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Abstract

Electrical impedance myography (EIM) using surface techniques has shown promise as a

means of diagnosing and tracking disorders affecting muscle and assessing treatment effi-

cacy. However, the relationship between such surface-obtained impedance values and

pure muscle impedance values has not been established. Here we studied three groups of

diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the

D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse),

and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb

measurements using a standard surface array and ex vivo measurements on freshly

excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db

mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8

kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spear-

man rho values generally ranging from 0.3–0.7, depending on the impedance parameter

(i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was

an offset in frequency with impedance values obtained at higher surface frequencies corre-

lating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/

db model, correlations were comparatively weaker and strongest at very high and very low

frequencies. When combining impedance data from all three disease models together, mod-

erate correlations persisted (with maximal Spearman rho values of 0.45). These data sup-

port that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree

across several different diseases, with the highest correlations occurring in the 10–200 kHz

frequency range. Understanding these relationships will prove useful for future applications

of the technique of EIM in the assessment of neuromuscular disorders.
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Introduction

Surface electrical impedance myography (EIM) is a non-invasive method for assessing muscle

condition via the application of an alternating electrical current across a range of frequencies

and measurement of the resulting voltages [1]. The technology is showing potential utility as a

primary diagnostic of neuromuscular disorders but also as a means of assessing disease pro-

gression or response to therapy. Conditions ranging from amyotrophic lateral sclerosis (ALS)

[2–4], Duchenne muscular dystrophy (DMD) [5–7], as well as less severe conditions, such as

disuse atrophy [8, 9] or sarcopenia [10–13] can be detected and tracked by EIM.

To date in humans, most studies have been performed using surface techniques [1],

although needle techniques have also been recently introduced [14–17]. In surface approaches,

an electrode array is applied to a limb and measurements are made of the underlying tissue

from which three primary measures are derived: resistance, reactance, and phase angle. Such

measures reflect the passive electrical properties of the underlying muscle but are also

impacted to some extent by other tissues underneath the electrodes such as skin and subcuta-

neous fat, as well as the size and geometry of the limb [18, 19]. The impact of these underlying

tissues relies on a number of factors, including the thickness of the skin/subcutaneous fat layer

and the volume of muscle tissue present.

The standard approach for obtaining a “ground truth” or reference measure of impedance

values of tissue consists of measuring the intrinsic electrical properties of tissue (namely its

conductivity and relative permittivity) [20]. One invasive method of obtaining such informa-

tion consists of excising a small sample of muscle tissue, trimming it into a cube with known

geometrical dimensions and then measuring its impedance in a dielectric cell, and thus provid-

ing a so-called ex vivo measurement [1]. While such ex vivo measurements can provide impor-

tant insights into muscle condition, the impedance values and the derived intrinsic electrical

properties (obtained after calibration by accounting for the contribution of the ex vivo cell

itself to the recorded signal) are impacted by experimental conditions (e.g., postmortem time

and temperature) and will naturally differ compared to data obtained in vivo [21, 22]. Never-

theless, there is an expectation that there should be consistent relationships between surface

and ex vivo approaches.

In this study, we sought to understand the relationship between surface impedance values

of muscle obtained in vivo and impedance values obtained ex vivo in an impedance-measuring

cell in three different murine models of neuromuscular disease: the mouse ALS SOD1 G93A

model [23], the D2-mdx model of Duchenne muscular dystrophy [24], and the diabetic obese

db/db mouse model [25], in which muscle atrophy without primary muscle disease is present.

We had three questions: 1. How well do surface impedance values correlate to ex vivo imped-

ance data at our “standard” range of frequencies (approximately 30–300 kHz); 2. Is there a

shift in the frequency correlations between and surface and ex vivo impedance values, such

that, for example, impedance values obtained at higher surface frequencies correlate best to

impedance values obtained at lower ex vivo frequencies; and 3. Are there differences in these

relationships among these animal models?

Methods

Animals

All experimental procedures were approved by the Institutional Animal Care and Use Com-

mittee at Beth Israel Deaconess Medical Center. All animals were fed standard chow ad libitum
and housed in standard fashion of groups up to 5 in microisolator cages in the Slosberg/

Landay Animal Facility equipped with a 12:12 light/dark standard lighting cycle (lights on at
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7:00AM; lights off at 7:00PM). All cages are checked daily by the animal care technical staff to

confirm animal health, feed and water and cage condition. In addition, all rodent rooms use

sentinel animals to monitor the health status of the room. Sentinel animals are tested for quar-

terly at Charles River Diagnostic Labs for a complete health screen to include bacteriology,

pathology and parasitology. Experimental animals undergo regular weekly health and behav-

ioral assessments (including body mass, motor score, mobility and gait, ability to feed, paw

grip endurance, paw grip strength), and electrophysiological studies (electrical impedance

myography). For the analyses completed here, impedance data acquired as part of three earlier

studies [26–28] were utilized. The sample sizes for each group were thus those used in each of

the earlier studies.

1. Muscular dystrophy and controls. Male wild type (WT) (DBA/2J; Strain #000671) and

D2-mdx mice (D2.B10-Dmdmdx/J; Strain #013141) were obtained from Jackson Labs (Bar Har-

bor ME), and aged to 6, 13, 21, and 43 weeks. Animals were allowed to stabilize for 48 hr to

recover from shipment prior to use in experimental protocols. There were a total of 23

D2-mdx and 17 WT mice.

2. Obese mice and controls. Male WT (C57BLKS/J; Strain #000662) and db/db mice (BKS.

Cg-Dock7m +/+ Leprdb/J; Strain #000642) were obtained from Jackson Labs, (Bar Harbor

ME), and aged to 6, 10, and 20 weeks in order to evaluate the impact of increasing fat deposi-

tion and skeletal muscle atrophy, both of which occur naturally as these animals age. Animals

were allowed to stabilize for 48 hr to recover from shipment prior to use in experimental pro-

tocols. Mice (5 db/db and 5 WT) were evaluated at each age. Overall, the final analysis included

12 db/db and 13 WT mice.

3. ALS mice and controls. Breeding pairs of ALS (B6SJL-Tg(SOD1- G93A)1Gur/J) mice

were obtained from Jackson Labs (Bar Harbor, ME) and bred to obtain 43 animals with ALS

(approximately half female and half male). Animals were euthanized at various ages ranging

from 8–18 weeks (approximately 6–7 animals per fortnight, at 8, 12, 14, 16, and 18 weeks). Of

note, no WT animals were used here; however, the youngest of the animals at 8 weeks of age

are generally presymptomatic. Mice with ALS develop symptoms and pathology resembling

human ALS, with eventual paralysis in one or more hind limbs attributable to the loss of

motor neurons from the spinal cord. Symptomatic ALS mice are monitored daily to assess

feeding and movement. DietGel76A is provided when ALS animals can no longer access stan-

dard chow. The animals are checked twice per day when one of their hind limbs becomes para-

lyzed. When both hind limbs become paralyzed, the animal are euthanized. Euthanasia is

performed by inhalation of carbon dioxide (CO2) gas delivered from a compressed gas

canister.

EIM measurements. In all animal studies, after removing the fur with clippers, a depila-

tory agent was applied to the left hind limb to eliminate any remaining fur, and the skin was

cleaned with 0.9% saline solution, as previously described [29]. The animal was placed in a

prone position and both legs were taped to the measuring surface at an approximately 45˚

angle extending out from the body in preparation for measurements. A fixed rigid 4-electrode

impedance-measuring surface array was applied over the left gastrocnemius muscle. EIM mea-

surements were performed in an unblinded fashion with the mView system (Myolex, Inc, Bos-

ton, MA), which measures impedance at 41 frequencies from 1 kHz to 10 MHz as previously

described [30, 31]. For this analysis, we removed data at frequencies above 1 MHz since these

are prone to parasitic inductance and capacitance artifacts affecting the measurement, yielding

EIM data for 29 frequencies. Data was collected with the array oriented such that electrical cur-

rent was passed predominantly parallel (longitudinal) to the general myofiber direction.

After measurements were completed, the animals were euthanized and the gastrocnemius

muscle excised and measured in an impedance measuring cell of 0.5 X 0.5 cm footprint
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(muscle height was generally approximately 0.4 cm) within approximately 10 minutes of the

animal’s death. We used a Plexiglass dielectric measuring cell as described [20], with the fibers

oriented perpendicularly to the metal plates (for longitudinal muscle measurements). Measur-

ing the electrical properties of the excised muscle took approximately 3–5 minutes.

Data analysis. The statistical analyses of the impedance data were performed using

GraphPad Prism V8 (GraphPad Software, Inc. La Jolla, CA) and R version 4.03. We used

Spearman’s rank-order correlation to extract the correlation coefficient (Rs) between the vari-

ous frequency metrics between these two measurement approaches (Ex vivo and Surface)

across all animals, for the 3 major impedance values: resistance, reactance, and phase. We then

used these values to create correlation heatmaps and reviewed individual frequency correla-

tions to better understand the specific nature of this relationship.

Results

The individual disease and cumulative correlation results for longitudinal phase, reactance

and resistance are provided in Tables 1–3, respectively.

In all cases, we included healthy animals (in the case of the ALS, the youngest animals i.e., 8

and 10 weeks which are typically presymptomatic). Since phase tends to be the preferred

impedance measure for many studies, we then created frequency correlation matrices for the

phase values in the form of heatmaps of the correlation coefficient (Rs) for each of these disease

models (Panel A in Figs 1–4). The abscissa (x-axis) shows the surface frequencies and the ordi-

nate (y-axis) shows the ex vivo frequencies. In addition to the correlation matrices with the

intensity of blue shading mirroring the intensity of the correlation, we also provide a histo-

gram of Spearman rho values (Rs) to provide a quantitative sense (i.e. frequency %) of the

strength of the correlations (Panel D in Figs 1–4). Finally (in Figs 1–4), we provide a series of 4

scatterplots showing the relationships between the phase values obtained at: 50 kHz for both

Table 1. Longitudinal phase (LP) value correlation.

Disease Correlation Spearman’s Rho Value (Rs) p-value

D2-mdx with WT 50 kHz Ex vivo vs 50 kHz Surface 0.7 <0.001

50 kHz Ex vivo vs 126 kHz Surface 0.76 <0.001

15 kHz Ex vivo vs 50 kHz Surface 0.75 <0.001

37 kHz Ex vivo vs 126 kHz Surface 0.78 <0.001

ALS 50 kHz Ex vivo vs 50 kHz Surface 0.49 0.002

50 kHz Ex vivo vs 31 kHz Surface 0.53 0.001

8 kHz Ex vivo vs 50 kHz Surface 0.61 <0.001

8 kHz Ex vivo vs 31 kHz Surface 0.65 <0.001

db/db with WT 50 kHz Ex vivo vs 50 kHz Surface 0.22 0.293

50 kHz Ex vivo vs 1027 kHz Surface 0.38 0.059

862 kHz Ex vivo vs 50 kHz Surface 0.40 0.047

428 kHz Ex vivo vs 607 kHz Surface 0.59 0.002

Overall with WT 50 kHz Ex vivo vs 50 kHz Surface 0.25 0.008

50 kHz Ex vivo vs 150 kHz Surface 0.35 <0.001

8 kHz Ex vivo vs 50 kHz Surface 0.41 <0.001

9 kHz Ex vivo vs 89 kHz Surface 0.44 <0.001

a Correlation coefficients (Spearman’s Rho) and p values for: 50 kHz Ex vivo and 50 kHz Surface impedance measurements, maximum correlation coefficient given Ex
vivo impedance frequency is at 50 kHz, maximum correlation coefficient given Surface impedance frequency is at 50 kHz, and maximum correlation coefficient within

the spectrum for the given datasets of diseases and its combination.

https://doi.org/10.1371/journal.pone.0259071.t001
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surface and ex vivo (Panel B); the surface frequency with the highest Rs value with 50 kHz ex
vivo (Panel C); the 50 kHz surface frequency with the ex vivo frequency with the highest Rs val-

ues (Panel F); and finally, the correlation with the highest Rs value from the entire frequency

spectrum (Panel E).

Table 3. Longitudinal Resistance (LR) value correlations.

Disease Correlation Spearman’s Rho Value (Rs) p-value

D2-mdx with WT 50 kHz Ex vivo vs 50 kHz Surface 0.32 0.043

50 kHz Ex vivo vs 1027 kHz Surface 0.46 0.003

13 kHz Ex vivo vs 50 kHz Surface 0.44 0.005

862 kHz Ex vivo vs 1027 kHz Surface 0.53 <0.001

ALS 50 kHz Ex vivo vs 50 kHz Surface 0.40 0.015

50 kHz Ex vivo vs 89 kHz Surface 0.42 0.012

50 kHz Ex vivo vs 50 kHz Surface 0.40 0.015

50 kHz Ex vivo vs 89 kHz Surface 0.42 0.012

db/db with WT 50 kHz Ex vivo vs 50 kHz Surface 0.65 <0.001

50 kHz Ex vivo vs 74 kHz Surface 0.66 <0.001

150 kHz Ex vivo vs 50 kHz Surface 0.71 <0.001

302 kHz Ex vivo vs 724 kHz Surface 0.73 <0.001

Overall with WT 50 kHz Ex vivo vs 50 kHz Surface 0.47 <0.001

50 kHz Ex vivo vs 253 kHz Surface 0.49 <0.001

9 kHz Ex vivo vs 50 kHz Surface 0.51 <0.001

9 kHz Ex vivo vs 62 kHz Surface 0.52 <0.001

a Correlation coefficients (Spearman’s Rho) and p values for: 50 kHz Ex vivo and 50 kHz Surface impedance measurements, maximum correlation coefficient given Ex
vivo impedance frequency is at 50 kHz, maximum correlation coefficient given Surface impedance frequency is at 50 kHz, and maximum correlation coefficient within

the spectrum for the given datasets of diseases and its combination.

https://doi.org/10.1371/journal.pone.0259071.t003

Table 2. Longitudinal reactance (LX) value correlations.

Disease Correlation Spearman’s Rho Value (Rs) p-value

D2-mdx with WT 50 kHz Ex vivo vs 50 kHz Surface 0.48 0.002

50 kHz Ex vivo vs 22 kHz Surface 0.55 <0.001

15 kHz Ex vivo vs 50 kHz Surface 0.57 <0.001

15 kHz Ex vivo vs 18 kHz Surface 0.66 <0.001

ALS 50 kHz Ex vivo vs 50 kHz Surface 0.3 0.077

50 kHz Ex vivo vs 31 kHz Surface 0.31 0.07

9 kHz Ex vivo vs 50 kHz Surface 0.34 0.053

359 kHz Ex vivo vs 862 kHz Surface 0.51 0.002

db/db with WT 50 kHz Ex vivo vs 50 kHz Surface 0.5 0.011

50 kHz Ex vivo vs 8 kHz Surface 0.67 <0.001

15 kHz Ex vivo vs 50 kHz Surface 0.7 <0.001

13 kHz Ex vivo vs 8 kHz Surface 0.76 <0.001

Overall with WT 50 kHz Ex vivo vs 50 kHz Surface 0.29 0.002

50 kHz Ex vivo vs 178 kHz Surface 0.41 <0.001

9 kHz Ex vivo vs 50 kHz Surface 0.37 <0.001

11 kHz Ex vivo vs 178 kHz Surface 0.46 <0.001

a Correlation coefficients (Spearman’s Rho) and p values for: 50 kHz Ex vivo and 50 kHz Surface impedance measurements, maximum correlation coefficient given Ex
vivo impedance frequency is at 50 kHz, maximum correlation coefficient given Surface impedance frequency is at 50 kHz, and maximum correlation coefficient within

the spectrum for the given datasets of diseases and its combination.

https://doi.org/10.1371/journal.pone.0259071.t002
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Fig 1. D2-mdx with wild type (WT) mice data (left GA muscles) for longitudinal phase orientation (N = 40, 23

D2-mdx and 17 WT = DBA/2J). A. Heat-map with correlation coefficients related to individual frequency spectrum

on Ex vivo and Surface impedance (phase) measurements, B. Linear correlation plot for 50 kHz Ex vivo and 50 kHz

Surface impedance (phase) measurements, C. Linear correlation plot of surface vs ex vivo phase values at frequencies

corresponding to the maximum correlation coefficient given Ex vivo impedance (phase) frequency is at 50 kHz, D.

Histogram indicating the frequency of all possible correlation coefficients (Rs), E. Linear correlation plot of surface vs

ex vivo phase values at frequencies corresponding to the maximum correlation coefficient within the spectrum and F.

Linear correlation plot of surface vs ex vivo phase values at frequencies corresponding to the maximum correlation

coefficient given Surface impedance (phase) frequency is at 50 kHz.

https://doi.org/10.1371/journal.pone.0259071.g001

Fig 2. ALS mice data (left GA muscles) for longitudinal phase orientation (N = 36). A. Heat-map with correlation

coefficients related to individual frequency spectrum on Ex vivo and Surface impedance (phase measurements, B.

Linear correlation plot for 50 kHz Ex vivo and 50 kHz Surface impedance (phase) measurements, C. Linear correlation

plot of surface vs ex vivo phase values at frequencies corresponding to the maximum correlation coefficient given Ex
vivo impedance (phase) frequency is at 50 kHz, D. Histogram indicating the frequency of all possible correlation

coefficients (Rs), E. Linear correlation plot of surface vs ex vivo phase values at frequencies corresponding to the

maximum correlation coefficient within the spectrum and F. Linear correlation plot of surface vs ex vivo phase values

at frequencies corresponding to the maximum correlation coefficient given Surface impedance (phase) frequency is at

50 kHz.

https://doi.org/10.1371/journal.pone.0259071.g002
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Fig 3. db/db with Wild Type (WT) mice data (left GA muscles) for longitudinal phase orientation (N = 25, 12 db/

db and 13 WT = C57Bl/6). A. Heat-map with correlation coefficient related to individual frequency spectrum on Ex
vivo and Surface impedance (phase) measurements, B. Linear correlation plot for 50 kHz Ex vivo and 50 kHz Surface

impedance (phase) measurements, C. Linear correlation plot of surface vs ex vivo phase values at frequencies

corresponding to the maximum correlation coefficient given Ex vivo impedance (phase) frequency is at 50 kHz, D.

Histogram indicating the frequency of all possible correlation coefficients (Rs), E. Linear correlation plot of surface vs

ex vivo phase values at frequencies corresponding to the maximum correlation coefficient within the spectrum and F.

Linear correlation plot of surface vs ex vivo phase values at frequencies corresponding to the maximum correlation

coefficient given Surface impedance (phase) frequency is at 50 kHz.

https://doi.org/10.1371/journal.pone.0259071.g003

Fig 4. Combination of all given mice data (N = 111). A. Heat-map with correlation coefficient related to individual

frequency spectrum on Ex vivo and Surface impedance (phase) measurements, B. Linear correlation plot for 50 kHz Ex
vivo and 50 kHz Surface impedance (phase) measurements, C. Linear correlation plot of surface vs ex vivo phase values

at frequencies corresponding to the maximum correlation coefficient given Ex vivo impedance (phase frequency is at

50 kHz, D. Histogram indicating the frequency of all possible correlation coefficients (Rs), E. Linear correlation plot of

surface vs ex vivo phase values at frequencies corresponding to the maximum correlation coefficient within the

spectrum and F. Linear correlation plot of surface vs ex vivo phase values at frequencies corresponding to the

maximum correlation coefficient given Surface impedance (phase) frequency is at 50 kHz.

https://doi.org/10.1371/journal.pone.0259071.g004
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The strongest correlations between surface and ex vivo impedance data were found for the

D2-mdx animals with the Rs values in the 0.32–0.78 range, and many with p<0.001. The ALS

animals had the second highest range of Rs values (ranging from 0.30 to 0.65), with phase and

resistance showing the strongest correlations and reactance somewhat weaker. The db/db ani-

mals showed the widest range of Rs values ranging from 0.22 to 0.76, with overall the weakest

significance levels. It is important to note, however, that the p values are not easily compared

across groups since the number of animals evaluated with each disorder and their respective

WT were not identical. When grouping all the animals together, the highest Rs values were

0.46, 0.46, and 0.52, for phase, reactance, and resistance, as show in Tables 1, 2 and 3.

In terms of frequency-to-frequency correlation, for D2-mdx/WT animals, impedance val-

ues at slightly higher surface frequencies corresponded to impedance values at lower ex vivo
frequencies. Similarly, in ALS animals, a similar trend was present, although in a much more

restricted set of frequencies. This can be easily observed in Figs 1A and 2A and with the most

intense blue region being shifted to the upper right. The data in the case of the db/db animals

was far less consistent, showing the best correlations at the extremes of the frequency range

(low frequency ex vivo values correlating to low frequency surface values, and high frequency

ex vivo values corresponding to high frequency surface values (Fig 3A). When combining all

the data sets together in Fig 4A, the same shift is apparent with impedance at higher surface

frequencies generally correlating better to impedance at lower ex vivo frequencies with the 50

kHz phase surface value correlating most strongly to the 8 kHz ex vivo phase value.

Discussion

Despite years of surface and ex vivo EIM data collection in mice and rats, this study represents

the first effort to relate surface impedance values directly to ex vivo data. The results presented

here confirm, as expected, that there is an association between both sets of measurements, but

that this relationship, at the frequencies of interest (e.g., 50–100 kHz), is of only moderate

strength. There are likely a number of reasons for this incongruity. First, there is the fact that

ex vivo and surface EIM are measuring different tissues, since ex vivo measurements are per-

formed directly on the excised muscle and there are no other intervening tissues. By contrast,

surface measurements are impacted by the presence of skin and subcutaneous fat overlying the

muscle. Second, the volumes of tissue being measured are different given the varying size and

shape of the animal limb, whereas the ex vivo impedance measurements are restricted entirely

to the block of tissue utilized in the impedance cell. Third, surface data is more likely to be

impacted by contact artifacts at the interface of the array with the skin (this issue tends to be

more problematic in mouse studies than in human given the very small size of the array rela-

tive to the size of the particular muscle under investigation). Fourth, given the anisotropic

nature of muscle, with myofibers being extended cylindrical structures, the surface longitudi-

nal measurements obtained are not truly longitudinal. This is in contrast to the ex vivo mea-

surements in which there is an effort to ensure that the myofibers are aligned precisely with

the metal plates which serve as the current electrodes. Finally, there are simply different experi-

mental errors in both types of measurements, as the exact direction of muscle fibers is

unknown and it is difficult to align the surface array with the muscle fibers or the perfectly

trim the excised piece of muscle into a cube.

How do these factors relate to human EIM studies? In general, we would expect similar

findings. Although human skin and subcutaneous fat thickness taken together are much

greater than those of mice, it is helpful to interpret this difference in relation to the inter-elec-

trode distances of the electrode array. The farther apart are the current electrodes, the greater

the muscle penetration of the electrical current will be [19]. Our mouse array has inter-
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electrode distances of 3.5 mm [30] between the current and voltage electrodes, and mouse skin

and subcutaneous fat thickness is approximately 1–2 mm, giving a ratio of approximately 3.5–

1.75 (interelectrode distance: fat thickness). A human commercial array has a 2.54 cm current-

voltage interelectrode distance [3], and human fat thickness can vary widely, from just 3 mm

(in the anterior forearms of a thin individual) to 5 or more cm (in the abdomen of a moder-

ately obese individual). This could give ratios of>7.5 (for some with little fat) to as low as 0.5

(for an obese individual). However, in a typical muscle with typical subcutaneous fat thickness,

the ratio is likely to be similar to those of mice. Thus, based on this simple analysis, we would

anticipate that these relationships between surface and ex vivo impedance data should gener-

ally hold for most appendicular muscles in non-obese individuals. However, good electrical

contact on the skin is generally easier to achieve in humans and thus could even lead to an

improved relationship in humans between surface and ex vivo measurements.

One interesting observation was that in longitudinal impedance measurements, there seem

to be a slight shift with surface impedance values at higher frequencies correlating better to ex
vivo impedance values at lower frequencies in both the ALS and D2-mdx models, as well as

when data from all disease models was combined, but not in the db/db and corresponding WT

animals alone. This likely makes conceptual sense since skin and fat tend to be more reactive

(at high frequencies) [31] and thus their presence when performing surface EIM could cause

this shift towards higher frequencies in the surface measurements.

It remains challenging to explain the differences among the heat maps in the different dis-

orders studied here. Whereas the ALS and D2-dmx mouse correlations appear reasonably sim-

ilar, the db/db model appears quite different. Much of this difference may be related to the fact

that the surface electrode array in this condition is being impacted more greatly by the abun-

dance of subcutaneous fat. If that is the case, the highest correlations would presumably con-

nect subcutaneous fat with intramuscular fat. Indeed, the best correlation was found between

two high frequencies for phase (ex vivo 428 kHz vs. surface 607 kHz). Another unclear aspect

is why reactance values seemed to correlate better than phase values for only the db/db mice.

Again, our suspicion is that this relates to the abundance of subcutaneous fat in this model, but

we cannot hypothesize beyond that one concept.

One limitation of this analysis worth highlighting is that the ex vivo data also does not rep-

resent anything approaching a gold standard. This is in part due to the difficulty of manipulat-

ing the gastrocnemius muscle from mice. Trimming excised muscle from the animal into a

perfect cube with dimensions 0.5 x 0.5 x 0.5 cm3 is technically challenging. Moreover, it is tech-

nically challenging to insert the excised muscle correctly into the impedance measuring cell,

and ensure that the muscle slab is oriented with the fibers perpendicular to the current plate

electrodes. In practice, there will be some mix of longitudinal and transverse data present.

Finally, the tissue itself is no longer alive by the time it is placed in the impedance cell and thus

the absence of blood flow and reduction in temperature can impact the data.

Another important observation from our analysis is that we observed minimal negative sen-

sitivity in our studies. While this is an abstract concept, impedance measurement theory shows

that impedance values can sometimes increase or decrease in counterintuitive directions based

on the directionality of current flow, the electrodes’ characteristics and the tissues’ electrical

properties within that region [18]. Thus, it remained conceivable that we could identify fre-

quency ranges where strong negative correlations were present (e.g., increasing surface reac-

tance could correspond to decreasing ex vivo reactance). The virtual absence of any strong

negative correlations in this analysis also helps alleviate a concern that could prove very chal-

lenging for the technique’s clinical application if that were true.

It is important to realize, however, that the impedance values of phase, resistance, and reac-

tance are not absolutes and do not reflect the actual condition of the tissue as resistance and
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reactance values are entirely influenced by the distance between the electrodes and the size of

the electrodes [32]. While these effects are counterbalanced to some extent in the calculation

of the phase value (phase = arctan(X/R)), they will still influence that result as well. The mate-

rial properties, namely the conductivity and relative permittivity, represent the standard abso-

lute of the muscle tissue [20]. We have not attempted to correlate surface EIM measurements

to those intrinsic values, but the fact that the surface EIM data correlates to ex vivo EIM data to

moderate extent at certain frequencies suggests that a similar relationship will hold between

surface values and those intrinsic material properties.

We have previously shown that surface and ex vivo EIM data both correlate to histological

features of muscle in a variety of conditions [26, 27, 33–35], so have not repeated that effort

here. Rather, our goal was simply to establish what our expectations should be in processing

surface impedance data in relation to ex vivo values and to consider the possibility that the sur-

face frequencies of interest more strongly relate to lower frequency ex vivo values, at least in

the D2-mdx and ALS animals.

We also note that there is a middle ground between ex vivo and surface measurements,

namely measurement using indwelling needle electrodes. Needle electrodes could theoretically

be placed subcutaneously or intramuscularly, but, to date, most of the work completed using

needle electrode arrays has been performed intramuscularly [15, 33, 36, 37]. In fact, placing

needles subcutaneously is quite challenging, and even small variations in position could greatly

impact the impedance data obtained. Intramuscular electrodes, however, have the advantage

of being completely surrounded by muscle and providing a truer measure of the impedance

characteristics of the muscle itself. These studies can be performed using a multi-needle array

or a single needle with multiple impedance electrodes embedded in it, and the latter is the sub-

ject of ongoing developmental and research efforts [38].

There are two important practical outcomes from this work. First, it helps confirm, perhaps

unsurprisingly, that surface measurements in mice are capturing muscle condition and are not

simply measuring volumetric or non-muscle tissues such as skin or subcutaneous fat, except

perhaps in the db/db situation, where there is a markedly expanded subcutaneous volume. Sec-

ond, it suggests that the best frequencies of interest to represent the condition of the underly-

ing muscle using surface EIM may actually need to be somewhat different than those that have

been typically chosen (e.g., surface phase values at 50 kHz) if one is attempting to correlate sur-

face and ex vivo impedance values. It also, however, underscores the need to continue to refine

EIM analytics so as to more effectively capture the muscle itself. Indeed, it may be that every

disorder will have its optimal single surface frequency for tracking disease. But more to the

point, the complexity of the relationship between surface and ex vivo values underscores the

need to attempt to utilize the entire multifrequency spectrum, rather than a single frequency,

whether comparing different disease states or tracking one individual over time as a disease

progresses or remits. We have already explored the mathematical approaches for doing so

[39], and using machine learning methodologies may also be possible. Finally, further studies

can be pursued in humans, by performing surface measurements in conjunction with direct

muscle measurements with a needle electrode [18] so that the underlying practice of surface

EIM techniques can be optimized specifically for human use.
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