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Thrombotic diseases seriously endanger human health, neutrophils and neutrophil
extracellular traps (NETs) play an important role in abnormal thrombus formation. NETs
are extracellular structures released by neutrophils upon stimulation by pathogens. NETs
include neutrophil elastase (NE), myeloperoxidase (MPO), cathepsin G and other active
substances. The network structure provided by NETs can prevent the spread of
pathogens and effectively kill and eliminate pathogens. However, the components of
NETs can also abnormally activate the coagulation pathway and participate in the
formation of pathological thrombi. This review aims to summarize the mechanisms of
NETs formation in detail; the research progress of NETs in venous thrombosis, arterial
thrombosis, acquired disease-associated thrombosis, sepsis coagulation disorder; as
well as the strategies to target NETs in thrombosis prevention and treatment.

Keywords: neutrophil, neutrophil extracellular traps, thrombosis, Innate immunity, thrombosis - immunology
INTRODUCTION

Neutrophil extracellular traps (NETs) are extracellular structures released by neutrophils under
stimuli, such as pathogens, histones and bacteriostatic proteins (Laridan et al., 2019). NETs can
confine pathogens in situ, prevent the systemic spread of pathogens and assist phagocytes in killing
pathogens, which is considered to be another mechanism of action of neutrophils in innate
immunity (Papayannopoulos, 2018). Because the network structure of NETs can provide a scaffold
for the aggregation of red blood cells and platelets, and its components can also activate the
coagulation pathway, NETs have recently been discovered to be involved in thrombosis formation
(Noubouossie et al., 2019). This review elaborates the formation mechanism of NETs and their role
in thrombosis formation and focuses on research progress in different kinds of thrombosis
formation as well as related thrombosis prevention strategies.
NET FORMATION

NETs were first named by Brinkmann et al. in 2004, but the mechanism by which NETs undergo
NETosis has not yet been clarified (Brinkmann et al., 2004). According to differences in the
pathogenic stimulation of neutrophils, activation of signaling pathways, and cell membrane
integrity, NETs formation can be classified into two types: suicidal NETosis and survival NETs
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release (Thiam et al., 2020). In suicidal NETosis, neutrophils
activate Fc receptors, Toll-like receptors (TLRs) and complement
receptors under the stimulation of interleukin-8 and bacterial
surface antigens. Activation of reduced coenzyme II oxidase
leads to an increase in reactive oxygen species (ROS), and
protein-arginine deiminase 4 (PAD4) further citrullinates
chromatin after activation under the action of ROS, histone 3
and histone 4, causing DNA unwinding (Kapoor et al., 2018; Van
Avondt and Hartl, 2018). ROS can also promote the release of
myeloperoxidase (MPO) and neutrophil elastase (NE) in
granules, and the NE can enter the nucleus to assist in the
cleavage of histones and promote DNA unwinding (Jorch and
Kubes, 2017). After the nucleus is ruptured, unwound DNA
strands and histones enter the cytoplasm, and antibacterial
proteins in the cytoplasm, such as MPO, CitH3, NE and
cathepsin G, work together to form early NETs. At this time,
neutrophils initiate the cell death program, and lysis of the cell
membrane releases NETs (Kenny et al., 2017). In survival NETs
release, neutrophils activate TLR-4 and TLR-2 receptors under
stimuli such as bacterial lipopolysaccharide and gram-negative
bacteria, resulting in PAD4 activation, and activated PAD4
enters the nucleus to citrullinate histone H3 and H4, causing
DNA unwinding (Branzk et al., 2014; Thålin et al., 2019). Unlike
suicidal NETosis, PAD4 is activated in a non-ROS-activated
manner in surviving NETosis and is not accompanied by nuclear
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
or cell membrane ruptures. Neutrophils themselves do not die,
and unwound DNA strands bud into the cytoplasm and form
early NETs with bacteriostatic proteins. They are exocytosed and
released to the outside of the cell in the form of vesicles. At this
time, although neutrophils have no nuclear DNA, they still have
the ability to phagocytose and kill bacteria (Adrover et al., 2020).
In the regulation of NETosis, pathogen fragment size and particle
content in neutrophils can influence the generation and release
of NETs (Branzk et al., 2014; Adrover et al., 2020). In addition,
specific subpopulations of macrophages can also participate in
the degradation of NETs through phagocytosis (Haider et al.,
2020). Recent studies have also found that the pore-forming
protein gasdermin D (GSDMD) can promote the formation and
release of NETs by participating in the lysis of the neutrophil
granule membrane, nuclear membrane and cell membrane and
regulating the permeability of neutrophils. The intranuclear
transfer of NE further affects NETosis (Sollberger et al., 2018).
The link between NETosis and various kinases, such as cyclin-
dependent kinases is also under investigation (Amulic et al.,
2017; Wolach et al., 2018). However, there is still considerable
controversy about whether PAD4 activation is necessary in
NETosis and whether the DNA in NETs can be of
mitochondrial origin (Lood et al., 2016; Claushuis et al., 2018).
In conclusion, the mechanism of NETs generation and release
still needs to be further explored (Figures 1A–C).
A

C

B

FIGURE 1 | Neutrophil Extracellular Traps. (A). Mechanism of neutrophil extracellular traps formation (B). Neutrophil extracellular traps structure under scanning
electron microscope (C). Neutrophil extracellular traps stained with immunofluorescence, green, citrullinated histone H3; red, myeloperoxidase; blue, DAPI.
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NETS AND THROMBOSIS FORMATION

Thrombosis is an intravascular blood clot formed by substances
such as platelets and coagulation factors in the case of vascular
injury, abnormal blood flow or blood components and can play a
role in repairing vascular injury and hemostasis under normal
physiological conditions (Mackman et al., 2020). When the
coagulation pathway is overactivated or fibrinolytic activity is
decreased, the formation of thrombi will lead to vascular
obstruction, resulting in a tissue blood supply disorder
(Mackman et al., 2020). In addition, in situ thrombus shedding
can also cause acute thromboembolism, such as acute myocardial
infarction (AMI) (Wendelboe and Raskob, 2016), stroke (Farkas
et al., 2019) with high fatality and disability rates. Several recent
studies have found that neutrophils and NETs are ubiquitous in
human arteriovenous thrombosis samples, mouse deep vein
thrombosis (DVT) and other disease models (Wendelboe and
Raskob, 2016; Noubouossie et al., 2017; Wang et al., 2018; Farkas
et al., 2019). NETs have been further found to attract platelet
activation and promote thrombosis by activating internal and
external coagulation pathways, Generally, After vessel injury
induced by neutrophils and NETs, TF under the endothelium
is exposed to the vascular lumen and initiates extrinsic
coagulation pathway. It serves as a cellular receptor for plasma
factor VII/VIIa. Together, the factor VIIa : TF complex activates
factor X and factor IX. Activated factor Xa in association with its
cofactor Va, the prothrombinase complex, cleaves prothrombin
to thrombin, which in turn cleaves fibrinogen to fibrin. Then,
trans-glutaminase factor XIII cross-links fibrin to stabilize the
thrombi (Noubouossie et al., 2017; Wang et al., 2018; Farkas
et al., 2019). The network structure of NETs provides a scaffold
for the deposition of platelets, erythrocytes, fibrinogen, von
Willebrand factor (vWF) and other substances, such as platelet
adhesion factors and extracellular bodies, which are conducive to
thrombosis (Wang et al., 2018). Histones in NETs can attract
platelet aggregation and activation through the interaction of
fibrinogen, TLR2 and TLR4 and promote an increase in
thrombin generation. In addition to the inhibition of activated
protein C (APC), histones can also promote the expression of
tissue factor on vascular endothelium and macrophages and
promote coagulation (Yang et al., 2016; Noubouossie et al., 2017;
Osada et al., 2017). NE and cathepsin G can promote the
coagulation pathway induced by tissue factor and coagulation
factor XII by hydrolyzing tissue factor pathway inhibitor (TFPI).
Coagulation factor XII can also bind to surrounding platelets and
DNA through its connection with NETs; it is directly activated
by the coagulation pathway to expand coagulation (Vu et al.,
2016; Döring et al., 2020). While cathepsin G promotes
endothelial activation and prothrombin production, DNA
inhibits fibrinolysis by forming complexes with fibrin and
plasmin (Gould et al., 2015; Folco et al., 2018). In terms of the
overall effect of NETs on thrombosis, NETs have been shown to
promote the formation of erythrocyte-rich thrombi in vitro, and
the erythrocytes in the thrombus are directly bound to NETs as
observed by electron microscopy. In addition, NETs can interact
with fibronectin and vWF to attract and promote platelet
adhesion and activation (Gould et al., 2014; Martinod and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Wagner, 2014). The connection between NETs and fibrinogen
in thrombi can also promote fibrin deposition and improve
thrombus stability; thus, thrombi containing NETs are more
sensitive to tissue plasminogen activator (tPA) than thrombi
with fibrin as the main component (Ducroux et al., 2018). The
use of DNase I in mouse models can effectively prevent the
formation of intravascular microthrombosis, which strongly
suggests an effect of NETs on thrombosis (Jiménez-Alcázar
et al., 2017). However, Noubouossie et al. (2017) pointed out
that the promoting effect of NETs on thrombosis is achieved
through its DNA and histone components rather than the NETs
themselves. Therefore, evidence for a thrombopromoting effect
of NETs as a whole remains to be further developed. Studies have
shown that activated platelets can promote the formation and
release of NETs through mechanisms such as P-selectin and high
mobility group box protein 1 (Etulain et al., 2015; Kim and Lee,
2020). Therefore, the effects between NETosis and thrombosis
may be reciprocal, and this mutually reinforcing cascade may
play an important role in events such as thrombophilia in
patients with thrombosis or an increased risk of thrombosis
after infection (Figure 2).
NETS AND VENOUS THROMBOSIS

The relationship between NETs and venous thrombosis was first
discovered in animal disease models (Wang et al., 2018). In the
DVT disease model, staining of the thrombosed vein tissue
indicated the presence of extracellular DNA; the DNA
costained with vWF, and the serum DNA level was also
increased, while the nonthrombotic vein tissue did not stain
positive for extracellular DNA (Wang et al., 2018). A similar
phenomenon was observed in a mouse DVT model, wherein
activated neutrophils and NETs-specific markers, such as
citrullinated histone H3 (CitH3) and extracellular DNA, were
all present within the thrombus (Lim et al., 2018). Thus, the
existence of NETs in venous thrombosis was preliminarily
proven. In PAD4 knockout mice, NETosis is inhibited due to
the inability of histones to be citrullinated under the action of
PAD4 (Martinod et al., 2013). In addition, when using antibodies
to inhibit neutrophil activation, DVT formation and thrombus
diameter were significantly reduced in mice, while DNase-
treated DVT mice had reduced thrombus recurrence and
thrombus size (Mutua and Gershwin, 2021). Thus, the role of
NETs in venous thrombosis has been clearly demonstrated. The
relationship between NETs and venous thrombosis has also been
demonstrated in human disease. First, the serum levels of DNA
and activated neutrophil markers in DVT patients were higher
than those in non-DVT patients, preliminarily verifying the
association of NETs with venous thrombosis (Conteduca et al.,
2022). The presence of extracellular DNA-histone complexes
and neutrophils was further detected in thrombus samples
obtained from DVT and PE patients by thrombectomy, and
the different stages of thrombus formation were also detected by
staining of thrombus cross-sections. The contents of neutrophils
and CitH3 are different in the early stage of thrombosis; they are
replaced by collagen fibers in the later stage, and the content of
May 2022 | Volume 12 | Article 910908
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NETs markers is greatly reduced (Savchenko et al., 2014). In vitro
experiments showed that NETs promote the differentiation of
fibroblasts into collagen-secreting myofibroblasts, suggesting
that NETs may be mainly involved in early venous thrombosis.
With the development of thrombi, NETs can stimulate the
production of collagen fibers from fibroblasts to promote
maturation of the thrombus structure (Chrysanthopoulou
et al., 2014). NETs have also been used as serum markers in
the differential diagnosis of DVT, and different grades of
extracellular DNA and CitH3 were detected in the serum of
hundreds of DVT and non-DVT patients (van Montfoort et al.,
2013). However, due to the limited sample size and differences in
experimental techniques, the experimental results of NETs and
venous thrombosis have been inconsistent across studies (van
Montfoort et al., 2013; Savchenko et al., 2014; Chrysanthopoulou
et al., 2014). Currently, there remains a lack of experimental
evidence with a large sample size, which affects the role of NETs
in venous thrombosis. The application of NETs, how to improve
the stability of the results and further exploration of their role in
thrombus structure need to be explored.
NETS AND ARTERIAL THROMBOSIS

Unlike venous thrombosis, arterial thrombosis is more common
in acute events resulting from thrombus shedding, such as AMI
and ischemic stroke (Wendelboe and Raskob, 2016; Farkas et al.,
2019). In this process, in addition to NETs in situ thrombi, the
inflammatory response to tissue damage caused by ischemia can
also recruit neutrophils (Farkas et al., 2019). Numerous
neutrophils were found in tissue samples from acute
myocardial infarction long before the discovery of NETs, and
activated neutrophils were also found in thrombus samples
obtained from patients with acute myocardial infarction
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(Bonaventura et al., 2020). Using NETs-specific markers and
neutrophil antibodies, the widespread presence of NETs was
further detected in thrombus samples and atherosclerotic
plaques from patients with acute myocardial infarction,
preliminarily demonstrating the existence of NETs in arterial
thrombi (Riegger et al., 2016; Franck et al., 2018). Maugeri et al.
(2014) also found the presence of NETs and platelet aggregation
in coronary thrombi by immunostaining, verifying the attraction
and aggregation of NETs to platelets. In addition, the content of
NETs in recent coronary thrombi was higher than that in old
coronary thrombi, and the content of NETs in coronary thrombi
was positively correlated with the extent of myocardial infarction
and the degree of ST-segment elevation (Mangold et al., 2015;
Langseth et al., 2018). It was also positively correlated with the
severity of prognostic outcomes in patients within two years,
providing preliminary evidence for NETs as a disease prognostic
indicator in myocardial infarction (Mangold et al., 2015;
Langseth et al., 2018). In ischemic stroke, Laridan et al. (2017)
detected the presence of NETs in thrombus samples. In a study of
stroke thrombosis, NETs were found to be more abundant in
cardiogenic and structurally mature old thrombi, and the content
was positively correlated with the duration of thrombectomy and
the number of surgical instruments used, which prompted the
local microenvironment to affect NETosis (Boeckh-Behrens
et al., 2016; De Meyer et al., 2017; Ducroux et al., 2018). In
other arterial thrombi, such as intra-abdominal aortic aneurysm
thrombi, DNA-histone complex-based assays have also
suggested the presence of NETs (Fernández-Ruiz, 2018). It is
worth noting that the content of NETs detected in thrombus
samples from patients with acute myocardial infarction and
ischemic stroke showed opposite results in thrombi of different
maturities; by comparing arterial and venous thrombus samples,
arterial thrombi with higher levels of DNA-histone complexes in
NETs were found to have enhanced inflammatory responses and
FIGURE 2 | Interaction between NETs and other blood cells in thrombosis formation.
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inflammatory cell recruitment within atheromatous plaques by
promoting macrophage activation (Mangold et al., 2015;
Warnatsch et al., 2015). NETs also affect the stability of
atherosclerotic plaques by acting on smooth muscle cells
through histones, resulting in reduced intraplaque smooth
muscle cell content, reduced plaque interstitial collagen
synthesis, and thinning of the fibrous cap, whereas PAD4
inhibition or anti-Ly6G can enhance the stability of plaques
and the proportion of smooth muscle cells in plaques (Döring
et al., 2020). Therefore, whether NETs may have different
mechanisms of action in different etiologies and different
origins of thrombi, whether the tissue microenvironment and
vascular differences can modify NETs in thrombus formation,
and whether NETs play a role in the early stage and development
of arterial thrombosis need to be further explored.
NETS AND ANTI-COAGULANT LIPID
SYNDROME (APS) AND TUMOR-
ASSOCIATED THROMBOSIS

Acquired thrombophilia refers to a group of clinical syndromes
in which patients have a high risk of thromboembolism due to
the presence of acquired thrombosis risk factors, and the
embolism is mostly venous thromboembolism, including anti-
coagulant lipid syndrome (APS) and tumor-associated
thrombosis (Stevens et al., 2016). APS is an autoimmune
disease characterized by recurrent venous or arterial
thrombosis and miscarriage and is accompanied by increased
serum antiphospholipid antibody (aPL) titers (Wirestam et al.,
2019). Studies have shown that the content of extracellular DNA
in the serum of patients with primary APS is increased, and the
ability of isolated neutrophils to release NETs is enhanced,
preliminarily verifying the existence of NETs in APS
(Yalavarthi et al., 2015). In addition, the serum antibody of
APS patients is positively correlated with the NETs content, and
the isolated aPL mAb can enhance the release of NETs from
neutrophils, suggesting that aPL-mediated NETs release may be
a mechanism of APS-related thrombosis (van der Linden et al.,
2018). In animal experiments, by adding aPL monoclonal
antibody isolated from the serum of APS patients to DVT
mice, the risk and degree of thrombosis were increased, the
content of CitH3 in the thrombus was higher than that of the
control group, and the level of serum DNA was also increased,
validating the mechanism by which aPL promotes thrombosis by
stimulating NETs release (Meng et al., 2017). The analysis of
serum antibodies in APS patients further revealed the presence of
anti-NETs antibodies, which led to a decrease in the degradation
and clearance capacity of NETs formed in blood vessels,
revealing another possible mechanism related to NETs in APS
(Zuo et al., 2020).

The risk of thrombosis in cancer patients is higher than that
in healthy people, which seriously affects the prognosis of
patients (Fernandes et al., 2019). In addition to tumor-derived
cytokines and chemotherapy-mediated tissue damage, the causes
of thrombosis have also been found to be related to neutrophil
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
activation and the formation and release of NETs (Hisada et al.,
2015). In tumor patients, the contents of CitH3 and histone-
DNA complexes in the systemic circulation and thrombus are
increased, and they can be used to predict the risk of arterial
thromboembolism in patients with malignant tumors of the lung
and pancreas, suggesting that NETs play a role in tumor-related
thrombosis (Oklu et al., 2017; Mauracher et al., 2018; Grilz et al.,
2019). In vitro experiments have shown that human-derived
pancreatic tumor cells can stimulate normal neutrophils to
increase the release of NETs, and the NETs release capacity of
neutrophils from gastric cancer patients is also enhanced
compared to that of neutrophils from non-tumor patients
(Yang et al., 2015; Abdol Razak et al., 2017). In animal
experiments, the formation and release of NETs and the
incidence of thrombi in tumor mice were higher than those in
non-tumor mice, and CitH3 could be directly detected in the
thrombus, further illustrating the relationship between NETs
and tumor thrombosis (Hisada et al., 2020). Leal et al. (2017)
observed increased formation and release of NETs when using
tumor-derived granulocyte colony-stimulating factor (G-CSF) to
stimulate neutrophils, first suggesting that NETs are involved in
tumor thrombus formation. However, there is currently a lack of
evidence on thrombosis after NETosis inhibition in acquired
thrombophilia, and the evidence related to the impact of NETs
on tumor prognosis needs to be further developed.
NETS AND SEPSIS-ASSOCIATED
COAGULATION DISORDER

Sepsis is a systemic inflammatory response syndrome caused by
infection (Singer et al., 2016). Patients with sepsis are often
characterized by activation of the coagulation system, a
progressive prothrombotic state, and dysregulation of the
anticoagulation system, which may lead to disseminated
intravascular coagulation (DIC), microvascular thrombosis,
hypoperfusion and eventually multiple organ dysfunction
syndrome and death (Semeraro et al., 2012; Tsao et al., 2015).
A large amount of lipopolysaccharide is shed by bacteria in
patients with sepsis; this is an important substance for activating
neutrophils to produce NETs (Clark et al., 2007), which may be
one of the reasons for the formation of NETs in sepsis. Platelets
participate in the coagulation process and also play a role in
inducing inflammation and resisting infection in infectious
diseases (Thomas and Storey, 2015). Activated platelets during
sepsis can directly sequester or kill pathogens or promote
pathogen clearance by activating macrophages and neutrophils,
and the specific receptor TLR4 is activated to promote NETs
formation, ultimately causing platelet aggregation and
microthrombosis (McDonald et al., 2012). Neutrophils isolated
from the blood of patients with sepsis can release tissue factor
(TF) through NETs, and this form of TF can induce thrombin
generation in vitro and play a key role in the activation of the
coagulation system in sepsis (Kambas et al., 2012). Plasma and
platelets isolated from the blood of patients with sepsis can
induce neutrophils to release NETs in vitro, and NETs produced
May 2022 | Volume 12 | Article 910908
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by neutrophils from patients with sepsis have good procoagulant
activity compared with healthy controls (Yang et al., 2017). NETs
play an important role in thrombosis in septic patients through
their interaction with platelets. Immune thrombosis refers to the
innate immune response induced by thrombosis in blood vessels,
especially in microvessels (Engelmann and Massberg, 2013).
Immune thrombosis is supported by immune cells and specific
thrombosis-related molecules and produces intravascular
scaffolds that help identify and destroy pathogens, thereby
protecting the body from pathogen-mediated damage (Loof
et al., 2011). Neutrophils enhance thrombosis through a cell-
specific mechanism of the immune response, and the NETs
generated after activation have antibacterial and procoagulant
activity (Kimball et al., 2016). NETs promote thrombosis in
many ways and are a key factor in immune thrombosis (Goggs
et al., 2020). Microvascular thrombotic diseases mainly include
hemolytic uremic syndrome and thrombotic thrombocytopenic
purpura (TTP), collectively referred to as thrombotic
microangiopathy (TMA) (George and Nester, 2014). In
hemolytic-uremic syndrome, in addition to promoting the
inflammatory response and antibacterial effects, NETs also
promote microvascular thrombosis, leading to renal failure in
patients (Ramos et al., 2016; Leffler et al., 2017). In
transplantation-related studies, elevated NETs levels significantly
increased the risk of transplantation-related TMA (Arai et al.,
2013), which may be due to the lack of DNase I, which can
degrade NETs, in the plasma of these patients (Jiménez-Alcázar
et al., 2015). ADAMTS13 is a plasma metalloproteinase that can
cleave vWF and is a key enzyme in the diagnosis of TTP (Chauhan
et al., 2006). In a recent study using exogenous recombinant
human ADAMTS13 and DNase I-treated mice, the production
of NETs in vivo was significantly reduced, indicating that
ADAMTS13 may inhibit the formation of NETs and that
DNase I can degrade NETs structures (Wong et al., 2020).
NETS AND COMPLEMENT SYSTEM IN
THROMBOSIS FORMATION

NETs formation is associated with systemic lupus erythematosus
activity, and NETs can damage and kill endothelial cells and
promote arterial inflammation of atherosclerotic plaques,
thereby accelerating atherosclerosis in systemic lupus
erythematosus (Barnado et al., 2016). Anti-phospholipid
antibodies can stimulate neutrophils to produce NETs, which
is closely related to thrombosis in patients with antiphospholipid
antibody syndrome (Yalavarthi et al., 2015). The complement
system is a part of the innate immune system composed of more
than 30 proteins on the plasma and cell surfaces and is one of the
main effector mechanisms of antibody-mediated immunity.
Neutrophils are activated to release complement components,
such as complement factor P, complement factor B, and C3,
among which CFP is deposited on NETs and bacteria to induce
formation of the membrane attack complex C5b (Yuen et al.,
2016). In a mouse experiment with antiphospholipid antibody-
induced thrombus formation, thrombus formation was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
significantly inhibited in complement component C3 knockout
(C3-/-) and C5 knockout (C5-/-) mice, indicating that
complement activation plays an important role in
antiphospholipid antibody-induced thrombosis (Pierangeli et al.,
2005). In another mouse experiment, complement C5 promoted
liver injury associated with histone-induced lethal thrombosis
(Mizuno et al., 2017). There is also an interaction between
complement and platelets, which is manifested in the binding of
factor Va to the C5b-induced binding site, promotion of its
binding to factor Xa, and then binding to the functional
prothrombin binding site on the platelet surface. These studies
provide a basis for the study of the role of complement in
thrombosis. In a spontaneous small intestinal tumor model,
tumor development and hypercoagulability were both associated
with neutrophils, especially the appearance of low-density
neutrophils. Comparing the effect of complement C3a receptor
(C3aR) to that in the absence of C3aR, NETs are more likely to be
generated under the effect of C3aR, leading to the activation of
coagulation in small intestinal tumors, a hypercoagulable state and
thrombosis (Wiedmer et al., 1986). During a variety of bacterial
infections, complement plays an important role while promoting
the release of NETs; complement CR1 plays a leading role in this
process, while complement CR3 plays an assisting role (Guglietta
et al., 2016). NETs can serve as direct scaffolds for thrombosis and
complement activation, and the opsonization and lytic activity of
the complement system enhance the antibacterial properties of
NETs. Although NETs, complement proteins, and coagulation
factors work differently, they can still function in a large complex
to protect the host from hemorrhage and infection; this
cooperation is not limited to the site of injury but rather also
occurs in the bloodstream. When this balance is disturbed, serious
complications may occur, such as sepsis, deep vein thrombosis,
autoimmune diseases and even cancer (Palmer et al., 2016). There
is a close relationship between NETs and complement, and both
play a role in the process of thrombosis. However, the specific
division of labor of these components and whether there is a
feedback mechanism still need further research.
POTENTIAL THERAPEUTIC TARGETS
FOR NETS

The research on NETs in arteriovenous thrombosis and
acquired thrombosis has provided a potential target for the
treatment of thrombotic diseases. At present, research on
NETs associated thrombosis has mainly focused on the
promotion of NETs degradation and the inhibition of NETosis.
Studies have shown that the use of DNase I can achieve partial
lysis of NETs, and the combined use of tPA can achieve complete
thrombolysis, which makes up for the defects of incomplete
thrombolysis and low efficiency with tPA alone (Mangold et al.,
2015). The use of DNase I in mice with thrombosis can also
effectively prevent the recurrence of stroke, myocardial infarction
and DVT (Ducroux et al., 2018). However, whether the
degradation of NETs by DNase I will lead to the dispersion of
components such as histones with procoagulant activity and
May 2022 | Volume 12 | Article 910908
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increase the risk of thrombosis needs further study. Since APC
can cleave NETs by cleaving histones, the strategy of using
recombinant TMa to promote APC generation has also
attracted researchers’ attention (Osada et al., 2017). Recent
studies have also shown that the NE inhibitor can effectively
reduce the generation of NETs in mice with endotoxic shock,
providing another potential method for NETs-related
antithrombotic therapy (Okeke et al., 2020). In terms of
NETosis inhibition, thrombus formation was reduced in PAD4
knockout DVT mice, the PAD4 selective inhibitor GSK484
effectively inhibited NETosis in vitro, and there was no
significant decrease in immune function in PAD4-deficient
animal models. NETs are powerful targets in thrombosis
therapy (Lewis et al. , 2015; Martinod et al. , 2015).
Antioxidants, such as vitamin C, can affect NETosis by
reduc ing the product ion of ROS, and v i tamin C
supplementation in septic mice can reduce the production of
NETs; however, the specific effect of vitamin C on thrombosis
has not been further studied in animal models and clinical trials.
The use of JAK signaling pathway inhibitors to observe NETosis
inhibition and thrombosis reduction in thrombosis mice needs
to be further explored, and the efficacy of the related drug
ruxolitinib in thrombosis prevention and treatment has also
been confirmed in clinical experiments (Mohammed et al.,
2013). The immunosuppressant colchicine has been proven in
clinical and basic experiments to improve the prognosis of
patients with myocardial infarction and stroke by inhibiting
neutrophils, but its specific inhibitory effect on NETosis
remains to be explored in depth (Vannucchi et al., 2015; Tardif
et al., 2019). In addition, inhibiting the interaction of NETs and
coagulation pathways can also achieve thrombosis prevention.
Using the rhADAMTS13 protease to specifically cleave vWF,
thrombolysis was observed in animal thrombosis models, and
the combination of rhADAMTS13 and DNase I effectively
improved myocardial infarction by reducing the interaction of
vWF with neutrophils and NETs in myocardial tissue of mice
(Kelly et al., 2018). The platelet receptor inhibitor P2Y12 and
aspirin can also inhibit the interaction between platelets and
NETs to reduce thrombosis formation (Li et al., 2017; Thiam
et al., 2020).
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CONCLUSION AND FUTURE
PERSPECTIVES

As a unique immune mechanism following the death of
neutrophils, the role of NETs in thrombotic diseases has been
verified in clinical samples and animal experiments, and research
on NETs as antithrombotic therapy targets has been widely
carried out. This study is expected to provide new insights into
the treatment of existing thrombotic diseases and thrombotic
complications. NETs-specific markers, such as CitH3 and the
MPO-DNA complex, can also be used as biomarkers to provide
the basis for the diagnosis or prognosis of thrombosis-related
diseases and to explore the development and establishment of
quantitative formulas for NETs-specific markers and NETs
content in the circulation or local lesions. Methods such as
improving the detection sensitivity of NETs can further provide
new tools for precision medicine and outcome prediction.
However, the results of existing studies have not been
consistent, and there is still a lack of stronger experimental
evidence for the actual effect of inhibiting NETs on promoting
thrombolysis and preventing thrombosis. The issue of
immunocompromised and increased bleeding risk also needs to
be further explored. We look forward to future research on NETs
to provide ideas and methods for solving thrombosis-
related diseases.
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