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Abstract: This study depicts the use of a fiber-optic coupled Fourier transform infrared
spectroscopy-attenuated total reflection (FTIR-ATR) probe for the in-depth study of arene diazonium
salt formation and their utilization in the Heck–Matsuda reaction. The combination of these chemical
reactions and in situ IR spectroscopy enabled us to recognize the optimum parameters for arene
diazonium salt formation and to track the concentrations of reactants, products and intermediates
under actual reaction conditions without time consuming HPLC analysis and the necessity of collecting
the sample amid the reaction. Overall advantages of the proposed methodology include precise
reaction times as well as identification of keto enol tautomerization in allylic alcohols supporting the
‘path a’ elimination mechanism in the Heck–Matsuda reaction.

Keywords: in situ FTIR-ATR; arene diazonium salt; Heck–Matsuda reaction

1. Introduction

Owing to their strong reactivity and various transformations, arene diazonium salts are common,
readily synthesized and incredibly important intermediates in organic synthesis [1]. Multiple
well-known named reactions allied to arene diazonium salts have been developed since their discovery
(Scheme 1) [2]. To date, arene diazonium salts have been used in Pd-catalyzed cross coupling reactions
for the development of C-C bonds as reactive aryl halide surrogates [3–5]. The greater electrophilicity
of diazonium salts is due to the presence of a N2 group, thereby favoring mild reaction conditions.
Due to their exothermic nature, they are synthesized in cold aqueous solutions [6]. Exothermic
reactions, especially during scale up, present safety hazards like high pressure, fire and explosion,
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besides reduction of product purity and yield. Insufficient monitoring of these reactions leads to
safety concerns. Over the past few decades, online analytical technologies related to process analytical
technology (PAT) and quality by design (QbD) concepts have drawn the attention of researchers to
control chemical processes [7,8]. Several reports reveal that the utilization of PAT technologies can
provide vital process information in less time in the face of the challenges related with processes that
are more complex. Out of these technologies, ReactIR is a significant model [9] wherein a robust
attenuated total reflection (ATR) probe is inserted directly into the vessel and spectra are collected and
transformed into a molecular video of the reaction [10–12].

solutions [6]. Exothermic reactions, especially during scale up, present safety hazards like high 
pressure, fire and explosion, besides reduction of product purity and yield. Insufficient monitoring 
of these reactions leads to safety concerns. Over the past few decades, online analytical technologies 
related to process analytical technology (PAT) and quality by design (QbD) concepts have drawn 
the attention of researchers to control chemical processes [7,8]. Several reports reveal that the 
utilization of PAT technologies can provide vital process information in less time in the face of the 
challenges related with processes that are more complex. Out of these technologies, ReactIR is a 
significant model [9] wherein a robust attenuated total reflection (ATR) probe is inserted directly 
into the vessel and spectra are collected and transformed into a molecular video of the reaction [10–
12]. 

NO2 NH2 NO2 NO2
+H2SO4

NaNO2 OH
Pd(OAc)2

OH

3-nitroaniline
1 2 3 4

N NO2
O

H

.HSO4
-

N

Scheme 1: Overall reaction of the formation of diazonium salts and the Heck–Matsuda reaction. 

In situ process FTIR together with ReactIR 45m enable a comprehensive understanding of the 
reaction, the recognition of process issues and the monitoring of the initiation, progress and 
endpoint of the reaction. The main benefits of this technique are the exclusion of time-consuming 
analysis and reduction of the vulnerability of workers to hazardous chemicals. Along a similar line, 
many approaches have been utilized in order to avoid exposure to hazardous substances. One such 
approach is the in-situ production of aryl diazonium salts, followed by their reaction without 
isolation [13]. 

In this article, we tried to understand and optimize the chemical reaction involving the 
formation of arene diazonium salts and their conversion into alkenes through a fusion of the Heck–
Matsuda reaction and in situ IR spectroscopy. Tracking of the Heck–Matsuda reaction by in situ IR 
spectroscopy at different relative times revealed that the allylic alcohols undergo keto enol 
tautomerization during their conversion to aldehydes. 

2. Results and Discussion 

Diazonium salt formation is an intermediate step in many organic chemical reactions and it 
plays a characteristic role in the result of the applicable chemical reactions [14]. Generally, 
monitoring of these intermediates is not possible in real time and it may take several hours to 
characterize and determine its purity and yield in situations where the intermediate can be isolated 
[15]. 

Using FTIR as a reaction monitor can help to recognize the formation of diazonium salt 
intermediates along with the detection of reactant depletion and product formation. In order to ease 
our process control, we chose to observe the progress of the reaction using an in situ FTIR probe 
instrument and an automated reactor. Such coupling will allow us to better understand the issues 
arising throughout the reaction, like temperature variations and chemical events. Figure 1 
demonstrates the in situ FTIR trend profile obtained (Scheme 1) and Figure 2 illustrates a three-
dimensional (3D) surface plot of the concentration infrared trends(ConcIRT )spectra captured 
during the complete reaction. Aryl diazonium salts were synthesized by diazotization of the 3-nitro 
aniline with NaNO2 in the presence of an inorganic acid (H2SO4), which serves as a proton donor 
and a counter ion. These aryl diazonium salts were then directly used in a Heck–Matsuda reaction 
(Scheme 1) [13]. 
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In situ process FTIR together with ReactIR 45m enable a comprehensive understanding of the
reaction, the recognition of process issues and the monitoring of the initiation, progress and endpoint
of the reaction. The main benefits of this technique are the exclusion of time-consuming analysis
and reduction of the vulnerability of workers to hazardous chemicals. Along a similar line, many
approaches have been utilized in order to avoid exposure to hazardous substances. One such approach
is the in-situ production of aryl diazonium salts, followed by their reaction without isolation [13].

In this article, we tried to understand and optimize the chemical reaction involving the formation
of arene diazonium salts and their conversion into alkenes through a fusion of the Heck–Matsuda
reaction and in situ IR spectroscopy. Tracking of the Heck–Matsuda reaction by in situ IR spectroscopy
at different relative times revealed that the allylic alcohols undergo keto enol tautomerization during
their conversion to aldehydes.

2. Results and Discussion

Diazonium salt formation is an intermediate step in many organic chemical reactions and it plays a
characteristic role in the result of the applicable chemical reactions [14]. Generally, monitoring of these
intermediates is not possible in real time and it may take several hours to characterize and determine
its purity and yield in situations where the intermediate can be isolated [15].

Using FTIR as a reaction monitor can help to recognize the formation of diazonium salt
intermediates along with the detection of reactant depletion and product formation. In order to
ease our process control, we chose to observe the progress of the reaction using an in situ FTIR probe
instrument and an automated reactor. Such coupling will allow us to better understand the issues
arising throughout the reaction, like temperature variations and chemical events. Figure 1 demonstrates
the in situ FTIR trend profile obtained (Scheme 1) and Figure 2 illustrates a three-dimensional (3D)
surface plot of the concentration infrared trends(ConcIRT )spectra captured during the complete
reaction. Aryl diazonium salts were synthesized by diazotization of the 3-nitro aniline with NaNO2 in
the presence of an inorganic acid (H2SO4), which serves as a proton donor and a counter ion. These
aryl diazonium salts were then directly used in a Heck–Matsuda reaction (Scheme 1) [13].
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Figure 1. Trends of aryl diazonium salt formation followed by the Heck–Matsuda reaction and keto 
enol transformation, SM (starting material), ConcIRT (concentration infrared trends). 
Figure 1. Trends of aryl diazonium salt formation followed by the Heck–Matsuda reaction and keto
enol transformation, SM (starting material), ConcIRT (concentration infrared trends).

The ReactIR software permits data processing that determines the concentration of various
components throughout the reaction (Figures 1 and 2). As depicted in Scheme 2 and Figure 3, the
addition of sulfuric acid is concomitant with the consumption of the starting material (SM), 3-nitro
aniline (light blue trend line in Figure 1, component #3 signal at 1260 cm−1), for 5 min and the formation
of the amine sulfuric acid (salt) intermediate (dark blue trend line in Figure 1, component #7 signal at
1330 cm−1) at 15 min. Upon the addition of sodium nitrite, this intermediate was converted to diazonium
salt (Scheme 3 and Figure 4) (dark yellow trend line in Figure 1, component #5 signal at 1150 cm−1) at
20 min. At this stage, we added allyl alcohol along with palladium acetate; the reaction proceeded
smoothly without changes until 2 h 30 min. A long time was taken to complete the Pd mechanism cycle,
leading to the disappearance of the diazonium salt intermediate (Scheme 4 and Figure 5) (dark yellow
trend line in Figure 1, component #5 signal at 1150 cm−1) and appearance of the alkene peak in the
palladium complex (purple trend line in Figure 1, component #2, C-O signal at 1020 cm−1 and C=C
signal at 1640 cm−1). Upon the addition of water, this alkene–palladium complex was converted to
aldehyde through keto enol tautomerism. This conversion was demonstrated clearly in the IR trend
(Scheme 4 and Figure 6) (red trend line in Figure 1, component #1 signal at 1740 cm−1), and was clearly
supported by the IR spectrum, where the C=C signal at 1640 cm−1 and the C-O signal at 1020 cm−1 were
disappearing and the aldehyde 1740 cm−1 signal was appearing (Figure 6). The reaction was finished
at 2 h 30 min. Similarly, we assume that step 2 (i.e., preparation of diazonium salts) and the amount
of Pd catalyst added are the most important steps for the Heck–Matsuda reaction. This aldehyde
formation clearly indicates the formation of a double bond through ‘path a’ elimination, as shown in
Figure 7. The product and starting material amounts were quantified at any stage of the reaction. This
quantitative in situ FTIR analysis was carried out using the calibration curve method [10]. We also
performed similar analysis for another example using 3-(trifluoromethyl) aniline and 2-vinylbenzoic
acid as starting materials as shown in the supplementary materials (Figures S5 and S6).
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was demonstrated clearly in the IR trend (Scheme 4 and Figure 6) (red trend line in Figure 1, 
component #1 signal at 1740 cm−1), and was clearly supported by the IR spectrum, where the C=C 
signal at 1640 cm−1 and the C-O signal at 1020 cm−1 were disappearing and the aldehyde 1740 cm−1 
signal was appearing (Figure 6). The reaction was finished at 2 h 30 min. Similarly, we assume that 
step 2 (i.e., preparation of diazonium salts) and the amount of Pd catalyst added are the most 
important steps for the Heck–Matsuda reaction. This aldehyde formation clearly indicates the 
formation of a double bond through ‘path a’ elimination, as shown in Figure 7. The product and 
starting material amounts were quantified at any stage of the reaction. This quantitative in situ FTIR 
analysis was carried out using the calibration curve method [10]. We also performed similar 
analysis for another example using 3-(trifluoromethyl) aniline and 2-vinylbenzoic acid as starting 
materials as shown in the supplementary materials (Figures S5 and S6). 
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was demonstrated clearly in the IR trend (Scheme 4 and Figure 6) (red trend line in Figure 1, 
component #1 signal at 1740 cm−1), and was clearly supported by the IR spectrum, where the C=C 
signal at 1640 cm−1 and the C-O signal at 1020 cm−1 were disappearing and the aldehyde 1740 cm−1 
signal was appearing (Figure 6). The reaction was finished at 2 h 30 min. Similarly, we assume that 
step 2 (i.e., preparation of diazonium salts) and the amount of Pd catalyst added are the most 
important steps for the Heck–Matsuda reaction. This aldehyde formation clearly indicates the 
formation of a double bond through ‘path a’ elimination, as shown in Figure 7. The product and 
starting material amounts were quantified at any stage of the reaction. This quantitative in situ FTIR 
analysis was carried out using the calibration curve method [10]. We also performed similar 
analysis for another example using 3-(trifluoromethyl) aniline and 2-vinylbenzoic acid as starting 
materials as shown in the supplementary materials (Figures S5 and S6). 
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Such online monitoring is, therefore, helpful for this particular step, and we can sustain the
process to avoid delayed analysis and sampling during the reaction.
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3. Materials and Methods

3.1. General

In this experiment, reactions were carried under a N2 (nitrogen) atmosphere. Reagents and
solvents were purchased from commercial sources. In situ infrared spectra were acquired using
a ReactIR 45m with MCT (mercury-cadmium-telluride) detector from Mettler Toledo Autochem
(Columbia, SC, USA) [9]. The probe DiComp (Diamond, CO, U.S.A) was connected through a AgX
9.5 mm × 1.5 mm silver halide fiber. In all experiments, the area from 1900–900 cm−1 was used
for analysis.

3.2. Instrumental Conditions and Data Processing

The instrument was fitted with Dicomp (Diamond) probes connected through a 1.5 mm AgX fiber.
The probe was introduced into the reactor using custom Teflon fittings to set the probe depth in zone
away from the impeller vortex. Prior to all experiments, an air background was obtained. Mettler
Toledo ICIR software version 4.3 was utilized for controlling the instrument and analyzing the data.
Data were acquired at an 8-wave number resolution and an automatic sample scan interval of 5 s from
1900 cm−1 to 900 cm−1.

3.3. Formation of Diazonium Salts and Alkene

The parent aniline (1.0 m mol) was dissolved in acetonitrile (10.0 v) into a vessel for 0–5 min and
aqueous sulfuric acid (2 mmol) was slowly added from 5–15 min at 5 ◦C. To that solution, sodium
nitrite (2 m mol) was added at same temperature at 16 min and the mixture was heated to room
temperature. Palladium acetate (0.004 m mol) and allyl alcohol (1 m mol) were added at 20 min and the
reaction mixture was monitored for 2 h 10 min. Finally, water was added at 2 h 30 min and compound
was extracted into toluene.

4. Conclusions

In conclusion, the use of an in situ IR PAT tool enabled the monitoring of the formation and
utilization of diazonium salts and reaction intermediates, which is vital for the successful development
of this process. The completion of the arene diazonium formation reaction and its application to the
Heck–Matsuda reaction was confirmed by the IR online analysis, rendering the need for HPLC/TLC
analysis unnecessary. Further, the online monitoring allowed for the identification of keto enol
tautomerization in allylic alcohols. The application of in situ FTIR coupled with an automated reactor
was therefore critical for accurate progress control of the reaction, enabling this process to scale-up
safely and reliably.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/9/2199/s1,
Figure S1: Comparison of IR spectra with component #5 vs 26:15 min spectra vs 37:15 min spectra to understand
the trend changes in figure 1, Figure S2: Comparison of IR spectra of standard vs isolated product, Figure S3:
Complete IR spectra with all 7 components, Figure S4: Comparison of IR spectra of reference acetonitrile vs
component 6, Figure S5: Trends of aryl diazonium salt formation followed by Heck-Matsuda reaction of additional
example using 3-(trifluoromethyl) aniline and 2-vinylbenzoic acid as starting materials, Figure S6: 3D surface for
complete Heck-Matsuda reaction using 3-(trifluoromethyl) aniline and 2-vinylbenzoic acid as starting materials

http://www.mdpi.com/1420-3049/25/9/2199/s1
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