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Simple Summary: Unsustainable farming practices have depleted the quantity and quality of topsoil
and, moreover, 30–40% of the food produced ends up in landfills. These issues can be simultaneously
mitigated by producing black soldier fly (Hermetia illucens) larvae that convert food waste into two
resources. This includes the black soldier fly (Hermetia illucens) larvae (BSFL) itself as a rich source of
protein and lipid for animals as well as the “frass” which is the leftover organics that can be used
as fertile compost. The aim of this study was to examine the applications of two widely available
resources, spent coffee grounds and donut dough, as food for BSFL. The proximate, fatty acid and
amino acid composition demonstrates that a blend of these resources produced BSFL of similar
quality as soybean meal. Moreover, the left behind frass had a similar nutritional profile as many
organic fertilizers. Therefore, BSFL farming yields potential resources for animal and plant farming
from otherwise discarded waste.

Abstract: Nutritionally unbalanced organic waste can be converted into potential resources for animal
and plant farming by culturing black soldier fly (Hermetia illucens) larvae (BSFL) and prepupae (BSFP).
BSFL and BSFP are rich sources of protein and lipids, while the leftover excrement called “frass” can
be used as an organic fertilizer. Using readily available resources, BSFL were cultured on spent coffee,
donut dough or an equal blend for 35 days. Survival, productivity, daily pupation and biochemical
composition of BSFL and BSFP were measured along with the nitrogen-phosphorus-potassium
values of the frass. Survival was highest in the blend compared (81%) to spent coffee (45%) or
dough (24%); however, BSFL and BSFP were significantly longer and heavier from dough. Stage
and food significantly influenced the protein, lipid and glycogen content of the BSFL and BSFP,
which tended to be higher in the latter. While fatty acids were often significantly higher in BSFL fed
spent coffee, the amino acid composition of BSFL was generally higher in dough. Frass from the
blend had significantly highest nitrogen content, while potassium and phosphorus were significantly
higher and lower from spent coffee, respectively. Although coffee and donut dough were suboptimal
substrates for BSFL, a blend of these produced BSFL and frass that were nutritionally comparable to
soybean meal and many organic fertilizers, respectively.

Keywords: insect farming; frass; NPK; spent coffee; prepupae

1. Introduction

Waste management is becoming a more challenging issue with a growing population
where it is estimated that one-third of all the food produced is wasted [1]. Food waste
contributes 15.2% (or 40 million tons) of the 267.8 million tons of municipal solid waste
generated each year in the United States [2]. Only 2.7% of food waste is used for recy-
cling/composting with the remainder ending up in landfills. Within landfills, food waste
substantially contributes to greenhouse gas emissions and produces toxic leachate that can
end up in waterways and attracts pests [3,4]. This situation will be compounded with an
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increasing global population that is estimated to reach 8.6 billion in another decade [5]
leading to a solid waste production of over 2.2 billion tons [6].

A more sustainable approach to waste management can include the use of vermicom-
posting from insects, such as black soldier fly larvae (BSFL). BSFL can thrive on various
food waste including fruits/vegetables, corn/rice straws, kitchen/restaurant food waste
and various grains including distiller grains and wheat [7–11]. Depending on the type of
food provided, this can greatly affect the nutritional value of BSFL [12–15].

At harvest, this process can yield two sustainable products; the BSFL as food for
terrestrial and aquatic animals while the excrement of BSFL known as “frass” is a natural
organic fertilizer with applications for plant farming. Depending on the type of provided
food, BSFL can have a crude protein content up to 56% but as low as 13.2% [16], but the
amino acid content of BSFL is relatively stable [15–17]. The consistency of the amino acid
content in BSFL is beneficial, particularly because the composition is similar or even better
than soybean meal that is often the dominant protein source in terrestrial and aquatic
animal diets [18]. Moreover, there have been some positive findings when BSFL were
included in the diets of terrestrial and aquatic animals. For example, the inclusion of BSFL
as supplemental food to broiler and egg-laying hens was shown to significantly enhance
muscle growth and egg production, respectively [19–21]. Recently, Kumar et al. [22] found
that BSFL meal prevented intestinal enteritis associated with dietary excessive soybean
meal in rainbow trout.

Findings that demonstrate the benefits of BSFL will likely increase the demand for
this product, which will inevitably leave behind a substantial amount of frass. Perhaps to a
greater extent than BSFL, the type of food provided will have a large impact on the frass
composition [23]. For example, frass obtained from BSFL fed on distillers’ dried grains with
solubles could be used as a viable fish ingredient [24], while those fed vegetable, fruits and
other plants are more appropriately used as an organic fertilizer that can provide similar
benefits to plant growth as synthetic fertilizers [25–28].

Some of the most commonly thrown away resources in the world include spent coffee
grounds and bread/dough. It is estimated that up to 25 billion cups of coffee are ingested
each day, leading to over 6 million tonnes of spent coffee grounds ending up in landfills
each year [29]. Exact figures on the amount of thrown away bread and dough are difficult
to find. However, in just UK households it is believed that 44% of bread is thrown away,
which is worth over 13 million UK pounds [30]. Although the performance of BSFL fed
spent coffee grounds have not yet been directly compared with other food types, it is
believed spent coffee is not an ideal food for BSFL [31,32]. However, the growth and
development of BSFL might be enhanced when using blends of readily digestible sources,
such as dough. Indeed, based on comparing several streams of organic waste, Lalander
et al. [16] found that food with more easily accessible carbon with a high protein content
supported the best BSFL growth. Similarly, among various waste sources, kitchen waste
led to the heaviest BSFL, which was suggested to be from highly digestible fat and caloric
content [7].

The aim of this study was to compare the growth, development and nutritive value
of BSFL fed spent coffee, dough or an equal blend of these ingredients as well as the
nitrogen-phosphorus-potassium (NPK) values of the resulting frass.

2. Materials and Methods
2.1. Source of Insects and Indoor Room

The black soldier fly larvae used in this study were a third generation that were
originally purchased from Josh’s Frogs, Owosso, MI. The adults were allowed total access
in the room (6 m long × 6 m wide × 5.4 m high), which was temperature controlled at
88 ◦F (31 ◦C) at a relative humidity of around 45%. The flies had access to sugar water in
petri dishes and each day the room was manually sprayed with water to maintain humidity
and allow the flies to drink.
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2.2. Experimental Set Up and Design

A total of nine staked systems (0.9 m × 1.2 m × 1.5 m) were constructed out of steel
and the details are described in Fischer and Romano [33], with slight modifications. Briefly,
each system had three layers (0.9 m × 1.2 m top, 0.6 m × 0.9 m bottom, and 3.3 m height)
giving a total space of 0.7 m3. Each layer had hardware cloth and window screening to hold
the feed ingredients. Each layer was a trapezoid and the angles were provided to allow
the larvae to self-harvest after reaching the prepupae stage. A metal trough that exceeded
the length of each system was placed on each side to catch and collect the prepupae. Each
trough had a 1/2 inch layer of sand to allow the larvae to burrow as well as to soften the
fall. A tarp was placed on the top to provide some shade and a central slit was made to
allow access for the adult flies.

There was a total of three food treatments of equal weight (6.8 kg), which included
spent coffee grounds, an equal blend of coffee grounds and donut dough and donut dough.
The spent coffee grounds and donut dough were donated from a local coffee and donut
shop, respectively. These substrates were chosen based on being free and readily available
in the area as well as having a different texture and biochemical composition. To make
the blend, the dough was cut into small pieces and equally mixed with the spent coffee
grounds. The proximate composition as well as the potassium (K) and phosphorus (P)
of the spent coffee grounds and dough were measured at the Agricultural Experiment
Station Chemical Laboratories (AESCL) at University of Missouri-Columbia according to
AOAC [34] methods (Table 1). The amino acid and fatty acid composition of the spent
coffee, dough and blend were also measured at AESCL, University of Missouri-Columbia,
according to AOAC [34] methods 982.30 (a,b) and 996.06, respectively (Tables 2 and 3).

Table 1. Biochemical composition of the spent coffee and dough (% on “as is” basis).

Biochemical Composition Spent Coffee Dough

Moisture 69.42 42.40
Crude protein 4.80 10.29

Crude lipid 5.14 8.71
Cellulose 4.61 0.83

Ash 0.47 0.91
Potassium 0.14 0.11

Phosphorus 0.03 0.07

Table 2. Amino acid composition (g/100 g on dry weight basis) of the spent coffee grounds, dough
or equal blend of these ingredients.

Amino Acids Spent Coffee Blend (1:1) Dough

Essential amino acids
Histidine 0.18 0.19 0.18
Isoleucine 0.48 0.38 0.32
Leucine 1.04 0.74 0.57
Lysine 0.13 0.22 0.23

Methionine 0.13 0.12 0.13
Phenylalanine 0.67 0.48 0.40

Threonine 0.18 0.22 0.22
Tryptophan 0.08 0.08 0.10

Valine 0.69 0.48 0.36
Nonessential amino acids

Alanine 0.53 0.37 0.26
Arginine 0.02 0.24 0.33

Aspartic acid 0.77 0.49 0.36
Cysteine 0.02 0.16 0.20

Glutamic acid 1.82 2.49 2.73
Glycine 0.67 0.43 0.31
Serine 0.08 0.29 0.36
Proline 0.53 0.75 0.84
Taurine 0.13 0.20 0.21
Tyrosine 0.32 0.24 0.16
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Table 3. Fatty acid composition (%) of the spent coffee grounds, dough or equal blend of these ingredients.

Fatty Acids Spent Coffee Blend (1:1) Dough

Saturated fatty acids
C14 0.08 0.34 0.56
C15 0.02 0.04 0.04
C16 33.74 31.12 28.77
C17 0.11 0.10 0.08
C18 7.42 5.22 3.33
C20 2.77 1.52 0.42
C22 0.63 0.39 0.17
C24 0.23 0.18 0.11

Monounsaturated fatty acids
C16:1n9 0.04 0.12 0.19
C18:1n9 8.87 27.35 43.79
C20:1n9 0.34 0.47 0.53

Polyunsaturated fatty acids
C18:2n6 43.17 29.71 17.91
C18:3n3 1.38 1.38 1.43
C20:3n3 0.09 0.06 0.00
C20:5n3 0.00 0.02 0.00
C22:6n3 0.00 0.00 0.00

Prior to adding the substrates, equal amounts of water (500 mL) were added to provide
a moist texture. After adding the water to each layer, approximately 500 larvae (average
initial larval weight = 25 mg) were equally distributed among the three layers. A mister
system was set up to provide a spray of water to each layer for approximately 30 s each
day. No additional substrate was provided throughout the study. Throughout the study,
the trough was observed for any prepupae twice daily (morning and afternoon), and when
found, they were immediately placed in a small plastic bag, labelled for the day/treatment
and then placed in a −20 ◦C freezer for later analysis.

2.3. Sampling and Biochemical Analysis

After 35 days, the hardware cloth was removed from each layer, and the contents
(frass and larvae) were emptied onto a tarp. All the larvae were counted and differentiated
between larvae or prepupae. These were then thoroughly cleaned under running tap water,
blotted dry, placed in air-tight plastic bags and kept at −20 ◦C. Within a week, all the larvae
and prepupae were weighed to determine the overall gross and net productivity, using the
following calculations.

Gross production = final weight/time/area of composter (0.7 m3)

Net production = [final weight − initial weight]/time/area of composter (0.7 m3)

From a subpopulation of 50 from each stage, these were measured for their moisture,
protein, lipid and glycogen content, while only the larvae were measured for the amino
acid and fatty acid composition (Section 2.4). From the remaining frass, this was collected,
weighed and analysed for the moisture as well as nitrogen (N), P, K and calcium (Ca)
content (Section 2.5).

2.4. Biochemical Analysis of the Larvae

The larvae and prepupae were cut into small pieces and dried in the oven at 60 ◦C
until constant weight. The moisture was calculated as the percentage of weight lost after
drying. After drying, the larvae and prepupae were further homogenized separately into
a fine powder and measured for protein content by Bradford’s method [35] using bovine
serum albumin as standard. Glycogen content was measured using anthron reagent and a
glycogen standard [36]. Total lipid was extracted by methanol chloroform and measured
with a tripalmitin standard following method of Bligh and Dyer [37]. The amino acids



Insects 2021, 12, 332 5 of 15

and fatty acids composition of only the larvae were measured at AESCL at University
of Missouri-Columbia and were analysed according to AOAC [34] methods 982.30 and
996.06, respectively.

2.5. Frass Composition

The remaining frass in each replicate were completely removed, weighed (0.01 g) and
then dried to constant weight in an oven at 70 ◦C. The NPK content as well as the Ca
content of the frass were measured at AESCL according to AOAC [34] methods (method
985.01) using an inductively coupled plasma-optical emission spectroscopy.

2.6. Statistical Analysis

All data were subjected to a one-way ANOVA after prior confirmation of homogeneity
of variance and normality. If significant differences were detected (p < 0.05), a Duncan’s
post-hoc test was performed to identify differences among the treatments. When comparing
the lengths and weights as well as the moisture, protein, lipid and glycogen content among
the larvae and prepupae in different treatments, a 2-way ANOVA was performed. All
data are expressed as means of triplicates with their standard errors. All analysis was
performed on SPSS ver. 26 (IBM, Chicago, IL, USA). Principal component analysis (PCA)
was performed by OriginLab 9 software (OriginLab, Northampton, MA, USA). Measured
parameters for the biochemical composition, amino acid and fatty acid profiles were
subjected to PCA to inspect the overall effect of spent coffee, donut dough or their blend.
The standardized scores of the first two components, which explained the highest variation,
were applied to prepare the biplots.

3. Results
3.1. Larval Productivity

Both the BSF larvae and prepupae fed spent coffee were significantly shorter (p < 0.05)
compared to the blend and dough treatments (Table 4). Meanwhile, the BSF larvae and
prepupae were significantly heavier (p < 0.05) than the other treatments (Table 4). There
was no significant interaction between food and stage on BSF larvae and prepupae lengths
or weights (p > 0.05) (Table 4). There were significantly more prepupae in the dough
treatment compared to all others. The lowest amount of prepupae were in the spent coffee
treatment (p < 0.05) (Figure 1; Table 5).

Table 4. Mean (±SE) lengths (cm) and weights (g) of black soldier fly larvae and prepupae when cultured with spent coffee,
dough or an equal blend of these after 35 days. Different superscripted letters in each column indicate significant differences
(p < 0.05).

Treatment Larval Length Prepupae Length Larval Weight Prepupae Weight

Spent coffee 16.86 ± 0.29 b 17.26 ± 0.42 b 0.11 ± 0.01 c 0.11 ± 0.01 c

Blend (1:1) 19.12 ± 0.72 a 20.60 ± 0.36 a 0.18 ± 0.01 b 0.19 ± 0.02 b

Dough 21.44 ± 0.59 a 21.57 ± 0.60 a 0.23 ± 0.01 a 0.23 ± 0.01 a

Length Weight
Main effects * F Sig F Sig

Food type 36.71 0.001 89.47 0.001
Stage 2.44 0.144 0.364 0.558

Food × stage 0.935 0.419 0.159 0.855

* Food type refers to spent coffee, blend or dough; stage refers to larvae versus prepupae.
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Figure 1. Number of black soldier fly prepupae collected each day over 35 days when the larvae were cultured on spent
coffee, dough or an equal blend of these ingredients.

Table 5. Survival and productivity (mean ± SE) of black soldier fly larvae and prepupae when
cultured with spent coffee, dough or an equal blend of these after 35 days. Different superscripted
letters in each row indicate significant differences (p < 0.05).

Production Spent Coffee Blend Dough

Gross production (g/day/m3) 1.83 ± 0.58 b 5.51 ± 1.01 a 1.68 ± 1.00 b

Net production (g/day/m3) 0.75 ± 0.58 b 4.42 ± 1.02 a 0.60 ± 1.01 b

Survival (%) 45.13 ± 10.2 b 81.16 ± 12.5 a 24.56 ± 4.76 c

Total larvae (g) 42.32 ± 13.61 b 127.42 ± 23.57 a 38.95 ± 23.32 b

Total prepupae (g) 2.56 ± 0.84 b 20.70 ± 3.29 a 15.40 ± 3.68 a

Total production (g) 44.89 ± 13.1 b 148.12 ± 20.44 a 54.35 ± 20.99 b

The gross and net production of BSFL was significantly higher (p < 0.05) in the blend
treatment compared to the others (Table 3). The final survival was significantly higher
(p < 0.05) in the blend treatment, compared to the others, followed by the spent coffee
treatment (Table 5).

3.2. Biochemical Composition

Moisture content was unaffected by treatments or stage (p > 0.05) (Figure 2); however,
the other parameters were significantly affected. The protein content was significantly
higher (p < 0.05) in prepupae fed dough compared to all others, while the lowest protein
content was in the blend treatment for larvae, which was significantly lower (p < 0.05)
than both the larvae and prepupae in the dough treatment (Figure 2). Lipid content was
significantly higher (p < 0.05) in the prepupae fed the blend or dough as well as larvae fed
the dough compared to all others (Figure 2). Finally, the glycogen content of larvae fed the
dough was significantly higher (p < 0.05) than all others, except for prepupae in the dough
treatment (Figure 2).
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Figure 2. Mean (±SE) moisture, protein, lipid and glycogen (% dry weight) of black soldier fly larvae and prepupae when
cultured with spent coffee, dough or an equal blend of these after 35 days. Different letters indicate significant differences
(p < 0.05).

The two-way ANOVA showed that stage had a significant effect (p < 0.05) on the
moisture, protein, lipid and glycogen content, while the food type had a significant effect
(p < 0.05) on the protein, lipid and glycogen content. There was a significant interaction
(p < 0.05) of food and stage on the glycogen content (Table 6).

Table 6. Main effects of food type and stage on the moisture, protein, lipid and glycogen content of black soldier fly larvae
and prepupae after 35 days.

Main Effects *
Moisture Protein Lipid Glycogen

F Sig F Sig F Sig F Sig

Food type 3.26 0.74 7.38 0.01 8.93 0.01 13.58 0.01
Stage 11.11 0.01 5.28 0.04 1.94 0.18 0.21 0.65

Food × stage 3.04 0.08 0.37 0.69 2.14 0.16 3.69 0.06

* Food type refers to spent coffee, blend or dough; stage refers to larvae versus prepupae.

3.3. Fatty Acid and Amino Acid Composition

With the exception of C2 (acetic acid), all the short chain fatty acids (C1–C8) were
significantly higher (p < 0.05) in BSFL fed spent coffee compared to the blend or dough
treatments (Table 7). Among the saturated fatty acids, the blend treatment led to signif-
icantly higher (p < 0.05) C14, C15, and C22 than the others while for the remaining SFA,
these were significantly higher (p < 0.05) in BSFL fed spent coffee compared to the dough
treatment (Table 7). For the monounsaturated fatty acids, these were either significantly
higher or similar in BSFL fed spent coffee compared to the dough treatment. Among the
polyunsaturated fatty acids (PUFA), C18:2n-6 were similar between the spent coffee and
dough treatments (p > 0.05) but was significantly less (p < 0.05) compared to BSFL fed the
blend. Although C18:3n-3 was significantly higher (p < 0.05) in the dough treatment, the
long chain PUFA (LC-PUA) that included 20:4n-6 and C20:5n-3 were significantly higher
(p < 0.05) in the spent coffee treatment compared to the others. No significant effect was
observed for C22:6n-3 (p > 0.05) (Table 7).
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Table 7. Fatty acid composition (mg/g “as is basis”) (±SE) of black soldier fly larvae when cultured
with spent coffee, dough or an equal blend of these after 35 days. Different superscripted letters in
each row indicate significant differences (p < 0.05).

Fatty Acids Spent Coffee Blend Donut Dough

Short chain fatty acids
C1 0.25 ± 0.03 a 0.16 ± 0.01 b 0.15 ± 0.03 b

C2 5.61 ± 0.22 a 3.48 ± 0.42 ab 1.61 ± 0.34 b

C3 0.16 ± 0.01 a 0.15 ± 0.03 a 0.04 ± 0.01 b

C4 0.33 ± 0.07 a 0.35 ± 0.22 a 0.09 ± 0.01 b

C6 0.15 ± 0.02 a 0.10 ± 0.01 b 0.09 ± 0.01 b

C8 0.38 ± 0.04 a 0.23 ± 0.01 b 0.30 ± 0.05 a

Saturated fatty acids
C10 2.19 ± 0.18 c 3.82 ± 0.19 b 4.59 ± 0.23 a

C12 66.44 ± 6.44 b 158.9 ± 6.52 a 158.8 ± 9.74 a

C14 11.39 ± 0.87 c 24.40 ± 1.13 a 19.77 ± 1.21 b

C15 0.22 ± 0.03 b 0.60 ± 0.08 a 0.34 ± 0.03 b

C16 62.99 ± 3.99 a 38.35 ± 3.27 b 30.77 ± 2.00 b

C17 0.64 ± 0.03 a 0.57 ± 0.04 a 0.41 ± 0.05 b

C18 7.69 ± 0.21 a 5.24 ± 0.46 b 4.04 ± 0.41 b

C20 0.63 ± 0.01 a 0.25 ± 0.03 b 0.03 ± 0.03 c

C21 4.98 ± 0.27 a 3.90 ± 0.41 b 0.00 ± 0.00 c

C22 0.13 ± 0.00 b 0.36 ± 0.06 a 0.04 ± 0.00 c

C24 0.08 ± 0.00 a 0.03 ± 0.00 b 0.00 ± 0.00 c

Monounsaturated fatty acids
C14:1n5 0.45 ± 0.02 a 0.57 ± 0.08 a 0.17 ± 0.02 b

C15:1n5 0.05 ± 0.00 a 0.08 ± 0.00 a 0.02 ± 0.00 a

C16:1n7 9.09 ± 0.50 a 9.35 ± 0.26 a 1.10 ± 0.14 b

C17:1n10 1.45 ± 0.10 a 0.75 ± 0.12 b 1.51 ± 0.20 a

C18:1n9 26.57 ± 1.22 a 27.24 ± 2.03 a 25.08 ± 2.17 a

C20:1n9 0.26 ± 0.02 a 0.16 ± 0.01 b 0.00 ± 0.00 c

C22:1n9 0.10 ± 0.00 a 0.11 ± 0.01 a 0.03 ± 0.00 a

Polyunsaturated fatty acids
C18:2n6 64.38 ± 3.44 a 29.11 ± 3.01 b 52.87 ± 6.11 a

C18:3n3 1.69 ± 0.06 b 2.21 ± 0.29 b 5.92 ± 0.25 a

C20:4n6 0.28 ± 0.04 a 0.02 ± 0.01 b 0.00 ± 0.00 b

C20:5n3 0.13 ± 0.00 a 0.00 ± 0.00 b 0.00 ± 0.00 b

C22:6n3 0.02 ± 0.00 a 0.00 ± 0.00 a 0.00 ± 0.00 a

Among the essential amino acids (EAA), histidine, leucine, methionine, phenylalanine
and threonine were significantly higher (p < 0.05) in BSFL fed dough compared to spent
coffee (Table 8). Only tryptophan among the EAA that was significantly higher (p < 0.05)
in BSFL fed spent coffee compared to dough. Generally, the EAA composition of BSFL
in the blended treatment followed that of spent coffee. For the nonessential amino acids
(NEAA), arginine, aspartic acid, serine and tyrosine in BSFL fed dough were significantly
higher (p < 0.05) compared to those in the spent coffee treatment. In BSFL fed spent coffee,
only alanine was significantly higher (p < 0.05) among the NEAA compared to the dough
treatment (Table 8).
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Table 8. Amino acid composition (g/100 g on “as is basis”) (±SE) of black soldier fly larvae when
cultured with spent coffee, dough or an equal blend of these after 35 days. Different superscripted
letters in each row indicate significant differences (p < 0.05).

Spent Coffee Blend Donut Dough Soybean *

Essential amino acids
Histidine 1.21 ± 0.03 b 1.24 ± 0.02 b 1.44 ± 0.04 a 1.22
Isoleucine 1.98 ± 0.04 a 1.99 ± 0.02 a 2.12 ± 0.01 a 2.10
Leucine 2.85 ± 0.08 b 2.87 ± 0.04 b 3.14 ± 0.05 a 3.57
Lysine 2.47 ± 0.04 ab 2.32 ± 0.09 b 2.60 ± 0.05 a 2.99

Methionine 0.70 ± 0.02 b 0.71 ± 0.01 b 0.81 ± 0.01 a 0.68
Phenylalanine 1.67 ± 0.04 b 1.77 ± 0.02 b 1.91 ± 0.03 a 2.33

Threonine 1.50 ± 0.05 b 1.61 ± 0.03 ab 1.72 ± 0.02 a 1.85
Tryptophan 0.62 ± 0.02 a 0.49 ± 0.02 b 0.48 ± 0.03 b 0.65

Valine 3.01 ± 0.04 a 2.96 ± 0.05 a 3.18 ± 0.09 a 2.26
Nonessential amino acids

Alanine 3.25 ± 0.05 a 2.97 ± 0.08 b 2.84 ± 0.08 b 2.02
Arginine 1.55 ± 0.09 b 1.66 ± 0.05 b 2.18 ± 0.04 a 3.43

Aspartic acid 3.08 ± 0.12 b 3.18 ± 0.08 b 3.77 ± 0.05 a 5.42
Cysteine 0.29 ± 0.00 a 0.29 ± 0.00 a 0.28 ± 0.00 a 0.73

Glutamic acid 3.95 ± 0.04 a 3.59 ± 0.09 b 3.84 ± 0.03 a 8.58
Glycine 2.59 ± 0.05 a 2.46 ± 0.04 a 2.75 ± 0.16 a 1.99
Serine 1.41 ± 0.05 b 1.45 ± 0.02 b 1.70 ± 0.10 a 2.32
Proline 2.39 ± 0.03 a 2.33 ± 0.01 a 2.41 ± 0.09 a 2.34
Taurine 0.07 ± 0.00 a 0.06 ± 0.00 a 0.07 ± 0.00 a 0.00
Tyrosine 2.28 ± 0.11 b 2.29 ± 0.06 b 2.70 ± 0.04 a 0.40

* US Soybeans (https://ussec.org/wp-content/uploads/2015/10/US-Soybean-Meal-Information.pdf).

3.4. Frass Composition

The nitrogen content of frass from the blend treatment was significantly higher
(p < 0.05) than all others. The phosphorus and potassium content of the frass was sig-
nificantly lower and higher, respectively, in the spent coffee treatment than all other
treatments. Meanwhile, the frass calcium content was significantly lower (p < 0.05) in the
dough treatment compared to all others (Figure 3).
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3.5. Principle Component Analysis

A two-dimensional PCA plot for biochemical composition depicts a clear separation
of experimental groups, mainly along the first two components (PC1 and PC2), together
elucidating almost 100% of data variability (Figure 4A). The prevalent PC1 component
(85.2% of the data variance) clustered protein, glycogen and lipid with donut dough;
whereas PC2 (14.8% of the data variance) clustered moisture content with spent coffee.
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Likewise, for amino acid profile, the prevalent PC1 component (68.2% of the data
variance) clustered proline, glycine, valine, tyrosine, isoleucine, aspartic acid, serine, me-
thionine, leucine, phenylalanine and threonine with dough (Figure 4B); while PC2 (26.6%
of the data variance) clustered glutamic acid, taurine, hydroxyproline, alanine and or-
nithine with coffee. The two components also revealed a clear separation for fatty acid
composition among coffee, dough or their blend as illustrated in Figure 4C. The primary
trend observed for biochemical composition, amino acid profile and fatty acid composition
was a differentiation of dough along the first PCA axis with respect to the coffee or blend.
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4. Discussion

The current study used relatively large areas for the culture of BSFL over 35 days,
where the amount of overall production including daily pupation were measured. Among
the tested substrates, BSFL fed dough were the longest and heaviest, while the smallest
BSFL were cultured from spent coffee. It has been similarly reported that spent coffee may
not support optimal growth of BSFL and one of the contributors was higher amounts of
indigestible fiber [31,32]. Other factors may also include the harder texture that poorly
absorbs water, nutrient deficiencies and trace amounts of deleterious compounds such
as caffeine and tannins. However, the overall production and amount of pupation was
significantly highest in the blend treatment, which was mostly driven by the large discrep-
ancy in survival among the treatments. In fact, the lowest survival came from the dough at
24% despite the larvae being heavier and longer than the other treatments. Based on daily
observations, it appears likely that the cause for lower productivity (survival or growth) in
the spent coffee and dough treatments was these substrates tended to dry out, despite being
daily sprayed with water and the room had a relative humidity of around 45%. However,
when the mister system was turned on it was observed that the water tended to fall off the
sides of the spent coffee and dough, whereas a blend of these substrates appeared to have
a softer texture throughout. Indeed, by the end of the study, there were some areas of the
remaining dough/frass that were completely hardened whereas others were moist and
soft. This inconsistency likely led to the lower survival but better growth of BSFL in the
dough treatment. This assumption is based on researchers emphasizing the importance
of substrate moisture, with an optimal range of 50–70%, for adequate BSFL survival and
development [38,39].

In terms of production, the blend treatment was the best in this study, with an overall
gross and net productivity of 5.51 g/day/m3 and 4.42 g/day/m3, respectively. Blends of
different ingredients have been shown to improve BSFL production [8], which is consistent
with other organisms. Production values of BSFL are not often presented in other studies,
but such values may be useful to the industry in order to estimate spaces necessary
to obtain a certain output and thus a viable business model. It is important to note,
however, that the production values in this study are likely a substantial underestimation
because approximately 60–80% of the total culture area in each layer was not utilized for
BSFL production.

In terms of the nutritional profile, the dough tended to increase the protein, lipid and
glycogen content of the BSFL and/or BSFP, which seems to largely reflect the protein and
lipid contents of the initial substrates. PC analysis also confirmed that protein, lipid and
glycogen content clustered with dough; possibly indicating a prominent beneficial effect of
dough on biochemical composition of BSFL and/or BSFP. Interestingly, the stage of the
larvae significantly affected the protein and lipid content, which were both higher in the
prepupae stage. It is important to note, however, that the prepupae are at a nonfeeding
stage and their protein and fat content diminishes over time as they develop into adults
(Liu et al. 2019). Thus, a likely reason for the prepupae having a relatively high protein
and lipid content in this study was because they were harvested/stored within 12 h.

In addition to quantity of protein and fat, the quality of these macronutrients in BSFL
is also important when formulating the diets of terrestrial and aquatic animals. The amino
acid composition was generally higher in BSFL fed dough compared to spent coffee, which
was also apparent from the PCA cluster analysis. It could be speculated that the spent
coffee may have also had some amino acids and fatty acids destroyed during the roasting
and brewing process that utilize high temperatures compared with the uncooked dough.
However, the tested amino acid content of spent coffee was often higher than dough;
nevertheless, important exceptions were found. Methionine was similar between spent
coffee and dough substrates while lysine was actually lower in spent coffee than dough.
These are important differences because both methionine and lysine are often limiting
amino acids in the diets of both terrestrial and aquatic animals. Other studies have shown
that these limiting amino acids can be influenced by the substrate, but the differences were
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numerically small. For example, Spranghers et al. [17] found minor differences in the amino
acid composition of BSFL fed chicken feed, vegetable waste, biogas digestate or restaurant
waste. Both Lalander et al. [16] and Fischer and Romano [15] did find some significant
differences in the BSFL fed different waste products, but the numerical differences were also
minor. The relatively stable amino acid profile of BSFL is certainly a benefit for the livestock
industry. This is because despite the relatively low protein content of the tested substrates,
the essential amino acid content of BSFL fed dough is comparable with soybeans [40],
which is processed into soybean meal that often constitutes the main dietary protein source
for many farmed terrestrial and aquatic animals [18].

In contrast to the dough treatment, the fatty acids were typically higher in BSFL fed
spent coffee, followed by the blend treatment. This finding was especially pronounced
for the short chain fatty acids (SCFA; C1–C8) as well as for palmitic acid (C16), stearic
acid (C18), palmitoleic acid (C16:1n-7) and the long chain polyunsaturated fatty acids (LC-
PUFA), that included arachidonic acid (20:4n-6; ARA) and eicosapentaenoic acid (20:5n-3;
EPA). Studies have shown that SCFA can impart various health benefits to terrestrial and
aquatic animals, and the origin of SCFA is from bacterial fermentation of indigestible
carbohydrates [41,42]. Thus, the higher SCFA in the spent coffee treatment was likely
due to the higher cellulose content that was fermented by bacteria inside BSFL, but more
research is required to quantify this ability. In the case of LC-PUFA, these are required by
some aquatic animals during their culture, especially marine animals. It is unlikely that
the BSFL obtained LC-PUFA from the substrate and may indicate some ability for their
synthesis. Using labelled fatty acids, Hoc et al. [43] found that BSFL could not synthesize
polyunsaturated fatty acids (PUFA) but did emphasize that the enzymes responsible
for PUFA synthesis should be investigated. Indeed, there are reports that when using
substrates that likely lacked EPA and DHA, these were detected [15,44,45] whereas others
found none [11–14]. Some PUFA and LC-PUFA have a wide range of health benefits for
humans and therefore this should prompt additional studies. Finally, lauric acid was a
major fatty acid in BSFL, which is consistent with other studies [46,47]. However, lauric
acid was significantly lower in spent coffee treatment compared to those in the blend or
dough treatments. Others similarly found that lauric acid in BSFL was lower in substrates
with a higher content of indigestible fibres [17,47], which may explain this finding. Lauric
acid does have some anti-microbial and anti-obesity properties to animals [48,49] that
could be especially beneficial for human nutrition.

After harvesting the BSFL and BSFP, this leaves behind a substantial amount of
frass that primarily consists of larvae excrement as well as dead larvae, chitin and any
unconsumed substrate. It can be expected that with production of BSFL expanding, there
will be increasing interest in the applications of frass, such as for crop farming [25,27,28].
Indeed, currently there are several commercially available BSFL frass products as organic
fertilizers and soil amendments. Their value is largely based on having a similar or even
higher nitrogen-phosphorous-potassium (NPK) content to other organic fertilizers [50]. For
example, NPK from worm castings (1.5–2.5–1.3), compost from leaves (1.5–0.5–1.0) and
poultry manure (1.5–1.0–0.5) [51] were less nitrogen heavy compared to the BSFL frass
in this study at 4.2–0.31–0.63. However, there is the potential to alter the NPK content
based on the provided food as well as amending with additional carbon. A more balanced
NPK of BSFL frass at 4.4–5.2–4.1 was obtained when using a standard fly diet (50% wheat
bran, 30% alfalfa meal and 20% corn meal) [26]. Additionally, elevating the carbon ratio to
nitrogen ratio to 15, via sawdust additions, enhanced N and P retention as well as reduced
the time necessary for composting [52]. In another study, Beesigamukama et al. [53] found
that adding 10% biochar increased the K content and improved seed germination. Other
essential nutrients, such as magnesium, iron, nickel, boron, manganese and zinc should
also be measured in BSFL frass due to their importance for plant growth. Moreover, when
these essential minerals fortify the plants they, in turn, can be more nutritious for human
consumers [54]. Finally, it should be noted that another potential benefit to BSFL frass
includes the chitin content, which has been shown to reduce pests and improve plant
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growth and health [55]. These areas of research should receive increasing attention to
improve farming sustainability.

5. Conclusions

The use of readily available and low-cost BSFL food in the form of spent coffee
grounds and donut dough can produce a sustainable ingredient for farmed terrestrial and
aquatic animals. In fact, the BSFL fed dough had a comparable protein and amino acid
content with soybeans. Dough was the prevailing factor influencing the amino acid profile
and proximate composition. Nevertheless, BSFL fed spent coffee had small amounts of
LC-PUFA that are essential for some commercially important fish/shellfish species. The
use of a blend did appear to provide a more nutritionally balanced BSFL between using
spent coffee and dough in terms of the SCFA and lauric acid content as well as substantially
improving production. Based on visual observations, this may have been due to the blend
having a softer texture likely due to drying out less compared to the other substrates. After
harvesting, the left behind frass could have important applications as an organic fertilizer.
Therefore, BSFL farming can potentially yield two resources to enhance both animal and
plant farming in a sustainable manner.
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