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Allograft rejection remains the major hurdle in lung transplantation despite modern
immunosuppressive treatment. As part of the alloreactive process, B cells are
increasingly recognized as modulators of alloimmunity and initiators of a donor-specific
humoral response. In chronically rejected lung allografts, B cells contribute to the
formation of tertiary lymphoid structures and promote local alloimmune responses.
However, B cells are functionally heterogeneous and some B cell subsets may promote
alloimmune tolerance. In this review, we describe the current understanding of B-cell-
dependent mechanisms in pulmonary allograft rejection and highlight promising future
strategies that employ B cell-targeted therapies.

Keywords: lung transplantation, B cell, antibody mediated allograft rejection, chronic lung allograft dysfunction
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INTRODUCTION

Lung transplantation is the definite therapeutic option for patients suffering from end-stage lung
disease. However, long-term post-transplant survival is limited to approximately 50% after five
years due to chronic lung allograft dysfunction (CLAD) (1). Generally, allogeneic immune
responses are the barrier to unlimited pulmonary graft acceptance. While T-cell-dependent acute
graft rejection is today efficiently prevented by immunosuppression, antibody-mediated rejection
(AMR), characterized by the presence of donor-specific antibodies (DSA), remains a poorly
controlled risk factor for CLAD development (2). Recently, B cells gained increasing attention as
key allogeneic immune effectors via antibody-dependent and -independent mechanisms. B cells
produce DSA and autoantibodies against pulmonary self-antigens that have implications in both,
AMR and CLAD pathogenesis (2). Apart from inducing humoral immune responses, B cells also act
as antigen-presenting cells (APCs) aiding in T cell activation. In chronically rejected allografts,
B cells are critical for lymphoid neogenesis and the formation of in-graft tertiary lymphoid organs
(TLOs). The latter are believed to promote a local alloimmune response (3).
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B cells are functionally heterogeneous and not all subsets
contribute to inflammatory graft injury. For example, regulatory
B cell populations (Bregs) are thought to be critical mediators of
immune homeostasis and graft tolerance (4). B cell-targeted
therapeutic approaches could thereby improve long-term
outcomes after lung transplantation.
HUMORAL ALLOIMMUNITY INDUCES
COMPLEMENT-DEPENDENT AND
–INDEPENDENT GRAFT INJURY

Preformed antibodies can cause hyperacute rejection with
pulmonary allografts developing severe hemorrhagic oedema and
radiographic infiltrates in the immediate postoperative period (5).
Preformed donor-specific antibodies (DSA) against donor-derived
human leukocyte antigen (HLA) molecules can be present in
recipients due to prior sensitization (e. g. blood transfusion or
pregnancy) or develop de novo upon transplantation.

DSA can be directed against major histocompatibility
complex (MHC) class I molecules, such as HLA-A, HLA-B
and HLA-C or MHC class II molecules such as HLA-DQ,
HLA-DR or HLA-DP (2). Cleary et al. demonstrated recently
that the capillary endothelium is the primary target in anti-MHC
I-antibody -mediated lung injury in a murine conditional
knockout model (6). Notably, pulmonary endothelial cells not
only carry MHC I, but also express MHC II antigens under
inflammatory conditions (7, 8). The resulting immune
complexes on the endothelial surface activate the classical
complement pathway by engaging the C1 complex (Figure 1).
Consequently, endothelial damage occurs due to the formation
of the membrane attack complex (MAC) as the final effector of
the complement cascade (9). Exposure of the basal membrane
subsequently activates the coagulation cascade causing
thrombosis, fibrinoid necrosis, hemorrhagic oedema and loss
of graft function. During this process, pulmonary-self antigens
Frontiers in Immunology | www.frontiersin.org 2
are exposed and promote autoimmune responses and further
graft damage (10, 11). The activation of the coagulation cascade
can also further complement activation due to non-canonical
cleavage of the C3 and C5 components (12). In addition,
complement activation promotes inflammation by generating
the anaphylatoxins C3a and C5a (9). However, not all DSA
belong to complement-fixing immunoglobulin subclasses.
Different mechanisms of complement-independent humoral
allograft injury have been proposed including the release of
growth factors that results in endothelial and smooth muscle
cell proliferation or platelet activation (13, 14). Furthermore,
DSA binding can promote cellular graft damage engaging the Fcg
receptors on natural killer cells, macrophages and neutrophils
(15, 16). In lung transplantation, the presence of complement-
binding IgG1- and IgG3-DSA is associated with worse post-
transplant outcomes (17, 18).

Today, hyperacute rejection is sufficiently prevented by
antigen avoidance due to prior detection of pre-formed panel
reactive antibodies (PRA) in patients listed for transplantation
and pre-transplant crossmatching. However, patients with high
PRA titers have a decreased chance of transplantation, prolonged
waiting times, and higher waitlist mortality (19). Management
strategies for these patients vary significantly among institutions,
some of them considering al losensit izat ion even a
contraindication to transplantation (20). Other centers employ
desensitization techniques such as plasmapheresis or immune
adsorption before transplantation with varying success (21).
While these strategies may prevent hyperacute graft damage by
transient reduction of circulating DSAmeasured by reduced MFI
in DSA detection assays, they have no impact on the spectrum of
PRA or the number of antibody-producing cells. As current
allocation systems do not consider recipient sensitization, the
question arises whether this criterion should be included to
reduce waitlist mortality. However, consequentially higher
rates of post-transplant complications might be observed. In
2022, the United States is expected to incorporate pre-transplant
allosensitization in their allocation system (22).
FIGURE 1 | Mechanism of humoral allograft rejection. DSA and antibodies bind to their respective antigens and thus activate the complement cascade, promoting
inflammation and leading to cellular damage by formation of the membrane attack complex (MAC). Subsequent exposure of pulmonary self-antigens such as
Collagen V or K-a1 tubulin can further initiate autoimmune responses against the graft.
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B LYMPHOCYTES INITIATE DE NOVO
DSA GENERATION AND MEMORY
RESPONSES UPON TRANSPLANTATION

Upon transplantation, donor-derived antigen-presenting cells
(APCs) and extracellular vesicles move to recipient secondary
lymphoid organs (SLOs) and initiate an allospecific adaptive
immune response. During this process, recipient T cells are
activated by donor antigen by means of the direct, indirect or
semi-direct allorecognition pathways.Direct allorecognition occurs
when recipient T cells recognize intact donor MHC on donor
APCs. Due to rapid elimination of donor-derived passenger
leukocytes during the early post-transplant period, direct
allorecognition is thought to be most relevant for acute
rejection. However, the recent discovery of semi-direct
allorecognition has challenged this paradigm. Here, recipient
APCs acquire functional, intact donor MHC and can thus
activate recipient T cells after the demise of passenger
leukocytes. However, chronic allograft rejection is primarily a
feature of indirect allorecognition in which recipient T cells
recognize processed donor-derived antigen presented by
recipient APCs (23). T cells activated by indirect allorecognition
are subsequently able to translocate to the follicular border of the
lymphoid follicle, acquire a T follicular helper cell (Tfh) phenotype
and subsequently induce a B cellular response (24–26).

Naïve recipient B lymphocytes circulate to SLOs where they
encounter donor antigen binding to their B cell receptor (BCR).
Subsequently, the recipient B cell internalizes the donor antigen
and processes it for presentation on MHC II. Such antigen-
primed B cells express the G-protein coupled Epstein-Barr virus-
induced molecule-2 (EBI2) on their surface and are mobilized to
the border of the T cell zone (27). Here, they interact with their
primed CD4+ T cell counterparts and subsequently undergo
different fates: Firstly, short-lived antibody-producing plasma
cells are generated. They reside in SLOs and rapidly produce low-
affinity anti-donor antibodies. Secondly, B cells can differentiate
to germinal center B cells (GC B cells), characterized by the
expression of the B cell lymphoma 6 (BCL6) transcription factor.
During the germinal center reaction, those B cells undergo clonal
expansion, somatic hypermutation and affinity selection and
thus generate a highly specific anti-donor response. The
germinal center reaction thus results in the generation of
memory B cells and long-lived plasma cells (LLPCs), both of
which allow for a long-term upkeep of the donor-specific
humoral immune response (28).

Memory B cells can be found in the spleen, lymph nodes, and
peripheral blood. They reside in a quiescent state and await
antigen re-challenge (29). Most memory B cells are class-
switched and bind their specific antigen with a higher affinity
than their naïve precursors (30). They retain all functional B cell
properties and undergo activation, clonal expansion and
germinal center reactions in a secondary immune response.
Compared to naïve B cells, they show a faster kinetic due to
their enhanced reactivation potential. They are thus essential
players in allo-sensitization – allowing for rapid enhancement of
DSA in pre-sensitized recipients (31). For example, memory B
Frontiers in Immunology | www.frontiersin.org 3
cells are generated during pregnancy and could thus induce a
secondary immune response upon solid organ transplantation
(32). However, the overall clinical significance of pregnancy-
associated sensitization in allograft rejection remains
unclear (33).

Apart from memory B cells allowing for the rapid generation
of specific antibody upon antigen re-challenge, humoral memory
is also mediated by constitutive antibody secretion from LLPCs.
LLPCs are terminally differentiated cells and have lost both the
ability to proliferate and most B cell-specific surface markers
(34). They home to the bone marrow sinusoid niche where they
persist for several years or even lifelong (35) and provide long-
lasting and specific antibody secretion, even in the absence of
their respective antigen (36). To date, there is only little
understanding about the mechanisms leading to LLPC
longevity. Even though LLPCs acquire an intrinsic
transcriptional and metabolic profile that conditions them for
long-term survival, continuous external signals from their
survival niche are critical to maintain viability (35, 37).
Therefore, the generation of LLPCs is conditional on their
recruitment to the bone marrow mediated by the CXCL12-
CXCR4 axis (38).

By both reactivation of memory B cell responses and
generation of LLPCs, lung transplant recipients develop a long-
lasting humoral anti-donor immune response causing
continuous inflammatory damage to the graft that ultimately
leads to acute and chronic rejection (Figure 2).
ANTIBODY-MEDIATED REJECTION
CONTRIBUTES TO CHRONIC REJECTION
AND POOR OUTCOME AFTER LUNG
TRANSPLANTATION

In 2016, the ISHLT consensus consortium defined for the first
time the term antibody-mediated rejection (AMR) as a separate
entity for pulmonary graft rejection and provided standardized
diagnostic criteria (2). A definite diagnosis of AMR requires the
diagnosis of clinical allograft dysfunction, the presence of DSA, a
characteristic lung pathology, endothelial deposition of
complement component C4d, and the exclusion of other
causes of graft dysfunction.

Proof of C4d deposition is a controversial diagnostic criterion
for pulmonary AMR (39). Most complement components show
non-covalent binding to the endothelium and are thus rapidly
inactivated by decay-accelerating factor (DAF) and CD59 on the
endothelial surface. In contrast, C4d forms a covalent thioester
bond making it resistant to shedding and thus detectable by
immunohistochemistry. In pulmonary pathology, C4d
deposition is not specific to AMR but is also observed during
ischemia-reperfusion injury, acute cellular rejection and in the
context of infection (40). In addition, not all cases of AMR show
positive staining for C4d, giving rise to the descriptive term
“C4d-negative” AMR. Whether this is a form of AMR caused by
non-complement fixing antibodies or these observations owe to
technical limitations of staining practices remains unclear (39).
March 2022 | Volume 13 | Article 845867
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Summarizing these aspects, AMR is a complex pathologic and
clinical process that ultimately leads to acute and chronic loss of
graft function. Clinically, AMR-related graft dysfunction can
range from fulminant respiratory failure to subclinical
dysfunction detected only by surveillance lung function testing
(2). As the diagnosis of AMR is associated with increased
presence of chronic lung allograft dysfunction (CLAD) (41), it
seems likely that continuous humoral graft damage significantly
contributes to chronic rejection. In support of this, the
application of anti-donor MHC antibodies histologically results
in obliterative bronchiolitis (OB) in murine studies (42). In lung
transplant recipients with high DSA titers, restrictive allograft
syndrome (RAS) is the more common CLAD subtype and often
results in rapid and fatal graft failure (43). However, CLAD does
also occur in the absence of detectable circulating DSA, and these
cases cannot be histologically or clinically distinguished from
those with measurable serum DSA. In some of these patients
with missing serum DSA, the presence of intragraft DSA can be
demonstrated (44, 45). These studies corroborate the importance
of the humoral response in RAS as this CLAD phenotype was
associated with higher in-graft DSA titers. The reason for the
discrepancies between serum and intragraft DSA remains elusive
(45). Firstly, they could be attributed to a strong intragraft
binding of DSA, and secondly, some authors assign intragraft
DSA to a local alloantibody production within the graft.
Frontiers in Immunology | www.frontiersin.org 4
INFILTRATING B CELLS MAY PROMOTE
INTRAGRAFT ALLOIMMUNE REACTIONS
DURING CHRONIC REJECTION

In chronically rejected allografts, infiltrating lymphocytes form cell
clusters reminiscent of classical lymphoid follicles (46). This process
is termed lymphoid neogenesis and is not only observed in
chronically rejected solid organ grafts but also in chronic infection,
autoimmune disease, and cancer (47). Generally, these tertiary
lymphoid organs (TLOs) are formed when a persistently activated
immune system is unable to eradicate its target antigen (48). In
chronically rejected lung allografts, TLOs are typically found in
patients suffering from restrictive allograft syndrome (RAS) (49).
Here, the number of TLOs correlates with a lower life expectancy –
indicating a deleterious role for TLOs. Even though the regulation of
humoral responses upon transplantation is generally thought to
occur peripherally and depend on antigen presentation in secondary
lymphoid organs, TLOs are believed to elicit alloimmune responses
by similar mechanisms (Figure 2) (50). Compared to secondary
lymphoid organs, these processes occur directly within the graft in a
microenvironment of abundant alloantigen and self-antigens
released upon tissue damage (3). Furthermore, TLOs show
restricted lymphatic drainage and are thus believed to trap antigen
and initiate a pronounced local immune response (51). As a result,
graft-damaging DSA could be generated within the transplant lung.
FIGURE 2 | The B cell alloimmune response leads to the generation of graft-injuring alloantibodies and can be targeted therapeutically on different levels.
Therapeutic agents in current clinical use in lung transplant recipients are depicted in bold.
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B cells are critical for maintaining lymphoid structures as B
cell-deficient mice show disorganized lymphoid tissues (52). In a
murine model of orthotopic single lung transplantation,
Smirnova et al. recently demonstrated that the depletion of B
cells abrogates TLO formation in pulmonary allografts. In
addition, B cell depletion diminished the fibrous tissue
remodeling that is characteristic for chronic rejection in this
experimental model (53). Inhibition of EBI2 which is known for
orchestrating B cell positioning in lymphoid structures, resulted
in equal observations (53). Watanabe et al. demonstrated
furthermore that B cell depletion diminished humoral immune
responses against allo- and autoantigens, TLO formation and
fibrosis in a murine orthotopic lung transplantation model of
RAS using a minor-mismatched strain combination (54). They
demonstrated that B cell depletion only had a minor influence on
in-graft T cell composition - pointing towards an even more
decisive role for B cells in the development of CLAD lesions (54).
However, whether TLOs are a causative agent in CLAD or
merely a byproduct of the immune response remains unclear.
To date, adequate experimental models that can specifically
inhibit lymphoid neogenesis without further targeting recipient
immunity are missing. Thus far, it can also be proposed that the
formation of TLOs in chronically rejected grafts is a non-specific
response to the local inflammatory milieu (3).
ALLOIMMUNITY-INDUCED
AUTOIMMUNITY THROUGH BREAKING
B CELL SELF-TOLERANCE

Non-DSA humoral immune responses have gained interest in
graft rejection (55). In principle, all human solid organ allograft
recipients have autoantibodies. These antibodies target a wide
variety of antigens which may be both ubiquitously present or
organ-specifically expressed. In lung transplant recipients,
autoantibodies that target fibrillar collagen V (ColV) and K-
alpha tubulin (KaT) are associated with increased rates of CLAD
(56). These autoantibodies either exist prior to transplantation or
can be generated de novo. Their contribution to graft damage
remains elusive as they are often accompanied by the presence of
DSA (56). It is likely that the alloimmune response facilitates
transplant-associated autoimmunity, as the majority of
autoimmune target antigens are located in the intracellular
compartment and are not expressed as surface molecules.
However, antigens translocate to the cell surface upon
apoptotic triggers such as previous alloimmune damage. In
fact, transplant-associated autoantibody predominantly targets
the allograft rather than native organs (57).

The development of autoimmune responses requires the
breaking of B cell self-tolerance. Even in healthy individuals,
clonal deletion and receptor editing in the bone marrow fail to
eliminate all autoreactive cells and allow some self-reactive
transitional B cells to enter the circulation. Upon antigen
encounter, these cells acquire an anergic state that is
characterized by limited B cell receptor signal transduction, a
reduction of surface IgM and the exclusion from the B cell follicle
Frontiers in Immunology | www.frontiersin.org 5
(58). However, B cell anergy can be broken by CD4+ T cell help
(59). Upon transplantation, the encounter of passenger donor
CD4+ T cells could trigger autoimmunity by breaking B cell
anergy (60). This may prime self-reactive B cells to interact with
recipient-derived Tfh cells while subsequently undergoing a
germinal center response.

Most likely, intra-graft TLOs contribute significantly to
alloimmunity-induced autoimmunity as the abundance of self-
antigens within the damaged graft may facilitate the selection of
high-affinity mutants during the germinal center response. This
way, the plasma cell output is shaped according to locally
expressed autoantigen. In autoreactive germinal centers,
epitope diversification may spread the autoreactive response to
other autoantigens (61). In support of this, Bharat et al.
demonstrated that anti-KaT-autoantibody is generated after
the application of anti-ColV antibody in a murine model of
unilateral lung transplantation (62).

The germinal center response further enhances the number of
autoreactive B cells within the allograft. Here, these B cells
function as APCs and contribute to graft damage by priming T
effector cells (63). Even though antigen presentation by B cells
requires the specific engagement of their B cell receptor, they
could contribute to the alloimmune response by the uptake of
bystander antigen within the graft (64).
POLYREACTIVE NATURAL ANTIBODIES
PUTATIVELY PARTICIPATE IN LUNG
ALLOGRAFT REJECTION

Polyreactive natural antibodies (nAbs) were first identified in the
1960s and play a decisive role in tissue homeostasis and innate
immunity. Most nAbs originate from innate-like B1 B cells that
primarily reside in the pleural and peritoneal cavities. However,
marginal zone B cells and bone marrow precursors also
contribute to nAb generation. nAbs include IgM, IgG and IgA
isotypes with both germline and somatically mutated
sequences (65).

nAbs are known to bind both apoptotic cell structures and
pathogeneic antigen, and they control damage from oxidative
stress. Similar to specific antibodies, nAbs can activate the classical
complement pathway and engage Fc receptors (66, 67). With
regard to transplantation, nAbs react to AB0 blood group antigens
and xeno-antigens and are thus responsible for hyperacute
rejection in AB0-incompatible- and xeno-transplantation (68).
However, their role in allotransplantation is less clear.

Due to their broad binding profile, nAbs are difficult to
evaluate and not readily distinguishable from specific
antibodies. For example, polyreactive nAbs account in part for
serum reactivity to HLA in Luminex assays (69). It is therefore
difficult to study the specific role of natural antibodies.

Upon transplantation, nAbs may bind to endothelial neo-
antigens exposed upon ischemia-reperfusion injury and
recognize the danger-associated molecular patterns (DAMPs)
in damaged allografts. In kidney transplantation, the presence of
polyreactive nAbs is associated with AMR and graft loss (66, 70).
March 2022 | Volume 13 | Article 845867
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While most nAbs belong to the IgM isotype in steady-state
conditions, IgG nAbs dominate in kidney transplant recipients
(71). I seems possible that innate-like B cells can undergo class
switching following antigen encounter.

To our knowledge, there is only one study that evaluates the role
of polyreactive nAbs in lung transplantation: in contrast to
observations made in kidney transplantation, Budding et al.
reported that elevated polyreactive nAbs against apoptotic cells in
patients with end-stage lung disease do not show any correlation
with the presence of acute or chronic allograft rejection (72).

Taken together, natural antibodies may play a role in allograft
rejection by recognizing a broad variety of self- and non-self
antigens. However, natural antibody responses are difficult to
evaluate and their specific contribution to allograft damage
remains largely unclear.
B CELLULAR ANTIGEN PRESENTATION
CONTRIBUTES TO ALLOGRAFT
REJECTION

Even though antibody-mediated mechanisms significantly
contribute to chronic allograft rejection, Zeng et al.
demonstrated that B cells are able to promote chronic rejection
independently of antibody production using a murine model of
cardiac transplantation (63): while B cell-depleted animals were
protected from it, mice lacking circulating antibodies developed
chronic allograft vasculopathy. Upon adoptive transfer of B
lymphocytes without the ability to produce antibodies, B cell-
depleted animals developed chronic rejection (63). These
observations may be attributed to the role of B cells as antigen-
presenting cells and suggest that they are necessary for optimal
priming of alloreactive T cells (73).

B cells are only able to present antigen via the indirect
allorecognition pathway. Upon alloantigen engagement, they
internalize the specific antigen and process it for presentation
on MHC II (74). To our knowledge, MHC cross-dressing and
therefore presentation for semi-direct allorecognition has not yet
been described in B lymphocytes. Recipient B cells therefore
exclusively engage with recipient CD4+ T cells. As described
above, such an encounter is crucial for the germinal center
response. Apart from this interaction with Tfh cells, it remains
unclear whether B cells can function as APCs to other CD4+

effector or regulatory T cells in allogeneic transplantation (74).
REGULATORY B CELL SUBSETS
MEDIATE GRAFT TOLERANCE

Apart from their detrimental role in allograft rejection,
specialized B lymphocyte subsets have been implicated in
promoting graft tolerance. These are immunosuppressive B
lymphocytes that are collectively termed regulatory B cells
(Bregs) and comprise a heterogeneous population of various
Frontiers in Immunology | www.frontiersin.org 6
stages of B cell maturity. Initially defined by the ability to
produce interleukin-10 (IL-10), it is now accepted that Bregs
also utilize other immunoregulatory cytokines and cell surface
receptors (75). To date, characterizing Bregs remains challenging
as they lack specific phenotypic or transcriptional markers.
Insights into the development of Bregs is therefore limited
(76). Whether these cells comprise a separate lineage or if B
cells of different states of maturity can acquire regulatory
properties under certain conditions is currently unclear (75).

Even though true transplant tolerance in the presence of
generalized immunocompetence is not achievable in humans
(77), operational tolerance is observed in liver and kidney
transplant recipients, demonstrating stable graft function in the
absence of maintenance immunosuppression. In these patients,
B lymphocyte-related gene signatures have been characterized as
biomarkers for operational tolerance (78). Tolerant recipients
show reduced DSA titers and decreased numbers of plasma cells,
as well as increased numbers of naïve B cells and IL-10+ Bregs in
their peripheral blood (79). To date, operational tolerance has
not been reported in lung transplantation. However, increased
peripheral numbers of IL-10+CD19+ CD24highCD38high

transitional Bregs in lung transplant recipients were shown to
be associated with a decreased risk for chronic rejection (80).
These transitional Bregs have been defined to secrete the highest
amount of IL-10 upon CD40 stimulation compared to other
peripheral B cell subsets (75). In the murine CLAD model of
heterotopic tracheal transplantation, an intense infiltration of
transitional Bregs upon rapamycin treatment resulted in the
prevention of fibrotic airway obliteration (81). These
observations suggest that certain B cells mediate tolerogenic
signals in lung transplantation and could therefore serve as
innovative therapeutic targets in transplant-related diseases.

Mechanistically, Bregs target immune effector cells by both
cytokine secretion and ligand-receptor interactions. Even though
the nature of Breg interaction with other immune effectors in vivo
remains unclear, surface expression of CD40 andMHC II suggests
that Bregs interact with T lymphocytes and can therefore
modulate T-cell-dependent alloimmunity (82). Engagement of
Breg surface Fas ligand (FasL) or PD-L1 by their respective T
cellular receptors Fas and PD-1 can induce apoptosis in T effector
cells (83, 84). Bregs also indirectly modulate T cell function
secreting the anti-inflammatory cytokines IL-10, IL-35 and
transforming growth factor b (TGF-b) as well as granzyme B
(82). As an anti-inflammatory member of the IL-12 cytokine
family, IL-35 has been demonstrated to suppress T cell
proliferation and boost the conversion of naïve T cells to IL-35+

regulatory T cells (Tregs) (85). TGF-b can support the generation
of Tregs and inhibits effector lymphocyte proliferation (82).
Furthermore, granzyme B can modulate effector lymphocyte
populations by the induction of apoptosis (86). IL-10 - secreting
Bregs (also termed B10 cells) also induce the differentiation and
expansion of immunosuppressive regulatory T cells (Tregs) (87)
and could thus promote graft tolerance. The tolerogenic properties
of regulatory B cells are summarized and contrasted to
conventional B cell-mediated rejection in Figure 3.
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Taken together, some B lymphocyte subsets can mediate
tolerogenic signals regulating T cell functions. Their
immunomodulatory function should be considered when
applying B cel l-targeted therapy in the context of
transplantation, as B cell depletion could thus increase the risk
of cellular rejection (88).
STRATEGIES FOR AMR TREATMENT
AND DSA REDUCTION

Even though some may argue that T-ce l l - focused
immunosuppression should curb B cell responses via Tfh cell
inhibition, routine post-transplant immunosuppressive regimens
fail to control AMR and chronic rejection after lung
transplantation. Desensitization and current treatment strategies
for pulmonary AMR have been adapted from experiences in other
solid organ grafts. The treatment aims to diminish circulating
DSA, limit complement activation or tone down B cell activity.
Figure 2 provides an overview of the strategies for AMR treatment
and DSA reduction.

Plasmapheresis and immunoadsorption are often employed
to reduce circulating DSA in highly sensitized recipients (89).
While plasmapheresis separates plasma from whole blood,
immunoadsorption specifically removes target antibodies from
the circulation. However, the rates of DSA reduction are variable,
and long-term desensitization cannot be achieved by
plasmapheresis alone as antibody production is not suppressed.
Indeed, rebound phenomena with heightened antibody
production can occur after plasmapheresis (90). Therefore,
Frontiers in Immunology | www.frontiersin.org 7
plasmapheresis should always be used in combination with
other therapeutic approaches.

As previously described, antibody-mediated complement
activation significantly contributes to humoral graft damage. In
addition, complement indirectly drives AMR development as
opsonization (e.g. by C3d) is needed for antigen uptake into B
cells. Upon BCR engagement, complement receptors act as B-
cell coreceptors.

Eculizumab is an inhibitor of the complement component C5
routinely used in paroxysmal nocturnal hemoglobinuria (PNH)
and atypical hemolytic syndrome (aHUS). In lung
transplantation, the use of eculizumab has been employed in
combination therapy for AMR (91) and hyperacute rejection
(92). Inhibiting C5 cleavage to C5a and C5b, eculizumab can
prevent graft damage by impeding MAC formation. However,
eculizumab treatment not only limits activation of the classical
pathway responsible for graft damage but also affects the
alternative complement pathway central to pathogen clearance.
Therefore, caution should especially be taken in transplant
recipients regarding infectious complications during
eculizumab treatment.

C1 esterase inhibitor (C1-INH) targets the classical pathway
by blocking the proteolytic activity of C1r and subsequent
cleavage of C2 and C4 components. Furthermore, C1-INH has
inhibitory effects on the lectin pathway of complement
activation, coagulation, kallikrein and kinin systems. In lung
transplantation, C1-INH can effectively prevent reperfusion
injury and primary graft dysfunction in experimental settings.
In human pulmonary AMR, rapid clinical and radiologic
improvements upon C1-INH treatment have been reported
FIGURE 3 | B cellular contribution to allograft rejection and tolerance. While conventional B cells mediate rejection by means of alloantibody production, memory
responses and T cell activation, regulatory B cell subsets mediate allograft tolerance. These Bregs regulate T cell functions via surface molecules and cytokine production.
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(93). The C1 complex can also be explicitly targeted by Anti-C1s
monoclonal antibody which inhibits complement activation both
in vitro (94) and in vivo (95) and reduces C4d deposition in renal
AMR (96).

While these strategies reduce antibody-induced complement-
mediated damage, they cannot achieve a reduction of antibody
titers nor limit complement-independent graft injury. In this
regard, IgG endopeptidase cleaves the Fc fragments from human
IgG and thus renders them incapable of both complement
activation and induction of antibody-dependent cellular
cytotoxicity. In kidney transplantation, IgG endopeptidase
treatment successfully reduced DSA and allowed successful
HLA-incompatible transplantation in highly sensitized recipients
(97). As of yet, a use in lung transplantation has not been reported.
Even though IgG endopeptidase can reduce DSA titers, it exerts an
unspecific effect on all IgG limited to a time period of
approximately two weeks. Therefore, its use might not be
feasible for preventing chronic humoral alloimmune responses.

Intravenous Immunoglobulin (IVIG) treatment is a
commonly used immunosuppressive technique in autoimmune
conditions (98) and is routinely employed in desensitization and
AMR treatment. However, its precise mechanism of action
remains unknown and IVIG might have a broad spectrum of
effects on the immune response. For instance, IVIG treatment is
believed to neutralize circulating DSA, inhibit complement
activation and engage Fc receptors on immune effector cells
(99). In lung transplantation, IVIG treatment alone does not
sufficiently influence the humoral response (100) and is therefore
often employed in combination with other agents (101).

To suppress antibody production, different therapeutics
targeting the B cell response are available. Rituximab is a
chimeric monoclonal anti-CD20 antibody inducing apoptosis in
mature B cells. However, plasma cells lack CD20 surface
expression and thus are not targeted by rituximab. Therefore, a
reduction of antibody titers is observed with a delay of three
months after the natural demise of short-lived plasma cells (102).
In addition, LLPCs also lack CD20 expression, and thus rituximab
cannot entirely abrogate the humoral response. In sensitized lung
transplant recipients, rituximab is therefore often combined with
antibody reduction strategies. In a prospective study, rituximab
safely contributed to DSA reduction in combination with
IVIG (103).

The anti-CD19 antibody inebilizumab can target a broader
range of B lymphocytes as CD19 is conserved in plasma cells. In
neuromyelitis optica, inebilizumab efficiently reduces pathologic
antibody titers (104) and it is currently under clinical
investigation for desensitization prior to renal transplantation
(ClinicalTrials.gov Identifier: NCT04174677). However,
evidence suggests that inebilizumab may not target LLPCs as
these cells are not effectively targeted by CD19-directed CAR T-
cell therapy (105).

When aiming to inhibit antibody production, plasma cells
ought to be the primary therapeutic target. Proteasome inhibitors
such as bortezomib and carfilzomib are small molecules first
approved for use in multiple myeloma that deplete plasma cells
by inducing apoptosis. In lung transplantation, proteasome
Frontiers in Immunology | www.frontiersin.org 8
inhibitors are used within multimodal concepts for
desensitization and treatment of AMR (106, 107). However,
beneficial long-term effects cannot be achieved with
proteasome inhibitors. In vitro, they have been demonstrated
to induce apoptosis in memory B cells. Thus, their lack of long-
term efficiency can probably be attributed to the persistent
activity of LLPCs in the bone marrow. Of note, bortezomib
treatment is limited by cumulative dose-related toxicity and can
have severe toxic pulmonary effects (108). Thus, caution should
be taken when applying it to lung transplant recipients.

Therapeutically targeting LLPCs in the bone marrow niche is
a significant hurdle to inhibiting alloantibody production. LLPCs
evade B cell depletion strategies by altered expression of B cell
markers and their upkeep is independent of T cell help.
Plerixafor is a novel CXCR4 chemokine antagonist used to
mobilize hematopoietic stem cells from the bone marrow
(109). As LLPC homing is CXCR4-dependent, plerixafor could
also achieve their mobilization (110). In murine studies,
plerixafor treatment primarily mobilized splenic plasma cells
(111). In a non-human primate model of sensitized renal
transplantation, combining plerixafor with the plasma cell-
directed anti-CD38 antibody daratumumab resulted in a
reduction of DSA and prolonged graft survival (112). However,
daratumumab treatment was associated with DSA rebound and
robust T cell-mediated rejection (112). In clinical use, authors
report on cases of successful employment of daratumumab for
desensitization and AMR treatment (112). Currently, the safety
of anti-CD38 antibody treatment for desensitization before
kidney transplantation is evaluated in a phase Ib/II study
(ClinicalTrials.gov Identifier: NCT04294459).

Belimumab is a monoclonal antibody targeting the cytokine B
lymphocyte stimulator (BLyS) critical for B lymphocyte survival.
As such, it has been proposed to limit plasma cell survival and
could thus reduce humoral alloimmunity (113). In animal
studies, BLyS inhibition resulted in DSA reduction and
prolonged graft survival (114, 115). The use of belimumab has
been evaluated in human kidney transplantation, demonstrating
a good safety profile. However, authors did not find a significant
influence on B cell populations (116). Use of belimumab in lung
transplantation has not been reported to date.

The anti-IL-6-receptor antibody tocilizumab licensed for use
in rheumatoid arthritis can have beneficial effects on B cell
development in the context of transplantation (117). IL-6 is an
essential cytokine for plasma cell differentiation, and IL-6-
deficient mice present a reduction in IgG production (118,
119). In the context of lung transplantation, increased IL-6 is
associated with primary graft dysfunction (120). In CLAD, the
use of tocilizumab resulted in slight improvements in spirometry
and DSA reduction (121).

Antithymocyte globulin (ATG) consists of polyclonal
antibodies generated by applying human thymic tissue lysates
to animals. Thus, ATG is directed against a wide variety of
lymphocyte surface markers, including B cells. However, ATG
more reliably affects T cells, and it is often reported that B cells
are the predominating cell type persistent after treatment. Thus,
ATG does not inhibit antibody production. However, the use of
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ATG in lung transplantation has been reported in various stages
of graft damage and can ameliorate acute (122) and chronic graft
rejection (123). ATG may convey protective effects by interfering
with T cell support for B cell reactions.

Costimulation can be targeted therapeutically by the fusion
proteins belatacept and abatacept consisting of human IgG1 Fc
fragments and the extracellular CTLA-4 domain. By competitive
binding to CD80 and CD86, these molecules prevent CD28
costimulation and, consequently, the activation of naïve T cells
(124). These agents are approved for second-line maintenance
immunosuppression in kidney transplantation, substituting
calcineurin inhibitors. Evidence suggests that belatacept limits de
novo DSA production (125). In lung transplantation, successful
use of belatacept in maintenance immunosuppression has been
reported (126) and its use is currently being formally evaluated
(ClinicalTrials.gov Identifier: NCT03388008).
SUMMARY AND CONCLUSION

B lymphocytes significantly contribute to the alloimmune
response by antibody production and potentially by the
modulation of the T cell response via antigen-presentation and
cytokine secretion. Mainly, humoral responses cause hyperacute
rejection and AMR. Clinically, sensitized lung transplant
candidates face higher waitlist mortality and a reduced
likelihood to be transplanted. Post-transplantation, antibody-
mediated rejection can lead to a rapid loss of graft function and
is associated with CLAD development. In chronic rejection, B
lymphocytes initiate lymphoid neogenesis associated with a
pronounced local immune response and a rapid functional
decline – especially observed in the RAS phenotype. Thus, B
Frontiers in Immunology | www.frontiersin.org 9
cellular responses pose a significant hurdle to long-term
pulmonary graft survival. Several therapeutic strategies aiming to
tone down B cell responses and thus reduce circulating DSA are
employed in the clinic. However, their success is limited. In clinical
use, a combination therapy is recommended as no single agent can
sufficiently diminish the B cell response alone. Multiple substances
are necessary to target all, antibody-mediated graft injury,
antibody production and plasma cell differentiation. Currently,
several novel B cell-targeted therapeutic agents are under
evaluation for kidney or lung transplantation. However, these
immunosuppressants do not only inhibit the pathological immune
reactions after transplantation but they also influence lymphocyte
subsets with regulatory properties. Immunoregulatory B cells
remain poorly characterized to date due to a lack of specific
markers. Thus, selective inhibition of alloreactive B cells
preserving Breg functions has not been achieved to date but
may be a promising strategy to prolong pulmonary allograft and
recipient survival in the future.
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