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Abstract
Introduction: Past studies have found that healthy aging has a significant effect on 
the organization and function of networks in the human brain. Many of these studies 
have examined how functional connectivity during one task or at rest is affected by 
aging; however, few studies have systematically examined how the effect of age on 
functional connectivity may vary as a function of choice of in-scanner task.
Methods: The present study included healthy adults between the ages of 20 and 80 
and examined a variety of metrics of functional connectivity during performance of 
11 in-scanner tasks, falling into 4 cognitive domains: vocabulary, processing speed, 
fluid reasoning, and episodic memory. Functional connectivity was assessed at three 
levels: average correlations within and between 10 networks, system segregation 
(sensorimotor vs. association networks), and whole-brain graph theory metrics 
(global efficiency and modularity).
Results: Results showed that the effect of age on these metrics differed as a function 
of task—for example, age had a more consistent effect on functional connectivity 
metrics computed during fluid reasoning tasks; however, there was less of an effect 
of age on functional connectivity metrics computed during tasks of episodic memory. 
Further, some of these measures showed relationships with behavioral performance 
on the in-scanner task, with different networks playing a role in the different cogni-
tive domains.
Conclusion: These findings suggest that while aging may be generally associated with 
reductions in within- and between-network connectivity, system segregation, global 
efficiency, and modularity, the magnitude and presence of these effects varies by 
in-scanner task.
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1  | INTRODUC TION

Studies investigating the effect of aging on functional neural recruit-
ment during a cognitive task have found systematic differences in 
the way older and younger adults utilize specific regions of the brain 
when performing a task, along with relationships between this dif-
ferential utilization and task performance. Current trends in the field 
of neuroimaging research have expanded the scope of task-based 
fMRI analyses to also probe differences in the functional connec-
tivity between brain regions as a function of task performance and 
aging. Past studies have shown that normal aging is associated with 
alterations in functional connectivity at rest, suggesting that even 
in the absence of a cognitive challenge, older age is associated with 
differences in functional network architecture and function. These 
studies have largely shown that aging is associated with reduc-
tions in within-network connectivity accompanied by increases in 
between-network connectivity, resulting in a less modular/segre-
gated brain (Betzel et al., 2014; Chan et al., 2014; Geerligs, Renken, 
et al., 2015; Iordan et al., 2017). Some of these studies have even 
found links between these patterns of connectivity at rest and cog-
nitive performance outside of the scanner, suggesting a potential 
connectivity-based mechanism underlying some age-related differ-
ences in cognitive performance (Chan et al., 2014; Geerligs, Renken, 
et  al.,  2015; King et  al.,  2017; Onoda et  al.,  2012; Sala-Llonch 
et al., 2014; Zonneveld et al., 2019).

Some recent studies have expanded this line of investigation 
into the ways in which functional connectivity during performance 
of a cognitive task is affected by age. Initial studies on the effect of 
older age on functional connectivity during a task found that, unlike 
younger adults, older adults show attenuation of negative correla-
tions between regions in task-relevant and task-irrelevant networks 
(Sala-Llonch et al., 2012) and that the degree to which older adults 
showed a negative correlation between these networks is related to 
performance on executive function/working memory tasks (Miller 
et al., 2008; Prakash et al., 2012). While these studies focused on 
specific connections and regions of interest (ROIs), later studies have 
expanded this investigation to include connections across the whole 
brain, either using analyses identifying regions showing significantly 
correlated blood oxygen level-dependent (BOLD) fluctuations with 
fluctuation in a predefined seed (or set of seeds; Andrews-Hanna 
et  al.,  2007; Burianova et  al.,  2015; Campbell et  al.,  2012; Spreng 
et al., 2016; Wang et al., 2010); using clustering to identify functional 
networks from whole-brain BOLD data (Archer et al., 2016; Geerligs 
et al., 2014); or using predefined anatomical or spherical ROIs to ex-
amine BOLD time series correlations among these ROIs (Geerligs, 
Rubinov, et al., 2015). Consistently, these studies have found age-re-
lated alterations in task-based functional connectivity, with some 
finding interactions between age and scan type (task, rest, etc.) or 
task load on functional connectivity metrics (Archer et  al.,  2016; 
Burianova et al., 2015; Geerligs, Rubinov, et al., 2015).

The observation that age affects connectivity differentially based 
on scan type or cognitive load has considerable implications for the 
study of cognitive aging. Determining which aspects of connectivity 

and what scan conditions are most sensitive to age or clinical sta-
tus is critical in assessing the clinical utility of these measures. Thus, 
studies examining connectivity across multiple scan conditions are 
critical in determining what aspects of functional connectivity are 
most sensitive to aging. In this vein, a few studies have compared 
connectivity metrics across both rest and different task conditions 
in order to see how cognitive state affects these connectivity pat-
terns. Two studies found that task condition had a significant effect 
on the connectivity patterns observed—Archer et al. (2016) found a 
more widespread effect of age on task-based, compared to resting 
state, connectivity, and Geerligs, Renken, et  al.  (2015) found that 
patterns of connectivity differences by age group differed based on 
the scan condition, such that subcortical networks were more sen-
sitive to age at rest, while association networks were more sensitive 
to age during a sensorimotor task. Thus, in both studies, scan con-
dition (task vs. rest or task vs. task) had a significant effect on the 
magnitude and location of the effect of participant age on functional 
connectivity within and between networks in the brain.

While these studies have examined the effect of age on func-
tional connectivity during one or two in-scanner tasks, one past 
study from our group directly compared patterns of functional 
connectivity during cognitive tasks that corresponded to four 
cognitive domains (vocabulary, processing speed, fluid reasoning, 
and episodic memory) in the same set of participants (Varangis, 
Razlighi, et  al.,  2019). Using a novel latent factor modeling ap-
proach, this study specifically examined the effects of age and 
task domain on functional connectivity between 6 latent cogni-
tive networks (default mode network, or DMN; frontoparietal net-
work, or FP; cingulo-opercular network, or CO; salience network, 
or Sal; dorsal attention network, or DAN; and memory network, or 
Mem). Results showed that task domain and age group (younger 
adults, middle-aged adults, and older adults) had independent ef-
fects on between-factor connectivity, but that age did not modify 
the effect of task domain on between-factor connectivity. While 
this study provided evidence to suggest that both task and age 
affect connectivity patterns between networks and that some of 
these patterns were related to performance on these in-scanner 
tasks, it did not comprehensively examine multiple aspects of 
functional connectivity to evaluate whether more commonly uti-
lized metrics of functional connectivity (i.e., graph theory, average 
correlation) show similar effects of both age and task. Additionally, 
due to the nature of the latent factor modeling, only between-fac-
tor connectivity was examined, limiting comparison with studies 
focusing on within-network connectivity. Further, one benefit of 
the latent factor approach was that it allowed ROI time series to 
freely load on network factors at the participant level; however, 
this makes comparisons with other studies using more standard 
network-based approaches (e.g., average correlation between one 
network and another network) difficult. Past studies assessing 
the effect of aging on a variety of metrics of functional connec-
tivity at rest have found that age effects are not ubiquitous and 
that they may only emerge when using specific metrics, in specific 
networks, or at a specific range of thresholds (Geerligs, Renken, 
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et al., 2015; Iordan et al., 2017; Song et al., 2014; Varangis, Habeck, 
et  al.,  2019). In order to facilitate qualitative comparison of the 
effects of age on task- vs. resting state connectivity, the present 
study followed a similar analytic approach to that used previ-
ously on resting state fMRI scans by our group to examine the 
effect of participant age on multiple varied approaches to char-
acterizing whole-brain functional connectivity (Varangis, Habeck, 
et al., 2019). Thus, extending this line of research to assess how 
these metrics may be affected by age during a cognitive task, as 
well as how these patterns may differ based on the cognitive task 
being performed, is a logical next step in characterizing the full 
extent and magnitude of the effects of age on functional connec-
tivity across the whole brain.

The present study aimed to more comprehensively examine 
the effects of aging on task-based functional connectivity using 
several different whole-brain functional connectivity methods 
(average correlation within/between networks, system segrega-
tion, global efficiency, and modularity), and across four different 
cognitive domains (vocabulary, perceptual speed, fluid reasoning, 
and episodic memory). Our previous study investigated functional 
connectivity between latent network factors in this sample; how-
ever, the present study expands upon this study by: (a) including 
a substantially larger sample of participants (many were excluded 
from the previous study due to poor latent factor model fit); (b) 
utilizing more standard, widely used, connectivity metrics to facil-
itate comparison with results of past studies; (c) including noncog-
nitive, somatosensory (somatomotor hand, somatomotor mouth, 
auditory, and visual), networks in addition to cognitive networks 
(DMN, FP, CO, Sal, DAN, and the ventral attention network, or 
VAN); and (d) examining several different features of both net-
work-based and whole-brain connectivity. Based on past studies 
assessing the effects of aging on functional connectivity during 
rest and task scans, the hypotheses of the present study are as 
follows: (1) older adults will show weaker within-network connec-
tivity, stronger between-network connectivity, and reduced sys-
tem segregation across all tasks; (2) there will be more networks 
that show an effect of age on within/between-network connectiv-
ity during fluid reasoning and processing speed tasks, and fewer 
showing an effect of age during vocabulary and memory tasks; 
and (3) whole-brain graph theory metrics of connectivity will show 
some modulation by both age and cognitive task, with differences 
between age groups more readily observed during fluid reason-
ing and processing speed tasks. Further, the present study will 
present some exploratory data examining relationships between 
functional connectivity metrics and in-scanner task performance 
in order to get a better sense of which metrics and networks may 
play a role in cognitive performance.

In addition to expanding upon existing research on age modula-
tion of task-based functional connectivity, the present study will also 
examine the effect of age on task-based connectivity that is com-
puted based on a few different common connectivity methodologies, 
ranging from highly network-specific techniques (network-based 
correlations) to whole-brain techniques (global efficiency). While 

every metric included in the present study has previously been 
found to be affected by age either at rest or during a cognitive task in 
past studies, the present study will incorporate and compare across 
all metrics within the same participant sample. Given the challenge 
of completing a cognitive task and the cognitive functions ascribed 
to several of the networks included in the present analyses, it is ex-
pected that network-based metrics may be particularly sensitive to 
age effects on functional connectivity during a task (e.g., Geerligs, 
Renken, et al., 2015). This may be particularly evident during tasks 
that draw more heavily on executive function resources, as these 
tasks may necessitate higher levels of network integration/disin-
tegration (i.e., Varangis, Razlighi, et al., 2019). Additionally, metrics 
computed based on network parcellation (i.e., system segregation 
and modularity) may also show age modulation of task effects due 
to their inclusion of network properties during computation (either 
based on predefined networks as in system segregation or based on 
individually detected networks as in modularity). However, whole-
brain metrics that are agnostic to network membership/ROI local-
ization, such as global efficiency, may be less likely to show robust 
effects of participant age or task effects.

2  | METHODS

2.1 | Sample

The sample for the present study was comprised of participants 
who completed the baseline visit for the Reference Ability Neural 
Network (RANN) study (N = 396; Stern et al., 2014). All participants 
were native English speakers, right-handed, free of MRI contraindi-
cations, and read at a fourth grade reading level or above. Screening 
was performed prior to enrollment in order to ensure that no par-
ticipants had any psychological or medical conditions that could af-
fect cognitive function and that older adults did not meet criteria 
for dementia or MCI at baseline. Based on age grouping used for 
display purposes in a previous study (Chan et al., 2014), participants 
were divided into four different age groups to facilitate testing of 
moderation by age: younger adults (YA; age 20–34, n = 90), younger 
middle-aged adults (yMA; age 35–49, n  =  64), older middle-aged 
adults (oMA; age 50–64, n = 113), and older adults (OA; age 65–80, 
n = 129). For the present analyses, the following additional criteria 
were established: completion of all 11 in-scanner tasks (N = 335; YA 
n = 75, yMA n = 64, oMA n = 97, OA n = 99), and less than 30% 
motion artifact data removal (scrubbing; Parkes et al., 2018; Power 
et al., 2012) within each of the four domain time series (N = 302; YA 
n = 72, yMA n = 60, oMA n = 86, OA n = 84; see Table 1).

2.2 | In-scanner cognitive tasks

The cognitive outcome measures included in the present analyses 
are represented by composite z-scores of performance on tasks 
completed during the fMRI scan. The in-scanner tasks included 
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11 cognitive tasks that were previously found to cluster into four 
primary reference abilities (Salthouse, 2009; Salthouse & Ferrer-
Caja, 2003): vocabulary (VOCAB: synonyms and antonyms), per-
ceptual speed (SPEED: digit symbol, letter comparison, pattern 
comparison), fluid reasoning (FLUID: paper folding, matrix reason-
ing, and letter sets), and episodic memory (MEM: logical memory, 
word order, and paired associates). These tasks have been used 
extensively in previous studies conducted by the authors of the 
current study; for detailed information on these tasks, please 
see (Razlighi et  al.,  2017; Stern et  al.,  2014; Varangis, Razlighi, 
et al., 2019). One task, the Picture Naming task from the VOCAB 
reference ability, was not included in the present analyses due 
to in-scanner motion arising from participants speaking their 
responses aloud during the scanned task. Performance on each 
individual task was z-scored; then, domain-based z-scores were 
generated by averaging the z-scores of the tasks within each do-
main. For VOCAB, FLUID, and MEM tasks, higher z-scores mean 
higher accuracy on the in-scanner task; for SPEED tasks, z-scores 
were reverse coded such that higher z-scores mean faster reaction 
times.

2.3 | fMRI scan parameters

The present study collected fMRI scans during the in-scanner tasks 
mentioned above. All participants completed these scans on a 3.0T 
Philips Achieva Magnet over the course of two 2-hr MR imaging 
sessions. T1-weighted images of the whole brain were acquired 
for each subject with a Magnetization Prepared Rapid Gradient 
Echo (MPRAGE) sequence with the following parameters: TE/TR: 
3/6.5 ms; Field of view: 256 mm; Flip angle: 8°; In-plane resolution: 
256 ×  256 voxels; Slice thickness/gap: 1/0 mm; Slices: 180.  fMRI 
blood oxygen level-dependent (BOLD) scans were collected during 
each of the 11 in-scanner tasks mentioned above with the follow-
ing parameters: TE/TR: 20/2,000  ms; Field of view: 240  mm; Flip 

angle: 72°; In-plane resolution: 112 ×  112 voxels; Slice thickness/
gap: 3/0 mm; Slices: 41.

2.4 | fMRI data processing

Images were preprocessed using an in-house developed native 
space method (Razlighi, et al., 2014) as described and utilized previ-
ously in Varangis, Razlighi, et al. (2019). The preprocessing pipeline 
included slice-timing correction and motion correction performed in 
FSL (Jenkinson, Bannister, et al., 2002; Jenkinson, Beckmann, et al., 
2012), calculation of frame-wise displacement (FWD; as described in 
Power et al., 2012), volume replacement for contaminated volumes 
(Carp, 2013; Power et al., 2012), band-pass filtering using flsmaths–
bptf (Jenkinson, Beckmann, et al., 2012), and residualization of the 
processed data with respect to FWD, root mean square difference 
of the BOLD signal, left and right hemisphere white matter, and lat-
eral ventricular signals (Birn, et al., 2006). T1 image segmentation 
was performed using FreeSurfer (Dale, et al., 1999, Fischl, Salat, 
et al., 2002, Fischl, van der Kouwe, et al., 2004) and inspected visu-
ally for any possible inaccuracies. In order to perform the functional 
connectivity analyses described below, the coordinates of the 264 
ROIs identified by Power and colleagues (2011) were transferred 
to native space via nonlinear registration of the subject's structural 
scan to the MNI template using the ANTS software package. Next, 
a 10 mm radius spherical mask was generated for each coordinate 
and intersected with the FreeSurfer gray matter mask in order to de-
rive the gray matter-registered ROI masks for each of the 264 ROIs. 
An intermodal, intrasubject, rigid-body registration of the fMRI ref-
erence image and T1 scan was then performed using FLIRT with 6 
degrees of freedom, normalized mutual information as the cost func-
tion (Jenkinson & Smith, 2001), in order to transfer ROI masks from 
T1 space to fMRI space. These transferred ROI masks were used to 
average all voxels within each mask to obtain a single fMRI time se-
ries for each of the 264 ROIs.

TA B L E  1   Participant demographics

YA (n = 72) yMA (n = 60) oMA (n = 86) OA (n = 84)
p-Value of 
difference

Age 28.292 (4.026) 42.333 (4.425) 57.477 (4.516) 71.190 (4.135) <.001

Gender (%F) 68.06% 48.33% 48.84% 48.81% .277

Education 16.153 (2.311) 15.867 (2.554) 16.035 (2.072) 16.464 (2.613) .476

VOCAB −0.143 (0.880) −0.161 (0.825) 0.029 (0.880) 0.099 (0.767) .201

SPEED −0.359 (0.810) −0.178 (0.696) −0.049 (0.731) 0.300 (0.730) <.001

FLUID 0.280 (0.889) 0.001 (0.759) −0.054 (0.884) −0.088 (0.927) .065

MEM 0.268 (0.811) 0.054 (0.632) −0.047 (0.694) −0.193 (0.815) .004

Note: Values reflect group means (standard deviations in parentheses), and percentage female within each age group. p-Values reflect p-values for 
one-way ANOVAs for all continuous variables, or chi-square test for Gender.
Abbreviations: FLUID, average z-score of performance on three in-scanner fluid reasoning tasks; MEM, average z-score of performance on three 
in-scanner Episodic Memory tasks; OA, older adult; oMA, older middle-aged adult; SPEED, average z-score of performance on three in-scanner 
processing speed tasks; VOCAB, average z-score of performance on three in-scanner Vocabulary tasks; YA, younger adult; yMA, younger middle-
aged adult.
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Time series data were then concatenated by domain, yielding 4 
sets of time series data that were modeled separately as blocked 
designs: VOCAB (concatenated synonyms and antonyms data; 388 
volumes, SPEED (concatenated digit symbol, letter comparison, and 
pattern comparison data; 595 volumes), FLUID (concatenated paper 
folding, matrix reasoning, and letter sets data; 1,290 volumes), and 
MEM (concatenated logical memory, word order, and paired asso-
ciates data; 517 volumes). In order to remove any unique task-spe-
cific variance from the domain time series, task was regressed out 
of each ROI’s time series. These residualized time series were then 
used to generate correlation matrices among all ROIs (264 ROIs by 
264 ROIs). The diagonal of each correlation matrix was set to zero for 
all graph theory analyses, and “NA” for all average correlation analy-
ses, in order to remove correlations between an area and itself from 
analyses. Further, as per the utilization recommendations for this 
parcellation scheme (Power et al., 2011), all ROIs with centers within 
20 mm of one another in standard space were excluded from all anal-
yses. ROIs were then labeled based on the Power (2011) network 
assignments, with the following networks being selected for analy-
sis based on their inclusion in similar past studies (Chan et al., 2014; 
Geerligs, Renken, et  al.,  2015): visual (Vis; 31 ROIs), somatomotor 
mouth (Mouth; 5 ROIs), somatomotor hand (Hand; 30 ROIs), audi-
tory (Aud; 13 ROIs), default mode (DMN; 58 ROIs), salience (Sal; 18 
ROIs), cingulo-opercular (CO; 14 ROIs), frontoparietal (FP; 25 ROIs), 
dorsal attention (DAN; 11 ROIs), and ventral attention (VAN; 9 ROIs).

2.5 | Functional connectivity analyses

Individual correlation matrices were used to compute several meas-
ures of functional connectivity.

2.5.1 | Positive/negative correlation weights

Average positive and negative correlation were computed within and 
between all networks of interest. Within-network correlations were 
characterized as those reflecting correlations between ROIs within a 
specific network; between-network correlations were characterized 
as those reflecting correlations between ROIs from one network and 
those of all other networks. Average positive correlation was com-
puted by setting all negative correlation values to “NA,” then taking 
the average within- and between-network positive correlation for 
each network. Average negative correlation was computed by set-
ting all positive correlation values to “NA,” then taking the average 
within- and between-network negative correlation for each network. 
Due to few negative within-network correlations (and concern as to 
how to interpret these values), only between-network negative cor-
relations were included in the analysis of negative correlations. Thus, 
data from this analysis included the average within-network positive 
correlation (10 values), average between-network positive correla-
tion (10 values), and average between-network negative correlation 
(10 values) for each participant. In order to examine the effect of age 

and domain on positive correlation strength, a 4 (Domain: VOCAB, 
SPEED, FLUID, MEM) x 4 (age group: YA, yMA, oMA, OA) × 2 (corre-
lation direction: within, between) × 10 (network: Vis, Mouth, Hand, 
Aud, DMN, Sal, FP, CO, DAN, VAN) MANCOVA (covariate: scrub-
bing percentage) was performed. For this analysis only, the sample 
size was reduced by 20 participants to 282 participants (YA n = 65, 
yMA n = 54, oMA n = 85, OA n = 78) since not all participants had 
positive within-network correlations in some smaller networks (i.e., 
VAN); as such, the remaining 282 participants had valid estimates 
for average positive within- and between-network correlations in all 
10 networks. To examine the effect of age and domain on negative 
correlation strength, a 4 (Domain: VOCAB, SPEED, FLUID, MEM) x 
4 (age group: YA, yMA, oMA, OA) × 10 (network: Vis, Mouth, Hand, 
Aud, DMN, Sal, FP, CO, DAN, VAN) MANCOVA (covariate: scrubbing 
percentage) was performed. Significant interactions were probed 
using follow-up MANCOVA and ANOVA analyses.

2.5.2 | System segregation

These data were also used to derive the metric of system segrega-
tion introduced by Wig and colleagues (Chan et al., 2014; Chan, et al., 
2017; Wig, 2017). This metric reflects the degree to which the brain 
segments into networks (or systems) that function independently of 
one another—high values reflect greater functional separation be-
tween networks, while lower values reflect less functional separation 
between networks. In order to compute this metric, only positive cor-
relations among the ten networks identified above were considered, 
and all negative correlations were set to zero (Chan et al., 2014; Chan, 
et al., 2017). As in previous uses of this metric, system segregation 
was computed separately across all somatomotor networks (auditory, 
visual, somatomotor hand, and somatomotor mouth) and across all as-
sociation networks (default mode, frontoparietal, cingulo-opercular, 
ventral attention, dorsal attention, and salience). Then, the average 
within- and between-network correlations were calculated for each 
type of network separately (average correlation within and between 
all somatomotor networks, excluding association networks; average 
correlation within and between all association networks, excluding 
somatomotor networks), and the system segregation was defined as: 

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 2 (Networks: so-
matomotor networks versus. association networks) × 4 (Age Group: 
YA, yMA, oMA, OA) MANCOVA (covariate: scrubbing percentage) 
was used to test the effects of age and domain on this metric.

2.5.3 | Graph theory metrics of global connectivity

Two graph theory metrics of functional connectivity were also 
computed using the Brain Connectivity Toolbox (Rubinov & 

SS=
−zwithin−−zbetween

−zwithin
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Sporns, 2010) (www.brain​-conne​ctivi​ty-toolb​ox.net) in order 
to measure additional aspects of global and nodal connectiv-
ity. Global connectivity was assessed using the graph theory 
metrics of modularity (the extent to which the correlation ma-
trix can be partitioned into networks that maximize within-
group connections and minimize between-group connections; 
Newman, 2006) and global efficiency (average inverse shortest 
path length; Latora & Marchiori, 2001). In order to ensure that 
results were not biased by the connectivity weight threshold 
applied to the correlation matrices, a range of thresholds be-
tween 2% and 10% (in increments of 1%) were applied to matri-
ces during computation of each metric (i.e., Geerligs, Renken, 
et  al.,  2015). Based on this thresholding, all graph theory 
metrics were only computed on positive correlation weights, 
with all correlations not meeting this threshold being set to 
zero. As such, all graph theory analyses evaluate the effects 
of both age group and threshold on the metric of interest. In 
order to assess the effect of age and domain on these graph 
theory metrics, a 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 4 
(age group: YA, yMA, oMA, OA)  ×  9 (threshold: 2%–10%) 
MANCOVA (covariate: scrubbing percentage) was conducted 
for each metric. Significant interactions were probed using 
follow-up MANCOVA (age group × network at each threshold) 
and one-way ANOVA (effect of age group on each network for 
thresholds exhibiting a significant age ×  network interaction) 
analyses.

Due to the nature of the hypotheses being tested in the pres-
ent set of analyses, only results relating to the effects of partici-
pant age on the set of connectivity metrics presented above will 
be discussed in detail in the context of the present manuscript. 
All outcomes of statistical tests will be presented in referenced 
supplementary text, tables, and figures; however, interpretation 
and discussion will be limited to those metrics showing effects 
of age, or interactions between age and other factors (i.e., func-
tional network, correlation direction, task domain, and matrix 
threshold).

2.6 | Correlational brain–behavior analyses

In order to probe which of these metrics may be related to perfor-
mance on the in-scanner task, Pearson partial correlational analyses 
were conducted between functional connectivity metrics computed 
during each task and performance on the in-scanner tasks, control-
ling for years of education and gender. Further, in order to account 
for the effect of participant age on these relationships, an additional 
set of Pearson partial correlations were computed with respect to 
years of education, gender, and participant age. Due to the high 
number of functional connectivity metrics being computed for each 
task, and due to the relatively exploratory nature of these analyses, 
no p-value correction was performed; however, interpretation is lim-
ited to those metrics and networks showing consistent relationships 
with task performance.
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2.7 | Ethics statement

The Columbia University Institutional Review Board approved all 
study procedures, and all participants provided written informed 
consent prior to participation.

3  | RESULTS

3.1 | Positive/negative correlation weights

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 10 (Network) × 
2 (Correlation direction: within, between) × 4 (Age Group: YA, 
yMA, oMA, OA) revealed a significant main effect of age group 
(F3,274 = 11.551, p < .001) on positive correlation strength. Further, 
there were significant interactions among domain and age group 
(F9,822 = 2.185, p = .021), network and age group (F27,2,466 = 2.552, 
p < .001), direction and age group (F3,274 = 13.859, p < .001), domain 
and network and age group (F81,7,398  =  1.503, p  =  .002), network 
and direction and age group (F27,2,466 = 2.670, p < .001), and domain 
and network and direction and age group (F81,7,398 = 1.575, p = .001). 
The interaction among domain, direction, and age group was not sig-
nificant (F9,822 = 0.386, p = .942). The main effect of age suggested 
that, overall, older age was associated with lower positive correla-
tion strength (see Table 2, Tables S1–S4). Follow-up analyses probing 

the 4-way interaction showed that age had a dampening effect on 
positive correlation strength for differing networks depending upon 
the domain being analyzed (see Figure 1, Table 2, Tables S1–S4). The 
auditory network showed an effect of age on within-network cor-
relations across all four domains, and however, other networks only 
showed an effect of age on within- or between-network correla-
tion strength in specific domains (i.e., Hand, CO, and Sal between-
network correlation strength only showed an effect of age during 
FLUID tasks).

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 10 (Network) × 4 
(Age Group: YA, yMA, oMA, OA) revealed a significant main effect 
of age group (F3,194 = 7.009, p <  .001) on negative between-net-
work correlation strength. Additionally, there were significant in-
teractions among domain and age group (F9,882 = 2.758, p = .003), 
network and age group (F27,2,646  =  1.732, p  =  .011), and domain 
and network and age group (F81,7,938 = 1.784, p < .001). The main 
effect of age suggested that, overall, older age was associated 
with weaker negative correlation strength (see Table 2, Tables S1–
S4). Follow-up analyses of the 3-way interaction showed that 
there was an interaction between age and network on negative 
correlation strength during VOCAB (F27,2,673  =  1.593, p  =  .027) 
and SPEED (F27,2,673  =  3.377, p  <  .001) tasks, but not during 
FLUID (F27,2,673  =  1.295, p  =  .141) and MEM (F27,2,673  =  0.810, 
p =  .743) tasks. Further, the main effect of age on negative cor-
relation strength was significant for every domain except for MEM 

F I G U R E  1   Average within(w)/between(b)-network positive correlation for each age group, depicted for each task domain. Asterisks 
reflect significance of the difference between younger (YA) and older (OA) adults at each network (*p < .05, **p < .01, ***p < .001; all 
Bonferroni corrected within each domain). Networks are presented using acronyms defined in the text: Aud, Auditory; CO, Cingulo-
Opercular; DAN, Dorsal Attention Network; DMN, Default Mode Network; FP, Frontoparietal; Hand, Somatomotor Hand; Mouth, 
Somatomotor Mouth; Sal, Salience; VAN, Ventral Attention Network; Vis, Visual
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(VOCAB: F3,297 = 3.082, p-.028; SPEED: F3,297 = 6.080, p <  .001; 
FLUID: F3,297 = 6.982, p <  .001; MEM: F3,297 = 0.441, p =  .724). 
The interaction between age and network during VOCAB and 
SPEED showed that some between-network negative correla-
tions showed weakening with age across both tasks (i.e., Vis and 
FP networks), but some were specific to one task or the other 
(i.e., Hand and DAN between-network negative correlations only 
showed an effect of age during SPEED tasks; see Figure 2, Table 2, 
Tables S1–S4).

3.2 | System segregation

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 2 (Network: 
Somatomotor versus. Association) × 4 (Age Group: YA, yMA, 
oMA, OA) MANCOVA revealed a significant main effect of age 
group (F3,294 = 6.528, p <  .001) on system segregation. The inter-
actions among network and age group (F3,294  =  1.695, p  =  .168), 
domain and age group (F9,882 = 0.839, p = .580), and network and 
domain and age group (F9,882 = 1.765, p =  .071) were not signifi-
cant (for other significant results, see Figure S1). The main effect 
of age group showed that younger adults (m = 0.118, SD = 0.185) 
showed greater system segregation than older adults (m = −0.013, 
SD = 0.184; mean difference = 0.131, p < .001; no other compari-
sons significant).

3.3 | Graph theory metrics of global connectivity

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 9 (Threshold: 2%–
10%) × 4 (Age Group: YA, yMA, oMA, OA) MANCOVA revealed a sig-
nificant interaction between domain and age group (F9,882 = 2.064, 
p = .030). The main effect of age group (F3,294 = 2.115, p = .098), and 
the interactions among threshold and age group (F24,2,352 = 0.477, 
p = .985) and domain and threshold and age group (F72,7,056 = 0.901, 
p = .710) were not significant. The interaction between age and do-
main was driven by YAs showing higher levels of global efficiency 
than oMAs (mean difference  =  0.006, p  =  .015) and OAs (mean 
difference  =  0.007, p  =  .003) during FLUID tasks (F3,297  =  4.718, 
p = .003), but no effect on age on global efficiency during VOCAB 
(F3,297 = 0.731, p = .534), SPEED (F3,297 = 1.682, p = .171), or MEM 
(F3,297 = 1.336, p = .263) tasks (see Figure S2).

A 4 (Domain: VOCAB, SPEED, FLUID, MEM) × 9 (Threshold: 
2%–10%) × 4 (Age Group: YA, yMA, oMA, OA) MANCOVA revealed 
a significant main effect of age group (F3,294 = 8.927, p <  .001) on 
modularity. Additionally, there were significant interactions among 
domain and age group (F9,882 = 2.791, p = .003), and threshold and 
age group (F24,2,352 = 2.896, p <  .001). The interaction among do-
main, threshold, and age group was not significant (F72,7,056 = 0.578, 
p  =  .998). The main effect of age showed that YAs (mean differ-
ence = 0.019, p < .001) and yMAs (mean difference = 0.025, p = .004) 
had greater modularity than OAs, and YAs had greater modularity 

F I G U R E  2   Average between-network negative correlation for each age group, depicted for each task domain. Asterisks reflect 
significance of the difference between younger (YA) and older (OA) adults at each network (*p < .05, **p < .01, ***p < .001; all Bonferroni 
corrected within each domain). Networks are presented using acronyms defined in the text: Aud, Auditory; CO = Cingulo-Opercular; DAN, 
Dorsal Attention Network; DMN, Default Mode Network; FP, Frontoparietal; Hand, Somatomotor Hand; Mouth, Somatomotor Mouth; Sal, 
Salience; VAN, Ventral Attention Network; Vis, Visual
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than oMAs (mean difference = 0.019, p = .047). The interaction be-
tween age and domain showed that there was a significant effect of 
age on modularity only during SPEED and FLUID tasks. Finally, the 
interaction between age group and threshold showed that the effect 
of age group on modularity differed by threshold (see Figure S3).

3.3.1 | Correlational brain–behavior analyses

Results from the exploratory correlational analyses showed gener-
ally that whole-brain graph theory metrics show few relationships 
with task performance, and however, whole-brain system segrega-
tion was related to MEM task performance (see Table 3; p = .002). 
Further, FLUID and MEM performance was also related to several 
network-based average correlation metrics, while VOCAB and 
SPEED performance showed fewer associations with these net-
work-based metrics (see Table 3). Further, while many of these re-
lationships persisted after accounting for participant age, several in 
the FLUID domain became nonsignificant (p > .05) after controlling 
for this effect.

4  | DISCUSSION

Results from the present study show that age is associated with dif-
ferences in a variety of measures of functional connectivity across 
several cognitive task domains. Further, interactions between 
age and task domain indicate that in-scanner task domain affects 
whether and how age effects are discovered. For positive correla-
tions, this interaction shows that the auditory network shows an ef-
fect of age across all tasks ; however, cognitive networks may or may 
not show an effect of age depending upon the task being performed. 
For negative correlations, effects of age were only observed dur-
ing VOCAB and SPEED tasks, and the networks affected differed 
between these two tasks. When examining graph theory measures, 
global efficiency and modularity also showed interactions between 
age and task, such that age had an effect on global efficiency only 
during FLUID tasks, and age had an effect on modularity during both 
SPEED and FLUID tasks.

While studies conducted at rest, or during just one cognitive 
task, show specific effects of age on functional connectivity metrics, 
the results presented here suggest that the effect of age may not be 
omnipresent and may be more or less apparent depending upon the 
choice of cognitive task. For example, age showed very little effect 
on functional connectivity during memory tasks (only on the average 
positive correlation in a few networks); however, the effects of age 
seem to be quite robust and readily observed during FLUID tasks. 
These results cannot simply be explained by presence or lack of be-
havioral differences on these tasks, since older adults performed 
significantly worse than younger adults on MEM tasks and mar-
ginally worse on FLUID tasks (see Table 1). This not only suggests 
that older adults are not unilaterally impaired (relative to younger 
adults) on metrics of functional connectivity, but also suggests that 

task choice can have a significant effect on results of functional con-
nectivity analysis. Thus, these results provide strong evidence that 
task choice plays a significant role in studies assessing the effect of 
participant age on functional connectivity and therefore must play 
a critical role in both experimental design and in interpretation of 
results from studies examining the role of aging on functional con-
nectivity computed during a task.

Findings from the present study mirror some findings from past 
studies investigating the effect of age on functional connectiv-
ity at rest (Betzel et al., 2014; Chan et al., 2014; Geerligs, Renken, 
et  al.,  2015; Iordan et  al.,  2017), showing that aging is associated 
with a reduction in within-network connectivity, and a generally less 
modular/segregated brain. However, results from the present study 
showed that the cognitive task being performed affected the pres-
ence and extent of these effects. Further, unlike results from several 
of these previous studies showing an age-related increase in be-
tween-network connectivity, any differences in between-network 
connectivity as a function of participant age revealed a weakening 
of between-network connections with age.

In a recent study, our group used a nearly identical set of connec-
tivity measures to characterize the effect of aging on functional con-
nectivity during a resting state scan (Varangis, Habeck, et al., 2019). 
By using the same processing stream and analyzing many of these 
same metrics during 11 cognitive tasks, the present study allows 
for direct qualitative comparisons between patterns of results ob-
tained during a resting state scan with those obtained during perfor-
mance of cognitive tasks reflecting 4 overarching cognitive domains. 
Results from the present study largely mirror many of these findings 
at rest—that, generally, older age is associated with weaker with-
in-network positive correlations in several networks and reduced 
system segregation across the whole brain. However, results from 
analysis of the task-based data show a more consistent effect of age 
on within- and between-network correlations during performance 
of fluid reasoning tasks, and fewer effects of age on connectivity 
values during processing speed and memory tasks. Further, results 
from the present study also showed a weakening effect of age on 
average between-network negative correlations during vocabulary 
and processing speed tasks, an effect of age on global efficiency 
during performance of fluid reasoning tasks, and an effect of age 
on modularity during performance of processing speed and fluid 
reasoning tasks. Thus, results from the present task-based connec-
tivity analyses were largely consistent with these results obtained 
during a resting state scan; however, they showed that performance 
of a cognitive task may result in exaggerated (fluid reasoning tasks) 
or dampened (memory tasks) effects of age on functional connec-
tivity metrics. As such, studies specifically examining connectivity 
during rest, or during one specific cognitive task, must consider how 
the type of scan may have affected the patterns of results being 
observed.

Results from this study also corroborate and extend previous 
findings in this sample showing that specific connections among 
pairs of cognitive networks (modeled as latent network factors) dif-
fer as a function of cognitive task (Varangis, Razlighi, et al., 2019). 
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The present study builds on these findings by utilizing more standard 
metrics of functional connectivity computed identically for each par-
ticipant, incorporating whole-brain metrics of connectivity, examin-
ing within-network connectivity for network-based metrics, and by 
including somatomotor networks in the analyses. More specifically, 
results from this previous study showed that older age is associated 
with differences in connections between several network pairs and 
that performance of a task is associated with altered patterns of 
connectivity between 6 cognitive networks, but that there was no 
interaction between participant age and task domain in predicting 
the strength of latent between-network connectivity. In the present 
study, network connections were modeled in a more simplistic way, 
reflecting the average correlation within each network, and the av-
erage correlation from one network to all other networks. Results 
from the present study, therefore, are not directly comparable with 
these results, but suggest that age does interact with task domain in 
affecting the strength of correlations within and between networks. 
That being said, the present set of results showed that older age 
tended to generally be associated with weaker correlations within 
and between networks, while data from the previous study found 
certain network connections that were stronger in older age (i.e., 
FP-Sal, FP-Memory Network), and some that were weaker in older 
age (i.e., CO-Sal, Memory Network-DMN, and Sal-DMN). While this 
may seem contradictory to the present results, this difference could 
reflect the granularity of between-network correlation analysis (av-
eraged over all other networks vs. modeled between pairs of net-
works), or the complexity of the latent factor modeling in the earlier 
paper. Additionally, these effects were observed across all tasks and 
were not probed at the task level due to a nonsignificant interaction 
among age group, task domain, and connection (network pairing). 
Thus, results from the present study complement and crucially build 
upon results from this previous work and provide evidence that task 
domain interacts with participant age in affecting a variety of more 
standard metrics of functional connectivity.

The present results also extend those of previous studies find-
ing differences in the effect of age across multiple tasks (Archer 
et al., 2016; Burianova et al., 2015; Geerligs, Rubinov, et al., 2015). 

Two of these studies consistently found that performance of a 
task altered functional connectivity patterns in both younger and 
older adults, and importantly, found that age-related differences in 
functional connectivity may be more readily observed during a task 
(Archer et al., 2016; Geerligs, Rubinov, et al., 2015). The third study, 
rather than comparing task conditions to a resting scan, compared 
functional connectivity across 2 levels of an n-back task (Burianova 
et al., 2015). The authors of this study found that older adults showed 
less modulation of functional connectivity as a function of task load, 
suggesting that older adults are not as able to flexibly alter connec-
tivity in response to changes in task demands. One aspect of these 
studies to note is that while they all looked at functional connectivity 
during multiple task conditions, the tasks were primarily targeting 
executive function (Archer et  al.,  2016; Burianova et  al.,  2015) or 
sensorimotor processing (Geerligs, Rubinov, et al., 2015). Critically, 
the studies did not compare functional connectivity across multi-
ple cognitive domains, as in the present study. Thus, while these re-
sults generally support the results of the current study that show 
age-related differences in functional connectivity during task per-
formance, they cannot speak to the domain-related differences, or 
interactions between age and domain, also observed in the results 
presented here.

Finally, given the scope of analyses conducted in the present 
study, brain–behavior correlational relationships were largely ex-
ploratory and thus interpreted with caution. That being said, several 
interesting patterns emerged: (a) System segregation and average 
network-based correlation metrics seemed to show more of a re-
lationship with performance than the whole-brain graph theory 
metrics; (b) FLUID and MEM tasks seemed to evoke more potential 
associations between functional connectivity and task performance; 
and (c) positive correlations within and between networks tended to 
be positively correlated with task performance, while negative cor-
relations between networks tended to be negatively correlated with 
task performance (with the exception of the salience network and 
MEM task performance). This somewhat mirrors previous studies 
finding that more negatively correlated activity between the DMN 
and cognitive networks was associated with better task performance. 

F I G U R E  3  Visualization of correlations between FLUID task performance and average Frontoparietal (FP) between-network connectivity 
in both the negative (a) and positive (b) directions. The correlation with negative FP between-network connectivity represents a correlation 
that become nonsignificant after controlling for age, while the correlation with positive FP between-network connectivity represents a 
correlation that remained significant after controlling for age
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TA B L E  3   Pearson partial correlation coefficients for relationships between connectivity metrics and task domain z-scores (controlling for 
years of education and gender)

Connectivity metric VOCAB SPEED FLUID MEM

System segregation Association −0.070 (.227) −0.007 (.900) −0.010 (.865) 0.117 (.042)

Somatomotor −0.059 (.306) −0.042 (.464) 0.026 (.649) 0.137 (.018)

Whole-Brain −0.065 (.261) −0.066 (.256) 0.006 (.918) 0.180 (.002)*

Hand w pos −0.068 (.239) −0.132 (.023)* 0.044 (.450) 0.013 (.823)

b pos −0.041 (.484) 0.041 (.483) 0.154 (.007)* −0.018 (.751)

b neg 0.026 (.655) 0.068 (.244) −0.125 (.030) −0.009 (.882)

Vis w pos −0.082 (.158) 0.038 (.514) 0.108 (.063) 0.052 (.369)

b pos −0.093 (.109) 0.000 (.997) 0.114 (.049) −0.138 (.017)

b neg 0.073 (.210) 0.108 (.062) −0.119 (.039) 0.006 (.918)

Mouth w pos −0.056 (.330) 0.005 (.926) 0.122 (.035) 0.007 (.903)

b pos −0.093 (.109) 0.005 (.929) 0.089 (.124) −0.118 (.041)

b neg 0.094 (.105) 0.087 (.133) −0.042 (.472) 0.074 (.200)

Aud w pos −0.077 (.182) −0.098 (.090) 0.107 (.064) −0.009 (.875)

b pos −0.130 (.024) −0.098 (.090) 0.092 (.113) −0.122 (.035)

b neg 0.006 (.918) 0.064 (.269) −0.076 (.188) −0.013 (.829)

DMN w pos −0.069 (.236) −0.060 (.299) 0.065 (.258) −0.043 (.463)

b pos −0.095 (.099) −0.105 (.069) 0.109 (.060) −0.113 (.051)*

b neg 0.084 (.146) 0.077 (.186) −0.137 (.018) 0.071 (.222)

FP w pos 0.060 (.303) −0.023 (.692) 0.093 (.107) −0.035 (.541)

b pos −0.060 (.302) −0.048 (.408) 0.182 (.002)* −0.070 (.224)

b neg 0.068 (.242) 0.068 (.243) −0.142 (.014) 0.047 (.415)

VAN w pos −0.108 (.063) 0.128 (.026)* 0.078 (.178) −0.009 (.877)

b pos −0.176 (.002)* −0.069 (.233) 0.110 (.057) −0.140 (.015)*

b neg 0.095 (.102) 0.044 (.444) −0.095 (.102) 0.076 (.188)

CO w pos −0.067 (.248) −0.104 (.072) 0.084 (.149) 0.021 (.714)

b pos −0.061 (.289) −0.081 (.160) 0.125 (.030) −0.065 (.263)

b neg 0.072 (.216) 0.016 (.776) −0.111 (.054) 0.014 (.809)

DAN w pos −0.025 (.662) −0.084 (.147) 0.223 (<.001)* 0.066 (.254)

b pos −0.079 (.171) −0.034 (.554) 0.160 (.005)* −0.030 (.600)

b neg 0.083 (.150) 0.080 (.168) −0.071 (.219) −0.033 (.572)

Sal w pos 0.009 (.880) −0.164 (.004)* 0.053 (.364) −0.040 (.486)

b pos −0.020 (.734) −0.051 (.381) 0.146 (.012) 0.012 (.841)

b neg 0.099 (.088) 0.045 (.441) −0.145 (.012)* 0.133 (.021)

GE 2% −0.026 (.657) 0.116 (.044) −0.135 (.020)* −0.014 (.809)

3% −0.016 (.778) 0.112 (.053) −0.101 (.082) −0.026 (.654)

4% −0.018 (.759) 0.118 (.041) −0.097 (.094) −0.027 (.643)

5% −0.030 (.603) 0.120 (.038)* −0.035 (.544) −0.035 (.550)

6% −0.032 (.583) 0.108 (.061) 0.001 (.986) −0.048 (.406)

7% −0.074 (.200) 0.122 (.035)* 0.052 (.372) −0.067 (.250)

8% −0.098 (.09)* 0.123 (.033)* 0.088 (.129) −0.085 (.141)

9% −0.110 (.056)* 0.109 (.058) 0.106 (.067) −0.101 (.080)

10% −0.126 (.030)* 0.104 (.071) 0.128 (.027) −0.105 (.068)

(Continues)



     |  13 of 15VARANGIS et al.

While the present study did not specifically interrogate connectiv-
ity between pairs of networks, the findings generally suggest that 
stronger negative correlations between networks may be associ-
ated with better task performance, but that stronger positive cor-
relations between networks may also be associated with better task 
performance. This suggests that networks may adaptively engage 
in collaborative or antagonistic relationships with other networks in 
order to respond to the demands of the task. Importantly, our re-
sults suggest that these patterns of network interactions that either 
aid or detract from task performance may vary as a function of the 
task being conducted in the scanner. Further, while many of these 
relationships persisted after controlling for participant age, several 
correlations became nonsignificant. In visualizing some of these 
relationships that became nonsignificant after controlling for age, 
there was a trend toward differing relationships between cognition 
and connectivity as a function of age. For example, in examining the 
relationship between FP between-network connectivity and FLUID 
task performance, stronger positive between-network connectiv-
ity was associated with better performance on the task even after 
controlling for age, while negative between-network connectivity 
was not (see Figure 3). When viewed as a function of age group, this 
pattern may suggest that older and younger adults show different 
relationships between negative FP between-network connectivity 
and task performance, such that younger adults show a more nega-
tive relationship between this metric and performance, while older 
adults show no relationship between this metric and performance. 
While formal testing of these trends was beyond the scope of the 
present analyses, future studies should more specifically examine 
whether and how age may moderate the effect of task-based func-
tional connectivity on task performance.

The present study, however, is not without limitations. First, the 
present study did not compare functional connectivity metrics be-
tween task and rest. While this limits the ability to draw conclusions 
about the difference in age effects between resting state and var-
ious tasks, the study does find that task domain affects the pres-
ence and magnitude of age effects across every metric of functional 

connectivity included in the present study. This conclusion that task 
domain affects these metrics is key in determining the true effect 
of age on functional neural connectivity across multiple cognitive 
states. Second, the present study utilized predefined functional net-
works as defined by Power et al. (2011) and did not identify these 
functional networks based on their localization in this sample. While 
this might slightly weaken the applicability of these networks in this 
sample, the fact that the present study found differences based on 
age and task domain in these networks suggests that their definition 
may be relevant and useful to external samples.

Based on the results of the present study, future studies should 
continue to explore age-related differences in functional connectiv-
ity across different cognitive tasks in order to assess domain spec-
ificity of age-related differences in functional connectivity. Results 
from the present study suggest that fluid reasoning tasks may be 
more sensitive to age-related differences in functional connectivity 
than episodic memory tasks. Since age-related behavioral differ-
ences are readily observed in memory tasks and marginally evident 
in fluid reasoning tasks, it may be plausibly hypothesized that age-re-
lated decrements in fluid reasoning task performance may arise 
alongside or as a function of age-related differences in functional 
connectivity, however, since few differences in connectivity were 
observed during episodic memory tasks, a functional connectiv-
ity-related biomarker for age-related memory decline may be less 
clearly applicable. That being said, future studies should further 
delve into this effect by more thoroughly exploring the effect of age 
on functional connectivity during a variety of memory tasks across 
multiple modalities and components of memory.

4.1 | Conclusions

Results from the present study suggest that a variety of measures of 
functional connectivity may be sensitive to age-related differences 
during performance of cognitive tasks tapping into four domains: 
vocabulary, processing speed, fluid reasoning, and episodic memory. 

Connectivity metric VOCAB SPEED FLUID MEM

Mod 2% −0.034 (.562) 0.037 (.523) −0.068 (.244) 0.008 (.896)

3% −0.031 (.592) −0.004 (.951) −0.046 (.430) 0.030 (.601)

4% −0.047 (.415) −0.021 (.721) −0.025 (.662) 0.016 (.783)

5% −0.041 (.477) −0.040 (.494) 0.009 (.870) 0.029 (.612)

6% −0.036 (.535) −0.050 (.387) 0.034 (.561) 0.008 (.892)

7% −0.036 (.530) −0.050 (.386) 0.052 (.365) −0.004 (.949)

8% −0.030 (.609) −0.052 (.372) 0.062 (.285) −0.005 (.929)

9% −0.044 (.448) −0.062 (.284) 0.076 (.189) −0.001 (.987)

10% −0.038 (.516) −0.075 (.196) 0.099 (.088) −0.003 (.960)

Note: Values represent raw Pearson partial correlation coefficients (p-values in parentheses) for each pairing; coefficients with p-values < .05 are 
bolded. Coefficients with p-values < .05 after additionally controlling for participant age are followed by an asterisk.
Abbreviations: b neg, average between-network negative correlation; b pos, average between-network positive correlation; GE, global efficiency; 
Mod, modularity; SS, system segregation; w pos, average within-network positive correlation.

TA B L E  3   (Continued)
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These differences seem to be more extensive during fluid reason-
ing and processing speed tasks and seem to show a general trend 
toward older adults showing reduced functional connectivity within 
and between predefined networks, reduced system segregation, 
and lower global efficiency and modularity.
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