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Abstract
Introduction: Past studies have found that healthy aging has a significant effect on 
the organization and function of networks in the human brain. Many of these studies 
have	examined	how	functional	connectivity	during	one	task	or	at	rest	is	affected	by	
aging;	however,	few	studies	have	systematically	examined	how	the	effect	of	age	on	
functional connectivity may vary as a function of choice of in-scanner task.
Methods: The	present	study	included	healthy	adults	between	the	ages	of	20	and	80	
and	examined	a	variety	of	metrics	of	functional	connectivity	during	performance	of	
11 in-scanner tasks, falling into 4 cognitive domains: vocabulary, processing speed, 
fluid reasoning, and episodic memory. Functional connectivity was assessed at three 
levels: average correlations within and between 10 networks, system segregation 
(sensorimotor vs. association networks), and whole-brain graph theory metrics 
(global efficiency and modularity).
Results: Results showed that the effect of age on these metrics differed as a function 
of	 task—for	example,	 age	had	a	more	 consistent	effect	on	 functional	 connectivity	
metrics computed during fluid reasoning tasks; however, there was less of an effect 
of age on functional connectivity metrics computed during tasks of episodic memory. 
Further, some of these measures showed relationships with behavioral performance 
on the in-scanner task, with different networks playing a role in the different cogni-
tive domains.
Conclusion: These findings suggest that while aging may be generally associated with 
reductions in within- and between-network connectivity, system segregation, global 
efficiency, and modularity, the magnitude and presence of these effects varies by 
in-scanner task.
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1  | INTRODUC TION

Studies investigating the effect of aging on functional neural recruit-
ment during a cognitive task have found systematic differences in 
the way older and younger adults utilize specific regions of the brain 
when performing a task, along with relationships between this dif-
ferential utilization and task performance. Current trends in the field 
of	neuroimaging	 research	have	expanded	 the	 scope	of	 task-based	
fMRI	 analyses	 to	 also	probe	differences	 in	 the	 functional	 connec-
tivity between brain regions as a function of task performance and 
aging. Past studies have shown that normal aging is associated with 
alterations in functional connectivity at rest, suggesting that even 
in the absence of a cognitive challenge, older age is associated with 
differences in functional network architecture and function. These 
studies have largely shown that aging is associated with reduc-
tions in within-network connectivity accompanied by increases in 
between-network connectivity, resulting in a less modular/segre-
gated	brain	(Betzel	et	al.,	2014;	Chan	et	al.,	2014;	Geerligs,	Renken,	
et	al.,	2015;	 Iordan	et	al.,	2017).	Some	of	 these	studies	have	even	
found links between these patterns of connectivity at rest and cog-
nitive performance outside of the scanner, suggesting a potential 
connectivity-based mechanism underlying some age-related differ-
ences	in	cognitive	performance	(Chan	et	al.,	2014;	Geerligs,	Renken,	
et	 al.,	 2015;	 King	 et	 al.,	 2017;	 Onoda	 et	 al.,	 2012;	 Sala-Llonch	
et al., 2014; Zonneveld et al., 2019).

Some	 recent	 studies	 have	 expanded	 this	 line	 of	 investigation	
into the ways in which functional connectivity during performance 
of	a	cognitive	task	is	affected	by	age.	Initial	studies	on	the	effect	of	
older age on functional connectivity during a task found that, unlike 
younger adults, older adults show attenuation of negative correla-
tions between regions in task-relevant and task-irrelevant networks 
(Sala-Llonch et al., 2012) and that the degree to which older adults 
showed a negative correlation between these networks is related to 
performance	on	executive	 function/working	memory	 tasks	 (Miller	
et	al.,	2008;	Prakash	et	al.,	2012).	While	 these	studies	 focused	on	
specific	connections	and	regions	of	interest	(ROIs),	later	studies	have	
expanded	this	investigation	to	include	connections	across	the	whole	
brain, either using analyses identifying regions showing significantly 
correlated	blood	oxygen	level-dependent	(BOLD)	fluctuations	with	
fluctuation in a predefined seed (or set of seeds; Andrews-Hanna 
et	 al.,	 2007;	Burianova	et	 al.,	 2015;	Campbell	 et	 al.,	 2012;	 Spreng	
et	al.,	2016;	Wang	et	al.,	2010);	using	clustering	to	identify	functional	
networks	from	whole-brain	BOLD	data	(Archer	et	al.,	2016;	Geerligs	
et	al.,	2014);	or	using	predefined	anatomical	or	spherical	ROIs	to	ex-
amine	BOLD	 time	 series	 correlations	 among	 these	ROIs	 (Geerligs,	
Rubinov, et al., 2015). Consistently, these studies have found age-re-
lated alterations in task-based functional connectivity, with some 
finding interactions between age and scan type (task, rest, etc.) or 
task	 load	 on	 functional	 connectivity	 metrics	 (Archer	 et	 al.,	 2016;	
Burianova	et	al.,	2015;	Geerligs,	Rubinov,	et	al.,	2015).

The observation that age affects connectivity differentially based 
on scan type or cognitive load has considerable implications for the 
study of cognitive aging. Determining which aspects of connectivity 

and what scan conditions are most sensitive to age or clinical sta-
tus is critical in assessing the clinical utility of these measures. Thus, 
studies	examining	connectivity	across	multiple	scan	conditions	are	
critical in determining what aspects of functional connectivity are 
most	sensitive	 to	aging.	 In	 this	vein,	a	 few	studies	have	compared	
connectivity metrics across both rest and different task conditions 
in order to see how cognitive state affects these connectivity pat-
terns. Two studies found that task condition had a significant effect 
on	the	connectivity	patterns	observed—Archer	et	al.	(2016)	found	a	
more widespread effect of age on task-based, compared to resting 
state,	 connectivity,	 and	Geerligs,	 Renken,	 et	 al.	 (2015)	 found	 that	
patterns of connectivity differences by age group differed based on 
the scan condition, such that subcortical networks were more sen-
sitive to age at rest, while association networks were more sensitive 
to age during a sensorimotor task. Thus, in both studies, scan con-
dition (task vs. rest or task vs. task) had a significant effect on the 
magnitude and location of the effect of participant age on functional 
connectivity within and between networks in the brain.

While	these	studies	have	examined	the	effect	of	age	on	func-
tional connectivity during one or two in-scanner tasks, one past 
study from our group directly compared patterns of functional 
connectivity during cognitive tasks that corresponded to four 
cognitive domains (vocabulary, processing speed, fluid reasoning, 
and episodic memory) in the same set of participants (Varangis, 
Razlighi, et al., 2019). Using a novel latent factor modeling ap-
proach,	 this	 study	 specifically	 examined	 the	 effects	 of	 age	 and	
task	 domain	 on	 functional	 connectivity	 between	 6	 latent	 cogni-
tive networks (default mode network, or DMN; frontoparietal net-
work,	or	FP;	cingulo-opercular	network,	or	CO;	salience	network,	
or Sal; dorsal attention network, or DAN; and memory network, or 
Mem). Results showed that task domain and age group (younger 
adults, middle-aged adults, and older adults) had independent ef-
fects on between-factor connectivity, but that age did not modify 
the effect of task domain on between-factor connectivity. While 
this study provided evidence to suggest that both task and age 
affect connectivity patterns between networks and that some of 
these patterns were related to performance on these in-scanner 
tasks,	 it	 did	 not	 comprehensively	 examine	 multiple	 aspects	 of	
functional connectivity to evaluate whether more commonly uti-
lized metrics of functional connectivity (i.e., graph theory, average 
correlation) show similar effects of both age and task. Additionally, 
due to the nature of the latent factor modeling, only between-fac-
tor	connectivity	was	examined,	 limiting	comparison	with	studies	
focusing on within-network connectivity. Further, one benefit of 
the	latent	factor	approach	was	that	it	allowed	ROI	time	series	to	
freely load on network factors at the participant level; however, 
this makes comparisons with other studies using more standard 
network-based approaches (e.g., average correlation between one 
network and another network) difficult. Past studies assessing 
the effect of aging on a variety of metrics of functional connec-
tivity at rest have found that age effects are not ubiquitous and 
that they may only emerge when using specific metrics, in specific 
networks,	or	at	a	 specific	 range	of	 thresholds	 (Geerligs,	Renken,	
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et	al.,	2015;	Iordan	et	al.,	2017;	Song	et	al.,	2014;	Varangis,	Habeck,	
et	 al.,	 2019).	 In	 order	 to	 facilitate	 qualitative	 comparison	 of	 the	
effects of age on task- vs. resting state connectivity, the present 
study followed a similar analytic approach to that used previ-
ously	 on	 resting	 state	 fMRI	 scans	 by	 our	 group	 to	 examine	 the	
effect of participant age on multiple varied approaches to char-
acterizing whole-brain functional connectivity (Varangis, Habeck, 
et	al.,	2019).	Thus,	extending	 this	 line	of	 research	 to	assess	how	
these metrics may be affected by age during a cognitive task, as 
well as how these patterns may differ based on the cognitive task 
being	 performed,	 is	 a	 logical	 next	 step	 in	 characterizing	 the	 full	
extent	and	magnitude	of	the	effects	of	age	on	functional	connec-
tivity across the whole brain.

The	 present	 study	 aimed	 to	 more	 comprehensively	 examine	
the effects of aging on task-based functional connectivity using 
several different whole-brain functional connectivity methods 
(average correlation within/between networks, system segrega-
tion, global efficiency, and modularity), and across four different 
cognitive domains (vocabulary, perceptual speed, fluid reasoning, 
and	episodic	memory).	Our	previous	study	investigated	functional	
connectivity between latent network factors in this sample; how-
ever,	the	present	study	expands	upon	this	study	by:	 (a)	 including	
a	substantially	larger	sample	of	participants	(many	were	excluded	
from the previous study due to poor latent factor model fit); (b) 
utilizing more standard, widely used, connectivity metrics to facil-
itate comparison with results of past studies; (c) including noncog-
nitive, somatosensory (somatomotor hand, somatomotor mouth, 
auditory, and visual), networks in addition to cognitive networks 
(DMN,	 FP,	 CO,	 Sal,	 DAN,	 and	 the	 ventral	 attention	 network,	 or	
VAN);	 and	 (d)	 examining	 several	 different	 features	 of	 both	 net-
work-based	and	whole-brain	connectivity.	Based	on	past	studies	
assessing the effects of aging on functional connectivity during 
rest and task scans, the hypotheses of the present study are as 
follows: (1) older adults will show weaker within-network connec-
tivity, stronger between-network connectivity, and reduced sys-
tem segregation across all tasks; (2) there will be more networks 
that show an effect of age on within/between-network connectiv-
ity during fluid reasoning and processing speed tasks, and fewer 
showing an effect of age during vocabulary and memory tasks; 
and (3) whole-brain graph theory metrics of connectivity will show 
some modulation by both age and cognitive task, with differences 
between age groups more readily observed during fluid reason-
ing and processing speed tasks. Further, the present study will 
present	 some	exploratory	data	examining	 relationships	between	
functional connectivity metrics and in-scanner task performance 
in order to get a better sense of which metrics and networks may 
play a role in cognitive performance.

In	addition	to	expanding	upon	existing	research	on	age	modula-
tion of task-based functional connectivity, the present study will also 
examine	the	effect	of	age	on	task-based	connectivity	 that	 is	com-
puted based on a few different common connectivity methodologies, 
ranging from highly network-specific techniques (network-based 
correlations) to whole-brain techniques (global efficiency). While 

every metric included in the present study has previously been 
found to be affected by age either at rest or during a cognitive task in 
past studies, the present study will incorporate and compare across 
all	metrics	within	the	same	participant	sample.	Given	the	challenge	
of completing a cognitive task and the cognitive functions ascribed 
to	several	of	the	networks	included	in	the	present	analyses,	it	is	ex-
pected that network-based metrics may be particularly sensitive to 
age	effects	on	functional	connectivity	during	a	task	(e.g.,	Geerligs,	
Renken, et al., 2015). This may be particularly evident during tasks 
that	 draw	more	heavily	 on	 executive	 function	 resources,	 as	 these	
tasks may necessitate higher levels of network integration/disin-
tegration (i.e., Varangis, Razlighi, et al., 2019). Additionally, metrics 
computed based on network parcellation (i.e., system segregation 
and modularity) may also show age modulation of task effects due 
to their inclusion of network properties during computation (either 
based on predefined networks as in system segregation or based on 
individually detected networks as in modularity). However, whole-
brain	metrics	 that	are	agnostic	 to	network	membership/ROI	 local-
ization, such as global efficiency, may be less likely to show robust 
effects of participant age or task effects.

2  | METHODS

2.1 | Sample

The sample for the present study was comprised of participants 
who completed the baseline visit for the Reference Ability Neural 
Network (RANN) study (N =	396;	Stern	et	al.,	2014).	All	participants	
were	native	English	speakers,	right-handed,	free	of	MRI	contraindi-
cations, and read at a fourth grade reading level or above. Screening 
was performed prior to enrollment in order to ensure that no par-
ticipants had any psychological or medical conditions that could af-
fect cognitive function and that older adults did not meet criteria 
for	 dementia	 or	MCI	 at	 baseline.	 Based	 on	 age	 grouping	 used	 for	
display purposes in a previous study (Chan et al., 2014), participants 
were divided into four different age groups to facilitate testing of 
moderation by age: younger adults (YA; age 20–34, n = 90), younger 
middle-aged adults (yMA; age 35–49, n =	 64),	 older	 middle-aged	
adults	(oMA;	age	50–64,	n =	113),	and	older	adults	(OA;	age	65–80,	
n = 129). For the present analyses, the following additional criteria 
were established: completion of all 11 in-scanner tasks (N = 335; YA 
n =	75,	yMA	n =	64,	oMA	n =	97,	OA	n = 99), and less than 30% 
motion	artifact	data	removal	(scrubbing;	Parkes	et	al.,	2018;	Power	
et al., 2012) within each of the four domain time series (N = 302; YA 
n =	72,	yMA	n =	60,	oMA	n =	86,	OA	n =	84;	see	Table	1).

2.2 | In-scanner cognitive tasks

The cognitive outcome measures included in the present analyses 
are represented by composite z-scores of performance on tasks 
completed	 during	 the	 fMRI	 scan.	 The	 in-scanner	 tasks	 included	
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11 cognitive tasks that were previously found to cluster into four 
primary	reference	abilities	 (Salthouse,	2009;	Salthouse	&	Ferrer-
Caja,	2003):	vocabulary	 (VOCAB:	synonyms	and	antonyms),	per-
ceptual speed (SPEED: digit symbol, letter comparison, pattern 
comparison),	fluid	reasoning	(FLUID:	paper	folding,	matrix	reason-
ing, and letter sets), and episodic memory (MEM: logical memory, 
word order, and paired associates). These tasks have been used 
extensively	 in	previous	 studies	 conducted	by	 the	authors	of	 the	
current study; for detailed information on these tasks, please 
see	 (Razlighi	 et	 al.,	 2017;	 Stern	 et	 al.,	 2014;	 Varangis,	 Razlighi,	
et	al.,	2019).	One	task,	the	Picture	Naming	task	from	the	VOCAB	
reference ability, was not included in the present analyses due 
to in-scanner motion arising from participants speaking their 
responses aloud during the scanned task. Performance on each 
individual task was z-scored; then, domain-based z-scores were 
generated by averaging the z-scores of the tasks within each do-
main.	For	VOCAB,	FLUID,	and	MEM	tasks,	higher	z-scores	mean	
higher accuracy on the in-scanner task; for SPEED tasks, z-scores 
were reverse coded such that higher z-scores mean faster reaction 
times.

2.3 | fMRI scan parameters

The	present	study	collected	fMRI	scans	during	the	in-scanner	tasks	
mentioned above. All participants completed these scans on a 3.0T 
Philips Achieva Magnet over the course of two 2-hr MR imaging 
sessions. T1-weighted images of the whole brain were acquired 
for	 each	 subject	 with	 a	 Magnetization	 Prepared	 Rapid	 Gradient	
Echo	 (MPRAGE)	 sequence	with	 the	 following	 parameters:	 TE/TR:	
3/6.5	ms;	Field	of	view:	256	mm;	Flip	angle:	8°;	In-plane	resolution:	
256	×	 256	 voxels;	 Slice	 thickness/gap:	 1/0	mm;	 Slices:	 180.	 fMRI	
blood	oxygen	level-dependent	(BOLD)	scans	were	collected	during	
each of the 11 in-scanner tasks mentioned above with the follow-
ing parameters: TE/TR: 20/2,000 ms; Field of view: 240 mm; Flip 

angle:	 72°;	 In-plane	 resolution:	 112	×	 112	voxels;	 Slice	 thickness/
gap: 3/0 mm; Slices: 41.

2.4 | fMRI data processing

Images	 were	 preprocessed	 using	 an	 in-house	 developed	 native	
space method (Razlighi, et al., 2014) as described and utilized previ-
ously in Varangis, Razlighi, et al. (2019). The preprocessing pipeline 
included slice-timing correction and motion correction performed in 
FSL	(Jenkinson,	Bannister,	et	al.,	2002;	Jenkinson,	Beckmann,	et	al.,	
2012), calculation of frame-wise displacement (FWD; as described in 
Power et al., 2012), volume replacement for contaminated volumes 
(Carp, 2013; Power et al., 2012), band-pass filtering using flsmaths–
bptf	(Jenkinson,	Beckmann,	et	al.,	2012),	and	residualization	of	the	
processed data with respect to FWD, root mean square difference 
of	the	BOLD	signal,	left	and	right	hemisphere	white	matter,	and	lat-
eral	 ventricular	 signals	 (Birn,	 et	 al.,	 2006).	 T1	 image	 segmentation	
was performed using FreeSurfer (Dale, et al., 1999, Fischl, Salat, 
et al., 2002, Fischl, van der Kouwe, et al., 2004) and inspected visu-
ally	for	any	possible	inaccuracies.	In	order	to	perform	the	functional	
connectivity	analyses	described	below,	the	coordinates	of	the	264	
ROIs	 identified	 by	 Power	 and	 colleagues	 (2011)	 were	 transferred	
to native space via nonlinear registration of the subject's structural 
scan	to	the	MNI	template	using	the	ANTS	software	package.	Next,	
a 10 mm radius spherical mask was generated for each coordinate 
and intersected with the FreeSurfer gray matter mask in order to de-
rive	the	gray	matter-registered	ROI	masks	for	each	of	the	264	ROIs.	
An	intermodal,	intrasubject,	rigid-body	registration	of	the	fMRI	ref-
erence	image	and	T1	scan	was	then	performed	using	FLIRT	with	6	
degrees of freedom, normalized mutual information as the cost func-
tion	(Jenkinson	&	Smith,	2001),	in	order	to	transfer	ROI	masks	from	
T1	space	to	fMRI	space.	These	transferred	ROI	masks	were	used	to	
average	all	voxels	within	each	mask	to	obtain	a	single	fMRI	time	se-
ries	for	each	of	the	264	ROIs.

TA B L E  1   Participant demographics

YA (n = 72) yMA (n = 60) oMA (n = 86) OA (n = 84)
p-Value of 
difference

Age 28.292	(4.026) 42.333 (4.425) 57.477	(4.516) 71.190	(4.135) <.001

Gender	(%F) 68.06% 48.33% 48.84% 48.81% .277

Education 16.153	(2.311) 15.867	(2.554) 16.035	(2.072) 16.464	(2.613) .476

VOCAB −0.143	(0.880) −0.161	(0.825) 0.029	(0.880) 0.099	(0.767) .201

SPEED −0.359	(0.810) −0.178	(0.696) −0.049	(0.731) 0.300	(0.730) <.001

FLUID 0.280	(0.889) 0.001	(0.759) −0.054	(0.884) −0.088	(0.927) .065

MEM 0.268	(0.811) 0.054	(0.632) −0.047	(0.694) −0.193	(0.815) .004

Note: Values reflect group means (standard deviations in parentheses), and percentage female within each age group. p-Values reflect p-values for 
one-way	ANOVAs	for	all	continuous	variables,	or	chi-square	test	for	Gender.
Abbreviations:	FLUID,	average	z-score	of	performance	on	three	in-scanner	fluid	reasoning	tasks;	MEM,	average	z-score	of	performance	on	three	
in-scanner	Episodic	Memory	tasks;	OA,	older	adult;	oMA,	older	middle-aged	adult;	SPEED,	average	z-score	of	performance	on	three	in-scanner	
processing	speed	tasks;	VOCAB,	average	z-score	of	performance	on	three	in-scanner	Vocabulary	tasks;	YA,	younger	adult;	yMA,	younger	middle-
aged adult.
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Time series data were then concatenated by domain, yielding 4 
sets of time series data that were modeled separately as blocked 
designs:	VOCAB	(concatenated	synonyms	and	antonyms	data;	388	
volumes, SPEED (concatenated digit symbol, letter comparison, and 
pattern	comparison	data;	595	volumes),	FLUID	(concatenated	paper	
folding,	matrix	reasoning,	and	letter	sets	data;	1,290	volumes),	and	
MEM (concatenated logical memory, word order, and paired asso-
ciates	data;	517	volumes).	In	order	to	remove	any	unique	task-spe-
cific variance from the domain time series, task was regressed out 
of	each	ROI’s	time	series.	These	residualized	time	series	were	then	
used	to	generate	correlation	matrices	among	all	ROIs	(264	ROIs	by	
264	ROIs).	The	diagonal	of	each	correlation	matrix	was	set	to	zero	for	
all graph theory analyses, and “NA” for all average correlation analy-
ses, in order to remove correlations between an area and itself from 
analyses. Further, as per the utilization recommendations for this 
parcellation	scheme	(Power	et	al.,	2011),	all	ROIs	with	centers	within	
20	mm	of	one	another	in	standard	space	were	excluded	from	all	anal-
yses.	ROIs	were	 then	 labeled	based	on	 the	Power	 (2011)	network	
assignments, with the following networks being selected for analy-
sis based on their inclusion in similar past studies (Chan et al., 2014; 
Geerligs,	Renken,	 et	 al.,	 2015):	 visual	 (Vis;	 31	ROIs),	 somatomotor	
mouth	 (Mouth;	5	ROIs),	 somatomotor	hand	 (Hand;	30	ROIs),	audi-
tory	(Aud;	13	ROIs),	default	mode	(DMN;	58	ROIs),	salience	(Sal;	18	
ROIs),	cingulo-opercular	(CO;	14	ROIs),	frontoparietal	(FP;	25	ROIs),	
dorsal	attention	(DAN;	11	ROIs),	and	ventral	attention	(VAN;	9	ROIs).

2.5 | Functional connectivity analyses

Individual	correlation	matrices	were	used	to	compute	several	meas-
ures of functional connectivity.

2.5.1 | Positive/negative	correlation	weights

Average positive and negative correlation were computed within and 
between all networks of interest. Within-network correlations were 
characterized	as	those	reflecting	correlations	between	ROIs	within	a	
specific network; between-network correlations were characterized 
as	those	reflecting	correlations	between	ROIs	from	one	network	and	
those of all other networks. Average positive correlation was com-
puted by setting all negative correlation values to “NA,” then taking 
the average within- and between-network positive correlation for 
each network. Average negative correlation was computed by set-
ting all positive correlation values to “NA,” then taking the average 
within- and between-network negative correlation for each network. 
Due to few negative within-network correlations (and concern as to 
how to interpret these values), only between-network negative cor-
relations were included in the analysis of negative correlations. Thus, 
data from this analysis included the average within-network positive 
correlation (10 values), average between-network positive correla-
tion (10 values), and average between-network negative correlation 
(10	values)	for	each	participant.	In	order	to	examine	the	effect	of	age	

and	domain	on	positive	correlation	strength,	a	4	(Domain:	VOCAB,	
SPEED,	FLUID,	MEM)	x	4	(age	group:	YA,	yMA,	oMA,	OA)	× 2 (corre-
lation direction: within, between) × 10 (network: Vis, Mouth, Hand, 
Aud,	DMN,	Sal,	 FP,	CO,	DAN,	VAN)	MANCOVA	 (covariate:	 scrub-
bing percentage) was performed. For this analysis only, the sample 
size	was	reduced	by	20	participants	to	282	participants	(YA	n =	65,	
yMA n = 54, oMA n =	85,	OA	n =	78)	since	not	all	participants	had	
positive within-network correlations in some smaller networks (i.e., 
VAN);	 as	 such,	 the	 remaining	282	participants	had	valid	estimates	
for average positive within- and between-network correlations in all 
10	networks.	To	examine	the	effect	of	age	and	domain	on	negative	
correlation	strength,	a	4	(Domain:	VOCAB,	SPEED,	FLUID,	MEM)	x	
4	(age	group:	YA,	yMA,	oMA,	OA)	× 10 (network: Vis, Mouth, Hand, 
Aud,	DMN,	Sal,	FP,	CO,	DAN,	VAN)	MANCOVA	(covariate:	scrubbing	
percentage) was performed. Significant interactions were probed 
using	follow-up	MANCOVA	and	ANOVA	analyses.

2.5.2 | System	segregation

These data were also used to derive the metric of system segrega-
tion introduced by Wig and colleagues (Chan et al., 2014; Chan, et al., 
2017;	Wig,	2017).	This	metric	reflects	the	degree	to	which	the	brain	
segments into networks (or systems) that function independently of 
one another—high values reflect greater functional separation be-
tween networks, while lower values reflect less functional separation 
between	networks.	In	order	to	compute	this	metric,	only	positive	cor-
relations among the ten networks identified above were considered, 
and all negative correlations were set to zero (Chan et al., 2014; Chan, 
et	 al.,	 2017).	As	 in	 previous	 uses	 of	 this	metric,	 system	 segregation	
was computed separately across all somatomotor networks (auditory, 
visual, somatomotor hand, and somatomotor mouth) and across all as-
sociation networks (default mode, frontoparietal, cingulo-opercular, 
ventral attention, dorsal attention, and salience). Then, the average 
within- and between-network correlations were calculated for each 
type of network separately (average correlation within and between 
all	 somatomotor	 networks,	 excluding	 association	 networks;	 average	
correlation	 within	 and	 between	 all	 association	 networks,	 excluding	
somatomotor networks), and the system segregation was defined as: 

A	4	(Domain:	VOCAB,	SPEED,	FLUID,	MEM)	× 2 (Networks: so-
matomotor networks versus. association networks) ×	4	(Age	Group:	
YA,	yMA,	oMA,	OA)	MANCOVA	 (covariate:	 scrubbing	percentage)	
was used to test the effects of age and domain on this metric.

2.5.3 | Graph	theory	metrics	of	global	connectivity

Two graph theory metrics of functional connectivity were also 
computed	 using	 the	 Brain	 Connectivity	 Toolbox	 (Rubinov	 &	

SS=
−zwithin−−zbetween

−zwithin
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Sporns,	 2010)	 (www.brain	-conne	ctivi	ty-toolb	ox.net)	 in	 order	
to measure additional aspects of global and nodal connectiv-
ity.	 Global	 connectivity	 was	 assessed	 using	 the	 graph	 theory	
metrics	of	modularity	(the	extent	to	which	the	correlation	ma-
trix	 can	 be	 partitioned	 into	 networks	 that	 maximize	 within-
group connections and minimize between-group connections; 
Newman,	2006)	and	global	efficiency	(average	inverse	shortest	
path	length;	Latora	&	Marchiori,	2001).	In	order	to	ensure	that	
results were not biased by the connectivity weight threshold 
applied to the correlation matrices, a range of thresholds be-
tween 2% and 10% (in increments of 1%) were applied to matri-
ces	during	computation	of	each	metric	 (i.e.,	Geerligs,	Renken,	
et	 al.,	 2015).	 Based	 on	 this	 thresholding,	 all	 graph	 theory	
metrics were only computed on positive correlation weights, 
with all correlations not meeting this threshold being set to 
zero. As such, all graph theory analyses evaluate the effects 
of	 both	 age	 group	 and	 threshold	 on	 the	metric	 of	 interest.	 In	
order to assess the effect of age and domain on these graph 
theory	metrics,	a	4	(Domain:	VOCAB,	SPEED,	FLUID,	MEM)	× 4 
(age	 group:	 YA,	 yMA,	 oMA,	 OA)	 × 9 (threshold: 2%–10%) 
MANCOVA	 (covariate:	 scrubbing	 percentage)	 was	 conducted	
for each metric. Significant interactions were probed using 
follow-up	MANCOVA	(age	group	× network at each threshold) 
and	one-way	ANOVA	(effect	of	age	group	on	each	network	for	
thresholds	 exhibiting	 a	 significant	 age	× network interaction) 
analyses.

Due to the nature of the hypotheses being tested in the pres-
ent set of analyses, only results relating to the effects of partici-
pant age on the set of connectivity metrics presented above will 
be	discussed	 in	detail	 in	 the	context	of	 the	present	manuscript.	
All outcomes of statistical tests will be presented in referenced 
supplementary	text,	tables,	and	figures;	however,	 interpretation	
and discussion will be limited to those metrics showing effects 
of age, or interactions between age and other factors (i.e., func-
tional	 network,	 correlation	 direction,	 task	 domain,	 and	 matrix	
threshold).

2.6 | Correlational brain–behavior analyses

In	order	to	probe	which	of	these	metrics	may	be	related	to	perfor-
mance on the in-scanner task, Pearson partial correlational analyses 
were conducted between functional connectivity metrics computed 
during each task and performance on the in-scanner tasks, control-
ling for years of education and gender. Further, in order to account 
for the effect of participant age on these relationships, an additional 
set of Pearson partial correlations were computed with respect to 
years of education, gender, and participant age. Due to the high 
number of functional connectivity metrics being computed for each 
task,	and	due	to	the	relatively	exploratory	nature	of	these	analyses,	
no p-value correction was performed; however, interpretation is lim-
ited to those metrics and networks showing consistent relationships 
with task performance.
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2.7 | Ethics statement

The	 Columbia	 University	 Institutional	 Review	 Board	 approved	 all	
study procedures, and all participants provided written informed 
consent prior to participation.

3  | RESULTS

3.1 | Positive/negative correlation weights

A	 4	 (Domain:	 VOCAB,	 SPEED,	 FLUID,	 MEM)	 × 10 (Network) × 
2 (Correlation direction: within, between) ×	 4	 (Age	 Group:	 YA,	
yMA,	 oMA,	 OA)	 revealed	 a	 significant	 main	 effect	 of	 age	 group	
(F3,274 = 11.551, p < .001) on positive correlation strength. Further, 
there were significant interactions among domain and age group 
(F9,822 =	2.185,	p = .021), network and age group (F27,2,466 = 2.552, 
p < .001), direction and age group (F3,274 =	13.859,	p < .001), domain 
and network and age group (F81,7,398 = 1.503, p = .002), network 
and direction and age group (F27,2,466 =	2.670,	p < .001), and domain 
and network and direction and age group (F81,7,398 =	1.575,	p = .001). 
The interaction among domain, direction, and age group was not sig-
nificant (F9,822 =	0.386,	p = .942). The main effect of age suggested 
that, overall, older age was associated with lower positive correla-
tion strength (see Table 2, Tables S1–S4). Follow-up analyses probing 

the 4-way interaction showed that age had a dampening effect on 
positive correlation strength for differing networks depending upon 
the domain being analyzed (see Figure 1, Table 2, Tables S1–S4). The 
auditory network showed an effect of age on within-network cor-
relations across all four domains, and however, other networks only 
showed an effect of age on within- or between-network correla-
tion	strength	in	specific	domains	(i.e.,	Hand,	CO,	and	Sal	between-
network correlation strength only showed an effect of age during 
FLUID	tasks).

A	4	(Domain:	VOCAB,	SPEED,	FLUID,	MEM)	× 10 (Network) × 4 
(Age	Group:	YA,	yMA,	oMA,	OA)	revealed	a	significant	main	effect	
of age group (F3,194 =	7.009,	p < .001) on negative between-net-
work correlation strength. Additionally, there were significant in-
teractions among domain and age group (F9,882 =	2.758,	p = .003), 
network and age group (F27,2,646 =	 1.732,	p = .011), and domain 
and network and age group (F81,7,938 =	1.784,	p < .001). The main 
effect of age suggested that, overall, older age was associated 
with weaker negative correlation strength (see Table 2, Tables S1–
S4). Follow-up analyses of the 3-way interaction showed that 
there was an interaction between age and network on negative 
correlation	 strength	 during	 VOCAB	 (F27,2,673 = 1.593, p =	 .027)	
and SPEED (F27,2,673 =	 3.377,	 p < .001) tasks, but not during 
FLUID	 (F27,2,673 = 1.295, p = .141) and MEM (F27,2,673 =	 0.810,	
p =	 .743)	 tasks.	Further,	 the	main	effect	of	age	on	negative	cor-
relation	strength	was	significant	for	every	domain	except	for	MEM	

F I G U R E  1   Average within(w)/between(b)-network positive correlation for each age group, depicted for each task domain. Asterisks 
reflect	significance	of	the	difference	between	younger	(YA)	and	older	(OA)	adults	at	each	network	(*p < .05, **p < .01, ***p < .001; all 
Bonferroni	corrected	within	each	domain).	Networks	are	presented	using	acronyms	defined	in	the	text:	Aud,	Auditory;	CO,	Cingulo-
Opercular;	DAN,	Dorsal	Attention	Network;	DMN,	Default	Mode	Network;	FP,	Frontoparietal;	Hand,	Somatomotor	Hand;	Mouth,	
Somatomotor Mouth; Sal, Salience; VAN, Ventral Attention Network; Vis, Visual
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(VOCAB:	F3,297 =	3.082,	p-.028;	SPEED:	F3,297 =	6.080,	p < .001; 
FLUID:	F3,297 =	6.982,	p < .001; MEM: F3,297 = 0.441, p =	 .724).	
The	 interaction	 between	 age	 and	 network	 during	 VOCAB	 and	
SPEED showed that some between-network negative correla-
tions showed weakening with age across both tasks (i.e., Vis and 
FP networks), but some were specific to one task or the other 
(i.e., Hand and DAN between-network negative correlations only 
showed an effect of age during SPEED tasks; see Figure 2, Table 2, 
Tables S1–S4).

3.2 | System segregation

A	 4	 (Domain:	 VOCAB,	 SPEED,	 FLUID,	 MEM)	 × 2 (Network: 
Somatomotor versus. Association) ×	 4	 (Age	 Group:	 YA,	 yMA,	
oMA,	 OA)	 MANCOVA	 revealed	 a	 significant	 main	 effect	 of	 age	
group (F3,294 =	6.528,	p < .001) on system segregation. The inter-
actions among network and age group (F3,294 =	 1.695,	p =	 .168),	
domain and age group (F9,882 =	0.839,	p =	.580),	and	network	and	
domain and age group (F9,882 =	1.765,	p =	 .071)	were	not	 signifi-
cant (for other significant results, see Figure S1). The main effect 
of age group showed that younger adults (m =	0.118,	SD =	0.185)	
showed greater system segregation than older adults (m =	−0.013,	
SD =	0.184;	mean	difference	= 0.131, p < .001; no other compari-
sons significant).

3.3 | Graph theory metrics of global connectivity

A	4	 (Domain:	VOCAB,	 SPEED,	FLUID,	MEM)	× 9 (Threshold: 2%–
10%) ×	4	(Age	Group:	YA,	yMA,	oMA,	OA)	MANCOVA	revealed	a	sig-
nificant interaction between domain and age group (F9,882 =	2.064,	
p = .030). The main effect of age group (F3,294 = 2.115, p =	.098),	and	
the interactions among threshold and age group (F24,2,352 =	0.477,	
p =	.985)	and	domain	and	threshold	and	age	group	(F72,7,056 = 0.901, 
p =	.710)	were	not	significant.	The	interaction	between	age	and	do-
main was driven by YAs showing higher levels of global efficiency 
than oMAs (mean difference =	 0.006,	 p =	 .015)	 and	 OAs	 (mean	
difference =	 0.007,	 p =	 .003)	 during	 FLUID	 tasks	 (F3,297 =	 4.718,	
p =	.003),	but	no	effect	on	age	on	global	efficiency	during	VOCAB	
(F3,297 =	0.731,	p = .534), SPEED (F3,297 =	1.682,	p =	.171),	or	MEM	
(F3,297 =	1.336,	p =	.263)	tasks	(see	Figure	S2).

A	 4	 (Domain:	 VOCAB,	 SPEED,	 FLUID,	 MEM)	 × 9 (Threshold: 
2%–10%) ×	4	(Age	Group:	YA,	yMA,	oMA,	OA)	MANCOVA	revealed	
a significant main effect of age group (F3,294 =	8.927,	p < .001) on 
modularity. Additionally, there were significant interactions among 
domain and age group (F9,882 =	2.791,	p = .003), and threshold and 
age group (F24,2,352 =	2.896,	p < .001). The interaction among do-
main, threshold, and age group was not significant (F72,7,056 =	0.578,	
p =	 .998).	 The	main	 effect	 of	 age	 showed	 that	 YAs	 (mean	 differ-
ence = 0.019, p < .001) and yMAs (mean difference = 0.025, p = .004) 
had	greater	modularity	 than	OAs,	and	YAs	had	greater	modularity	

F I G U R E  2   Average between-network negative correlation for each age group, depicted for each task domain. Asterisks reflect 
significance	of	the	difference	between	younger	(YA)	and	older	(OA)	adults	at	each	network	(*p < .05, **p < .01, ***p <	.001;	all	Bonferroni	
corrected	within	each	domain).	Networks	are	presented	using	acronyms	defined	in	the	text:	Aud,	Auditory;	CO	=	Cingulo-Opercular;	DAN,	
Dorsal Attention Network; DMN, Default Mode Network; FP, Frontoparietal; Hand, Somatomotor Hand; Mouth, Somatomotor Mouth; Sal, 
Salience; VAN, Ventral Attention Network; Vis, Visual
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than oMAs (mean difference = 0.019, p =	.047).	The	interaction	be-
tween age and domain showed that there was a significant effect of 
age	on	modularity	only	during	SPEED	and	FLUID	tasks.	Finally,	the	
interaction between age group and threshold showed that the effect 
of age group on modularity differed by threshold (see Figure S3).

3.3.1 | Correlational	brain–behavior	analyses

Results	from	the	exploratory	correlational	analyses	showed	gener-
ally that whole-brain graph theory metrics show few relationships 
with task performance, and however, whole-brain system segrega-
tion was related to MEM task performance (see Table 3; p = .002). 
Further,	FLUID	and	MEM	performance	was	also	related	to	several	
network-based	 average	 correlation	 metrics,	 while	 VOCAB	 and	
SPEED performance showed fewer associations with these net-
work-based metrics (see Table 3). Further, while many of these re-
lationships persisted after accounting for participant age, several in 
the	FLUID	domain	became	nonsignificant	(p > .05) after controlling 
for this effect.

4  | DISCUSSION

Results from the present study show that age is associated with dif-
ferences in a variety of measures of functional connectivity across 
several cognitive task domains. Further, interactions between 
age and task domain indicate that in-scanner task domain affects 
whether and how age effects are discovered. For positive correla-
tions, this interaction shows that the auditory network shows an ef-
fect of age across all tasks ; however, cognitive networks may or may 
not show an effect of age depending upon the task being performed. 
For negative correlations, effects of age were only observed dur-
ing	VOCAB	and	SPEED	 tasks,	 and	 the	networks	 affected	differed	
between	these	two	tasks.	When	examining	graph	theory	measures,	
global efficiency and modularity also showed interactions between 
age and task, such that age had an effect on global efficiency only 
during	FLUID	tasks,	and	age	had	an	effect	on	modularity	during	both	
SPEED	and	FLUID	tasks.

While studies conducted at rest, or during just one cognitive 
task, show specific effects of age on functional connectivity metrics, 
the results presented here suggest that the effect of age may not be 
omnipresent and may be more or less apparent depending upon the 
choice	of	cognitive	task.	For	example,	age	showed	very	little	effect	
on functional connectivity during memory tasks (only on the average 
positive correlation in a few networks); however, the effects of age 
seem	to	be	quite	robust	and	readily	observed	during	FLUID	tasks.	
These	results	cannot	simply	be	explained	by	presence	or	lack	of	be-
havioral differences on these tasks, since older adults performed 
significantly worse than younger adults on MEM tasks and mar-
ginally	worse	on	FLUID	tasks	 (see	Table	1).	This	not	only	suggests	
that older adults are not unilaterally impaired (relative to younger 
adults) on metrics of functional connectivity, but also suggests that 

task choice can have a significant effect on results of functional con-
nectivity analysis. Thus, these results provide strong evidence that 
task choice plays a significant role in studies assessing the effect of 
participant age on functional connectivity and therefore must play 
a	critical	 role	 in	both	experimental	design	and	 in	 interpretation	of	
results	from	studies	examining	the	role	of	aging	on	functional	con-
nectivity computed during a task.

Findings from the present study mirror some findings from past 
studies investigating the effect of age on functional connectiv-
ity	at	rest	 (Betzel	et	al.,	2014;	Chan	et	al.,	2014;	Geerligs,	Renken,	
et	 al.,	 2015;	 Iordan	 et	 al.,	 2017),	 showing	 that	 aging	 is	 associated	
with a reduction in within-network connectivity, and a generally less 
modular/segregated brain. However, results from the present study 
showed that the cognitive task being performed affected the pres-
ence	and	extent	of	these	effects.	Further,	unlike	results	from	several	
of these previous studies showing an age-related increase in be-
tween-network connectivity, any differences in between-network 
connectivity as a function of participant age revealed a weakening 
of between-network connections with age.

In	a	recent	study,	our	group	used	a	nearly	identical	set	of	connec-
tivity measures to characterize the effect of aging on functional con-
nectivity during a resting state scan (Varangis, Habeck, et al., 2019). 
By	using	the	same	processing	stream	and	analyzing	many	of	these	
same metrics during 11 cognitive tasks, the present study allows 
for direct qualitative comparisons between patterns of results ob-
tained during a resting state scan with those obtained during perfor-
mance of cognitive tasks reflecting 4 overarching cognitive domains. 
Results from the present study largely mirror many of these findings 
at rest—that, generally, older age is associated with weaker with-
in-network positive correlations in several networks and reduced 
system segregation across the whole brain. However, results from 
analysis of the task-based data show a more consistent effect of age 
on within- and between-network correlations during performance 
of fluid reasoning tasks, and fewer effects of age on connectivity 
values during processing speed and memory tasks. Further, results 
from the present study also showed a weakening effect of age on 
average between-network negative correlations during vocabulary 
and processing speed tasks, an effect of age on global efficiency 
during performance of fluid reasoning tasks, and an effect of age 
on modularity during performance of processing speed and fluid 
reasoning tasks. Thus, results from the present task-based connec-
tivity analyses were largely consistent with these results obtained 
during a resting state scan; however, they showed that performance 
of	a	cognitive	task	may	result	in	exaggerated	(fluid	reasoning	tasks)	
or dampened (memory tasks) effects of age on functional connec-
tivity	metrics.	As	 such,	 studies	 specifically	examining	connectivity	
during rest, or during one specific cognitive task, must consider how 
the type of scan may have affected the patterns of results being 
observed.

Results	 from	 this	 study	 also	 corroborate	 and	 extend	 previous	
findings in this sample showing that specific connections among 
pairs of cognitive networks (modeled as latent network factors) dif-
fer as a function of cognitive task (Varangis, Razlighi, et al., 2019). 
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The present study builds on these findings by utilizing more standard 
metrics of functional connectivity computed identically for each par-
ticipant,	incorporating	whole-brain	metrics	of	connectivity,	examin-
ing within-network connectivity for network-based metrics, and by 
including somatomotor networks in the analyses. More specifically, 
results from this previous study showed that older age is associated 
with differences in connections between several network pairs and 
that performance of a task is associated with altered patterns of 
connectivity	between	6	cognitive	networks,	but	that	there	was	no	
interaction between participant age and task domain in predicting 
the	strength	of	latent	between-network	connectivity.	In	the	present	
study, network connections were modeled in a more simplistic way, 
reflecting the average correlation within each network, and the av-
erage correlation from one network to all other networks. Results 
from the present study, therefore, are not directly comparable with 
these results, but suggest that age does interact with task domain in 
affecting the strength of correlations within and between networks. 
That being said, the present set of results showed that older age 
tended to generally be associated with weaker correlations within 
and between networks, while data from the previous study found 
certain network connections that were stronger in older age (i.e., 
FP-Sal, FP-Memory Network), and some that were weaker in older 
age	(i.e.,	CO-Sal,	Memory	Network-DMN,	and	Sal-DMN).	While	this	
may seem contradictory to the present results, this difference could 
reflect the granularity of between-network correlation analysis (av-
eraged over all other networks vs. modeled between pairs of net-
works),	or	the	complexity	of	the	latent	factor	modeling	in	the	earlier	
paper. Additionally, these effects were observed across all tasks and 
were not probed at the task level due to a nonsignificant interaction 
among age group, task domain, and connection (network pairing). 
Thus, results from the present study complement and crucially build 
upon results from this previous work and provide evidence that task 
domain interacts with participant age in affecting a variety of more 
standard metrics of functional connectivity.

The	present	results	also	extend	those	of	previous	studies	find-
ing differences in the effect of age across multiple tasks (Archer 
et	al.,	2016;	Burianova	et	al.,	2015;	Geerligs,	Rubinov,	et	al.,	2015).	

Two of these studies consistently found that performance of a 
task altered functional connectivity patterns in both younger and 
older adults, and importantly, found that age-related differences in 
functional connectivity may be more readily observed during a task 
(Archer	et	al.,	2016;	Geerligs,	Rubinov,	et	al.,	2015).	The	third	study,	
rather than comparing task conditions to a resting scan, compared 
functional	connectivity	across	2	levels	of	an	n-back	task	(Burianova	
et al., 2015). The authors of this study found that older adults showed 
less modulation of functional connectivity as a function of task load, 
suggesting	that	older	adults	are	not	as	able	to	flexibly	alter	connec-
tivity	in	response	to	changes	in	task	demands.	One	aspect	of	these	
studies to note is that while they all looked at functional connectivity 
during multiple task conditions, the tasks were primarily targeting 
executive	 function	 (Archer	 et	 al.,	 2016;	Burianova	 et	 al.,	 2015)	 or	
sensorimotor	processing	(Geerligs,	Rubinov,	et	al.,	2015).	Critically,	
the studies did not compare functional connectivity across multi-
ple cognitive domains, as in the present study. Thus, while these re-
sults generally support the results of the current study that show 
age-related differences in functional connectivity during task per-
formance, they cannot speak to the domain-related differences, or 
interactions between age and domain, also observed in the results 
presented here.

Finally, given the scope of analyses conducted in the present 
study,	 brain–behavior	 correlational	 relationships	 were	 largely	 ex-
ploratory and thus interpreted with caution. That being said, several 
interesting patterns emerged: (a) System segregation and average 
network-based correlation metrics seemed to show more of a re-
lationship with performance than the whole-brain graph theory 
metrics;	(b)	FLUID	and	MEM	tasks	seemed	to	evoke	more	potential	
associations between functional connectivity and task performance; 
and (c) positive correlations within and between networks tended to 
be positively correlated with task performance, while negative cor-
relations between networks tended to be negatively correlated with 
task	performance	 (with	the	exception	of	the	salience	network	and	
MEM task performance). This somewhat mirrors previous studies 
finding that more negatively correlated activity between the DMN 
and cognitive networks was associated with better task performance. 

F I G U R E  3  Visualization	of	correlations	between	FLUID	task	performance	and	average	Frontoparietal	(FP)	between-network	connectivity	
in both the negative (a) and positive (b) directions. The correlation with negative FP between-network connectivity represents a correlation 
that become nonsignificant after controlling for age, while the correlation with positive FP between-network connectivity represents a 
correlation that remained significant after controlling for age
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TA B L E  3   Pearson partial correlation coefficients for relationships between connectivity metrics and task domain z-scores (controlling for 
years of education and gender)

Connectivity metric VOCAB SPEED FLUID MEM

System segregation Association −0.070	(.227) −0.007	(.900) −0.010	(.865) 0.117 (.042)

Somatomotor −0.059	(.306) −0.042	(.464) 0.026	(.649) 0.137 (.018)

Whole-Brain −0.065	(.261) −0.066	(.256) 0.006	(.918) 0.180 (.002)*

Hand w pos −0.068	(.239) −0.132 (.023)* 0.044 (.450) 0.013	(.823)

b pos −0.041	(.484) 0.041	(.483) 0.154 (.007)* −0.018	(.751)

b neg 0.026	(.655) 0.068	(.244) −0.125 (.030) −0.009	(.882)

Vis w pos −0.082	(.158) 0.038	(.514) 0.108	(.063) 0.052	(.369)

b pos −0.093	(.109) 0.000	(.997) 0.114 (.049) −0.138 (.017)

b neg 0.073	(.210) 0.108	(.062) −0.119 (.039) 0.006	(.918)

Mouth w pos −0.056	(.330) 0.005	(.926) 0.122 (.035) 0.007	(.903)

b pos −0.093	(.109) 0.005 (.929) 0.089	(.124) −0.118 (.041)

b neg 0.094 (.105) 0.087	(.133) −0.042	(.472) 0.074	(.200)

Aud w pos −0.077	(.182) −0.098	(.090) 0.107	(.064) −0.009	(.875)

b pos −0.130 (.024) −0.098	(.090) 0.092 (.113) −0.122 (.035)

b neg 0.006	(.918) 0.064	(.269) −0.076	(.188) −0.013	(.829)

DMN w pos −0.069	(.236) −0.060	(.299) 0.065	(.258) −0.043	(.463)

b pos −0.095	(.099) −0.105	(.069) 0.109	(.060) −0.113	(.051)*

b neg 0.084	(.146) 0.077	(.186) −0.137 (.018) 0.071	(.222)

FP w pos 0.060	(.303) −0.023	(.692) 0.093	(.107) −0.035	(.541)

b pos −0.060	(.302) −0.048	(.408) 0.182 (.002)* −0.070	(.224)

b neg 0.068	(.242) 0.068	(.243) −0.142 (.014) 0.047	(.415)

VAN w pos −0.108	(.063) 0.128 (.026)* 0.078	(.178) −0.009	(.877)

b pos −0.176 (.002)* −0.069	(.233) 0.110	(.057) −0.140 (.015)*

b neg 0.095 (.102) 0.044 (.444) −0.095	(.102) 0.076	(.188)

CO w pos −0.067	(.248) −0.104	(.072) 0.084	(.149) 0.021	(.714)

b pos −0.061	(.289) −0.081	(.160) 0.125 (.030) −0.065	(.263)

b neg 0.072	(.216) 0.016	(.776) −0.111	(.054) 0.014	(.809)

DAN w pos −0.025	(.662) −0.084	(.147) 0.223 (<.001)* 0.066	(.254)

b pos −0.079	(.171) −0.034	(.554) 0.160 (.005)* −0.030	(.600)

b neg 0.083	(.150) 0.080	(.168) −0.071	(.219) −0.033	(.572)

Sal w pos 0.009	(.880) −0.164 (.004)* 0.053	(.364) −0.040	(.486)

b pos −0.020	(.734) −0.051	(.381) 0.146 (.012) 0.012	(.841)

b neg 0.099	(.088) 0.045 (.441) −0.145 (.012)* 0.133 (.021)

GE 2% −0.026	(.657) 0.116 (.044) −0.135 (.020)* −0.014	(.809)

3% −0.016	(.778) 0.112 (.053) −0.101	(.082) −0.026	(.654)

4% −0.018	(.759) 0.118 (.041) −0.097	(.094) −0.027	(.643)

5% −0.030	(.603) 0.120 (.038)* −0.035	(.544) −0.035	(.550)

6% −0.032	(.583) 0.108	(.061) 0.001	(.986) −0.048	(.406)

7% −0.074	(.200) 0.122 (.035)* 0.052	(.372) −0.067	(.250)

8% −0.098	(.09)* 0.123 (.033)* 0.088	(.129) −0.085	(.141)

9% −0.110	(.056)* 0.109	(.058) 0.106	(.067) −0.101	(.080)

10% −0.126 (.030)* 0.104	(.071) 0.128 (.027) −0.105	(.068)

(Continues)
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While the present study did not specifically interrogate connectiv-
ity between pairs of networks, the findings generally suggest that 
stronger negative correlations between networks may be associ-
ated with better task performance, but that stronger positive cor-
relations between networks may also be associated with better task 
performance. This suggests that networks may adaptively engage 
in collaborative or antagonistic relationships with other networks in 
order	 to	 respond	to	 the	demands	of	 the	 task.	 Importantly,	our	 re-
sults suggest that these patterns of network interactions that either 
aid or detract from task performance may vary as a function of the 
task being conducted in the scanner. Further, while many of these 
relationships persisted after controlling for participant age, several 
correlations	 became	 nonsignificant.	 In	 visualizing	 some	 of	 these	
relationships that became nonsignificant after controlling for age, 
there was a trend toward differing relationships between cognition 
and	connectivity	as	a	function	of	age.	For	example,	in	examining	the	
relationship	between	FP	between-network	connectivity	and	FLUID	
task performance, stronger positive between-network connectiv-
ity was associated with better performance on the task even after 
controlling for age, while negative between-network connectivity 
was not (see Figure 3). When viewed as a function of age group, this 
pattern may suggest that older and younger adults show different 
relationships between negative FP between-network connectivity 
and task performance, such that younger adults show a more nega-
tive relationship between this metric and performance, while older 
adults show no relationship between this metric and performance. 
While formal testing of these trends was beyond the scope of the 
present	 analyses,	 future	 studies	 should	more	 specifically	 examine	
whether and how age may moderate the effect of task-based func-
tional connectivity on task performance.

The present study, however, is not without limitations. First, the 
present study did not compare functional connectivity metrics be-
tween task and rest. While this limits the ability to draw conclusions 
about the difference in age effects between resting state and var-
ious tasks, the study does find that task domain affects the pres-
ence and magnitude of age effects across every metric of functional 

connectivity included in the present study. This conclusion that task 
domain affects these metrics is key in determining the true effect 
of age on functional neural connectivity across multiple cognitive 
states. Second, the present study utilized predefined functional net-
works as defined by Power et al. (2011) and did not identify these 
functional networks based on their localization in this sample. While 
this might slightly weaken the applicability of these networks in this 
sample, the fact that the present study found differences based on 
age and task domain in these networks suggests that their definition 
may	be	relevant	and	useful	to	external	samples.

Based	on	the	results	of	the	present	study,	future	studies	should	
continue	to	explore	age-related	differences	in	functional	connectiv-
ity across different cognitive tasks in order to assess domain spec-
ificity of age-related differences in functional connectivity. Results 
from the present study suggest that fluid reasoning tasks may be 
more sensitive to age-related differences in functional connectivity 
than episodic memory tasks. Since age-related behavioral differ-
ences are readily observed in memory tasks and marginally evident 
in fluid reasoning tasks, it may be plausibly hypothesized that age-re-
lated decrements in fluid reasoning task performance may arise 
alongside or as a function of age-related differences in functional 
connectivity, however, since few differences in connectivity were 
observed during episodic memory tasks, a functional connectiv-
ity-related biomarker for age-related memory decline may be less 
clearly applicable. That being said, future studies should further 
delve	into	this	effect	by	more	thoroughly	exploring	the	effect	of	age	
on functional connectivity during a variety of memory tasks across 
multiple modalities and components of memory.

4.1 | Conclusions

Results from the present study suggest that a variety of measures of 
functional connectivity may be sensitive to age-related differences 
during performance of cognitive tasks tapping into four domains: 
vocabulary, processing speed, fluid reasoning, and episodic memory. 

Connectivity metric VOCAB SPEED FLUID MEM

Mod 2% −0.034	(.562) 0.037	(.523) −0.068	(.244) 0.008	(.896)

3% −0.031	(.592) −0.004	(.951) −0.046	(.430) 0.030	(.601)

4% −0.047	(.415) −0.021	(.721) −0.025	(.662) 0.016	(.783)

5% −0.041	(.477) −0.040	(.494) 0.009	(.870) 0.029	(.612)

6% −0.036	(.535) −0.050	(.387) 0.034	(.561) 0.008	(.892)

7% −0.036	(.530) −0.050	(.386) 0.052	(.365) −0.004	(.949)

8% −0.030	(.609) −0.052	(.372) 0.062	(.285) −0.005	(.929)

9% −0.044	(.448) −0.062	(.284) 0.076	(.189) −0.001	(.987)

10% −0.038	(.516) −0.075	(.196) 0.099	(.088) −0.003	(.960)

Note: Values represent raw Pearson partial correlation coefficients (p-values in parentheses) for each pairing; coefficients with p-values < .05 are 
bolded. Coefficients with p-values < .05 after additionally controlling for participant age are followed by an asterisk.
Abbreviations:	b	neg,	average	between-network	negative	correlation;	b	pos,	average	between-network	positive	correlation;	GE,	global	efficiency;	
Mod, modularity; SS, system segregation; w pos, average within-network positive correlation.

TA B L E  3   (Continued)
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These	differences	seem	to	be	more	extensive	during	 fluid	 reason-
ing and processing speed tasks and seem to show a general trend 
toward older adults showing reduced functional connectivity within 
and between predefined networks, reduced system segregation, 
and lower global efficiency and modularity.
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