glycoalkaloids that likely
impact microbial communities (Milner et al., 2011). Future studies can determine the
relative impact of SGAs on microbial communities by isolating the endophytic component
of fruit microbial communities. By understanding how and when microbial communities
are shaped in fruits and flowers we can learn how this impacts host fitness (Baltrus, 2020;
Taylor et al., 2014).

Dispersal is another important component acting across these smaller spatial scales. For
instance, Miura et al. (2017) investigated leaves and fruits in vineyards in Chile that were
within 35 km of one another and found that at spatial scales <2 km fungal community
dissimilarity increased with distance; however, the bacterial communities did not show
similar patterns. This may be because fungal spores tend to have more limited dispersal
than bacteria (Peay & Bruns, 2014). However, over large distances (1,800–2,400 km) Pinus
spp. leaves showed no variation with an increase in distance (Redford et al., 2010), yet
there was a distance-decay effect observed in Tamarix spp. (Finkel et al., 2012). We are
still in the early phases of understanding how microbial communities are shaped across
the landscape, particularly in reproductive tissues. Biotic interactions can drive facilitated
bacterial dispersal (Russell et al., 2019). As an obligate outcrossing species, S. carolinense
depends on pollinators. Pollinators leave microbial footprints on the flowers that they
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visit (Ushio et al., 2015), which may influence floral microbial communities, and possibly
fruit microbial communities. Thus, the observed similarities among bacterial communities
in our study could result from pollinator transmission, though we do not yet know if
bacterial communities are transferred from flowers to fruit in this system. In addition
to pollinators, seed feeding insects, such as the Lygaeidae, pierce fruit and feed on the
developing seeds. This process introduces microbes to fruits (Tewksbury et al., 2008) and
may be another source of bacterial dispersal. Indeed, our clustering analysis identified
some axes of separation for samples within a site, which could be indicative of these sorts
of biotic filters, yet more work needs to be done to test this hypothesis.

CONCLUSIONS
In our study, we found that richness, diversity, and community structure of bacterial
communities associated with the fruit of S. carolinense are similar at fine spatial scales,
suggesting there is no evidence of a distance-decay relationship. Thus, we are left with
the question at what point do bacterial communities become distinct in the fruit of
Solanum carolinense? In order to address this question, samples will need to be taken
at larger spatial scales to determine when these communities become distinct. We also
know that environment, pollinator, and host species play a large role in shaping microbial
communities (Igwe & Vannette, 2019; Knief et al., 2010; Ottesen et al., 2016; Ushio et al.,
2015; Wei & Ashman, 2018), but the degree to which these factors shape the bacterial
communities found in Solanum carolinense fruit remains unclear. To address this, sampling
over a large spatial scale should be done across a variety of environmental conditions. From
that sampling, a comparison of similar environments, microbial communities will help to
address the degree that environment plays a role in shaping microbial communities and
determine if spatial scale plays a larger role than environment. To address the role of host
species in shaping microbial communities, research should be conducted to compare the
genotype of host species within a site to determine if in fact hosts that are closer related are
more similar with regards to their microbial communities.
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