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Background: Although immunotherapy has revolutionized the treatment landscape of lung cancer and 
improved the prognosis of this malignancy, many patients with lung cancer still are not able to benefit from 
it because of many different reasons. The expression of programmed death ligand-1 (PD-L1) in tumor cells 
has been approved for the prediction of immunotherapy efficacy; however, its clinical application has been 
limited by the invasiveness of PD-L1 determination and the heterogeneity of tumor cells. As a promising 
technology, radiomics has made significant progress in the diagnosis and treatment of lung cancer. Thus, we 
constructed a noninvasive predictive model which based on radiomics to predict the immunotherapy efficacy 
of lung caner patients. 
Methods: Data of 82 patients with stage IIIa/IVb NSCLC who received immunotherapy at the First 
Affiliated Hospital of Soochow University from December 2019 to January 2023 were retrospectively 
collected. These patients were followed up for durable clinical benefit (DCB), as defined by whether 
progression-free survival (PFS) reached 12 months. The least absolute shrinkage and selection operator 
(LASSO) algorithm was used to screen for the radiomic features in the training set, and a radiomics score 
(Rad-score) was calculated. The clinical baseline data were analyzed, and the peripheral blood inflammation 
indices were calculated. Univariate and multivariate analyses were performed to identify the applicable 
indices, which were combined with the Rad-score to create a comprehensive forecasting model (CFM) and 
nomograms. Internal validation was performed in the validation set. 
Results: Up to the last follow-up time, 48 of 82 patients had a PFS of more than 12 months. The area 
under the receiver operating characteristic (ROC) curve (AUC) of the Rad-score was 0.858 and 0.812, 
respectively, in the training set and validation set. A systemic immune-inflammation index (SII) score of 
<500.88 after two cycles of immunotherapy was a protective factor for PFS >12 months [odds ratio (OR) 0.054; 
P=0.003]. The CFM had an AUC of 0.930 and 0.922, respectively, in the training and validation sets. The 
calibration curves and decision curve analysis (DCA) demonstrated the reliability and clinical applicability of 
the model, respectively. 
Conclusions: The radiomics model performed well in predicting whether patients with locally advanced 
or metastatic NSCLC can achieve DCB after receiving immunotherapy. The CFM had good predictive 
performance and reliability.
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Introduction

Lung cancer is the most common cancer and remains the 
leading cause of cancer-related death worldwide (1). It 
is an insidious malignancy that usually does not produce 
symptoms in its early stages. As a result, 40–57% of patients 
with lung cancer have already developed distant metastases 
at the time of diagnosis, leading to a 5-year survival rate of 
less than 10% (2,3). Non-small cell lung cancer (NSCLC) 
is the most prevalent subtype of lung cancer, accounting 
for approximately 85% of all cases (4). immune checkpoint 
inhibitors (ICIs) can activate T-cell-mediated antitumor 
immune response and thus exert an antitumor effect (5). 
Among them, antibodies targeting programmed cell death 

protein-1 (PD-1) or its ligand programmed death ligand-1 
(PD-L1) have been approved for the treatment of a variety 
of advanced cancers, changing the landscape of treatment 
for patients with lung cancer. Several studies have shown 
that ICI-based immunotherapy is superior to chemotherapy 
and can dramatically improve the prognosis of patients with 
lung cancer. For example, the 5-year follow-up results of 
the KEYNOTE-042 trial revealed that pembrolizumab 
monotherapy was more efficacious than chemotherapy, had 
a lower incidence of adverse events, and could be used as a 
first-line treatment for patients with PD-L1-positive locally 
advanced or metastatic NSCLC (6). The 5-year follow-
up results of the CA209-003 trial showed that patients 
with advanced NSCLC who had previously received other 
treatments had a 5-year overall survival (OS) rate of 16% 
after nivolumab treatment, with some patients achieving 
long-lasting responses (7).

Although immunotherapy is superior to the conventional 
chemotherapy, delayed response may occur during the 
treatment (8); however, this is only observed in 20% of 
patients. Meanwhile, a very rare but clinically significant 
subset of NSCLC patients exhibit a phenomenon known 
as hyperprogression has a significant impact on patient 
prognosis and influences the patients’ choice of treatment. 
Therefore, it is crucial to carefully select patients before 
beginning treatment. Although PD-L1 expression and tumor 
mutational burden (TMB) are widely recognized as good 
predictive biomarkers of immunotherapy response (9-14). 
Although TMB has not gained widespread clinical use due 
to its limited and controversial predictive value, PD-L1 
have been applied in some clinical settings. there are still 
a number of factors impacting their clinical application. 
Firstly, there are differences in the determination methods 
and scoring criteria for PD-L1 expression and TMB 
levels. Secondly, intratumoral heterogeneity, immune 
microenvironment, and other factors can also affect PD-
L1 expression level (15-19). Finally, although patients with 
PD-L1 expression or high TMB tend to respond better to 
immunotherapy, there are still cases where patients with 
no PD-L1 expression or low TMB still respond to ICI-
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based immunotherapy (20,21). This suggests that there is 
pressing need to identify noninvasive indicators that are 
more efficient in predicting early immunotherapy efficacy 
in patients with NSCLC. Computed tomography (CT) 
radiomics can extract radiomic features including shape, 
intensity, and texture features by depicting the phenotype 
of lung tumors and quantifying them. Algorithms can be 
used to analyze these quantified radiomics features. These 
features can further be used to construct models for, among 
other things, disease diagnosis and prognosis analysis. 
Imaging histology can assess the shape and heterogeneity of 
tumors by analyzing their shape features, intensity features, 
and texture features, most of which cannot be recognized 
by the human eye. The advantage of imaging histology is 
that it can provide a more comprehensive understanding 
of the entire tumor by reflecting not only the visible 
features of the tissue, but also the cellular and molecular 
properties of the tissue through non-invasive examination. 
Quantitative imaging histology features have been shown 
to provide rapid and accurate non-invasive biomarkers for 
lung cancer risk prediction, diagnosis, prognosis, treatment 
response monitoring and tumor biology (22). In patients 
with NSCLC, these models have demonstrated good 
performance in predicting lung cancer gene mutations 
(23,24) and PD-L1 expression (25), distinguishing between 
primary and metastatic lung tumors (26), and predicting the 
benefit of immunotherapy (27-29).

Inflammatory cells and mediators are important 
components of the tumor microenvironment (30) and 
are associated with the prognosis of various tumor types. 
Research has shown that a higher neutrophil-to-lymphocyte 
ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are 
correlated with poor immunotherapy outcomes in patients 
with NSCLC (31-35), suggesting their potential use as 
prognostic markers. The systemic immune-inflammation 
index (SII), an inflammatory marker that combines NLR 
and platelet count was found to be an independent risk 
factor for solid cancers (36). Moreover, a high SII score was 
reported to be associated with a shorter progression-free 
survival (PFS) in patients with NSCLC treated with ICIs 
(37,38).

Immunotherapy has not been widely used to treat lung 
cancer, which limits the data on follow-up time and the 
availability of radiomics studies in predicting its durable 
clinical benefit (DCB). In this study, we retrospectively 
collected the data of patients receiving immunotherapy 
with anti-PD-1/PD-L1 monoclonal antibodies, established 
a radiomics model by extracting and screening for the 

CT radiomic features of these patients, and calculated the 
radiomic scores. In addition, by analyzing the patients’ 
clinical data and peripheral blood characteristics, we 
selected indices with predictive value to establish and 
validate a comprehensive forecasting model (CFM) to 
predict whether patients with NSCLC could obtain DCB 
after receiving immunotherapy. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-24-
526/rc).

Methods

Participants

The baseline data and CT images of patients with 
pathologically confirmed stage IIIa/IVb NSCLC treated 
with anti-PD-1/PD-L1 monoclonal antibodies at the First 
Affiliated Hospital of Soochow University from December 
2019 to January 2023 were retrospectively collected. The 
patients were followed up until June 2023. The requirement 
for signed informed consent was waived since the data 
analyzed were anonymous and did not involve patient 
privacy. This study fully complied with the Declaration of 
Helsinki (2013 version) and was approved by the Ethics 
Committee of the First Affiliated Hospital of Soochow 
University (approval No. 2023540).

The inclusion criteria were as follows: (I) patients 
with stage IIIa/IVb NSCLC diagnosed according to the 
eighth edition of the Tumor Node Metastasis (TNM) 
staging system; (II) patients receiving anti-PD-1/PD-
L1 monotherapy or immunotherapy in combination with 
conventional chemotherapy; (III) availability of CT images 
with a slice thickness of 1.25 mm obtained within 2 months 
prior to the initiation of immunotherapy; and (IV) routine 
blood tests and testing for serum tumor markers completed 
within 1 week prior to the treatment with anti-PD-1/PD-
L1 monoclonal antibodies. The exclusion criteria were 
as follows: (I) inability to detect and segment the primary 
tumor on chest CT image or poor image quality; (II) other 
treatments in addition to immunotherapy or chemotherapy; 
(III) presence of autoimmune diseases; and (IV) detection 
of pneumonia or infections at other sites unrelated to the 
tumor. In total, 82 patients were enrolled in this study. 
According to the study design for prediction modeling, 
57 (69.51%) of these patients were randomized as the 
training set, and the remaining 25 (30.49%) patients as the 
validation set.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-526/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-526/rc
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Data collection

The baseline data collected included age at diagnosis, 
gender, smoking history, Eastern Cooperative Oncology 
Group (ECOG) performance status (PS) score, histological 
types of NSCLC, PD-L1 expression level, tumor stage, 
pretreatment CT data, results of routine blood tests, 
serum tumor markers, treatment regimens, and results of 
routine blood tests after two cycles of immunotherapy. 
Inflammation indices including SII (SII = platelet count 
× neutrophil count/lymphocyte count), NLR (NLR = 
neutrophil count/lymphocyte count), and PLR (PLR = 
platelet count/lymphocyte count) were calculated.

Response evaluation and study endpoints

Responses to treatment were assessed based on the 
[Response Evaluation Criteria in Solid Tumors (RECIST) 
v. 1.1] and were classified as progressive disease (PD), stable 
disease (SD), partial response (PR), and complete response 
(CR) based on the clinical data and imaging findings in 
the electronic medical records. The primary endpoint of 
this study was PFS, defined as the time from initiating 
immunotherapy to disease progression, death from any 
cause, or final follow-up visit. Patients were divided into two 
groups based on whether their PFS exceeded 12 months, 
with a PFS greater than 12 months considered to indicate 
DCB. The secondary endpoint was OS, defined as the time 
from initiation of immunotherapy to death from any cause 
or last follow-up visit.

Image acquisition and extraction of radiomics features

CT images obtained within 2 months using Toshiba, Philips, 
or Siemens CT scanners prior to treatment were retrieved 
from a picture archiving and communication system (PACS). 
The default scanner settings encompassed a tube voltage 
of 120 kV and a tube current ranging from 110 to 240 mA. 
Following the activation of the real-time dynamic dose 
mapper, the key parameters were set as follows: collimation 
at 0.6 mm × 128 mm, rotation time of 0.25 seconds, pitch 
factor of 0.9, and a slice thickness of 5 mm. The patient was 
positioned supine, with their upper limbs raised naturally. 
The head was advanced initially, and a standard chest scan 
was performed at the culmination of a deep inspiration. The 
scanning area extended from the thoracic inlet to a point 
5 cm below the costophrenic angle. All CT images were 
evaluated using both the lung window (with a window width of 

1,500 Hounsfield units (HU) and a window level of –500 HU)  
and the mediastinal window (window width of 400 HU and 
window level of 45 HU). The reconstructed slice thickness 
was set at 1.25 mm. An open-source radiomics software (3D 
Slicer) v. 5.4.0 was used to delineate the region of interest 
(ROI) and extract the radiomic features. The chest CT image 
data were imported into 3D Slicer, and a lung window was 
applied (window width, 1,500 HU; window level, –500 HU). 
The primary tumor was selected for target delineation, and 
the largest tumor was delineated if the primary tumor was 
not identified. After delineation, a three-dimensional (3D) 
ROI image of the lung cancer was generated. The radiomics 
features were extracted by using the SlicerRadiomics, 
which is an extension for 3D Slicer. Texture features were 
calculated using a bin width of 25 HU. The voxel size after 
resampling was 1 mm × 1 mm × 1 mm, and wavelet-based 
features were extracted. A total of 851 radiomics features 
were extracted from the 3D ROI images of lung cancer, 
including first-order statistics, shape features, texture 
features, and higher-order statistics. The texture features 
included gray-level co-occurrence matrix (GLCM), gray-
level dependence matrix (GLDM), gray-level run-length 
matrix (GLRLM), gray-level size-zone matrix (GLSZM), 
and neighboring gray-tone difference matrix (NGTDM). 
Through wavelet filtering, high- (H) or low (L)-pass filters 
were applied to decompose the images in each of the three 
dimensions, which yielded eight decompositions including 
HHH, LLL, HHL, HLL, LHH, LHL, LLH, HLH. 
Higher-order statistics were acquired by wavelet transform 
on images.

ROIs were jointly delineated by two investigators (H.S. 
and L.S.) to increase the reproducibility. Each investigator 
delineated the same tumor twice at different time points, 
and the consistencies of the extracted radiomic features were 
tested by using the intragroup correlation coefficient (ICC). 
After the intra- and intergroup ICCs were calculated, 
features with ICCs >0.8 at both time points were selected. 
Any disagreement was resolved through discussion between 
these two investigators.

Model establishment

Calculation of radiomics scores (Rad-scores) 
For the radiomics features extracted in the training set, the 
least absolute shrinkage and selection operator (LASSO) 
algorithm was used to screen for radiomics features and 
obtain the feature values after 10-fold cross-validation, thus 
obtaining the Rad-score of each patient. The area under the 
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receiver operating characteristic (ROC) curve (AUC) was 
used to evaluate the predictive performance of Rad-score in 
both the training set and validation set.

Construction and evaluation of the CFM
Univariate analyses with a t-test, chi-squared test, or Mann-
Whitney test were performed to screen for variables, 
with significant differences in clinical baseline data and/
or hematological characteristics. Multivariate binary 
logistic regression analyses were then applied to screen for 
the independent predictors of the population with DCB 
among patients treated with ICIs. Comprehensive model 
nomograms were generated by combining the independent 
predictors with Rad-score. The CFM was evaluated by 
using ROC curves, the reliability of the model was evaluated 
using calibration curves, and decision curve analysis (DCA) 
was used to assess the clinical utilities of the radiomics 
model and the CFM.

Statistical analysis

Statistical analyses were performed using R software v. 4.3.1 
(The R Foundation for Statistical Computing, Vienna, 
Austria) and SPSS v. 27 (IBM Corp., Armonk, NY, USA). 
Descriptive statistics are presented for all the variables. 
Normality tests were conducted for continuous variables. 
Independent samples t-tests were used for normally 
distributed data, while Mann-Whitney tests were used for 
nonnormally distributed data. The analyses of categorical 
variables were based on the χ2 test. Binary logistic 
regression model was applied during multivariate analyses. 
A P value of less than 0.05 was considered statistically 
significant.

LASSO regression analysis was performed using the 
“glmne” package in the R to screen for the radiomics 
features and calculate the Rad-scores based on the assigned 
feature values. Multivariate logistic regression analysis 
was performed using the “rms” package in R to build 
the nomograms of the CFM. ROC curves were plotted 
using the “pROC” package in R to evaluate the predictive 
performance of the model. Model calibration was checked 
using the Hosmer-Lemeshow goodness-of-fit test, and 
internal validation was performed using the bootstrap 
technique to generate calibration curves. DCA curves were 
plotted using the “rmda” R package.

Results

Baseline characteristics of patients

A total of 295 patients with stage IIIa/IVb lung cancer were 
treated with anti-PD-1/PD-L1 monoclonal antibody at the 
First Affiliated Hospital of Soochow University period from 
December 2019 to January 2023. After patients with small-
cell lung cancer, those receiving postoperative adjuvant 
therapy/radiotherapy/antiangiogenic therapy, those without 
available CT images, and/or those with missing baseline 
data were ruled out, 82 patients included into the final 
analysis. Of the 82 patients, 41 were treated with sintilimab, 
18 with tislelizumab, 19 with pembrolizumab, and 4 with 
durvalumab. As of October 2023, 9 (10.98%) of the 82 
enrolled patients achieved PR, 43 (52.44%) achieved SD, 
30 (36.58%) experienced PD, and no patient reached CR. 
PFS exceeded 12 months in 48 patients (58.54%), with a 
maximum PFS of 44 months. Among these patients, 34 
(59.65%) patients in the training set (n=57) had a PFS more 
than 12 months (Table 1). The independent samples t-test 
or Mann-Whitney test for continuous variables and the chi-
squared test for categorical variables revealed that there were 
no significant differences in the demographic or clinical 
characteristics between the training and validation sets.

Rad-scores and their predictive performance

Eight features with nonzero coefficients were finally 
obtained from 851 radiomic features in the training set 
via the LASSO method (Figure 1), and the formula for 
calculating the Rad-score was established based on the 
following features as follows:

Radscore 0.4833738460 original shape elongation 0.1241959510
original shape maximum 3D diameter 0.0005054869
wavelet_HHL firstorder Skewness 0.1755891811
wavelet_HLH firstorder Median 0.0357781518
wavelet_HLH fi

= + ×
− ×
+ ×
− ×
− rstorder Minimum 0.0003245659

wavelet_LHH firstorder Mean 0.0079593503
wavelet_LLL glszm GrayLevelNonUniformity 0.0000357936
wavelet_LLL glszm ZoneEntropy 0.1153889708

×
− ×
− ×
+ ×

 [1]

The distribution of the Rad-scores in the training set is 
shown in Figure 2A. The ROC curve was plotted based on 
the calculated Rad-scores (Figure 2B), which yielded an AUC 
of 0.858 [95% confidence interval (CI): 0.763–0.953] for the 
training set. The optimal threshold for the Rad-scores was 
1.576, at which the sensitivity was 73.5% and the specificity 
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Table 1 Baseline characteristics of patients

Feature Patients (n=82) Training set (n=57) Validation set (n=25) P value

Age (years) 67.04±9.56 66.61±8.94 68.00±11.00 0.549

Gender 0.662

Male 76 (92.68) 52 (91.23) 24 (96.00)

Female 6 (7.32) 5 (8.77) 1 (4.00)

History of smoking 0.770

Yes 56 (68.29) 35 (61.40) 21 (84.00)

No 26 (31.71) 22 (38.60) 4 (16.00)

Tumor location 0.530

Central 55 (67.07) 37 (64.91) 18 (72.00)

Peripheral 27 (32.93) 20 (35.09) 7 (28.00)

Histological type 0.915

Squamous cell carcinoma 41 (50.00) 28 (49.12) 13 (52.00)

Adenocarcinoma 38 (46.34) 27 (47.37) 11 (44.00)

Other 3 (3.66) 2 (3.51) 1 (4.00)

PD-L1 expression 0.930

<1% 4 (4.88) 6 (10.52) 2 (8.00)

1–49% 24 (29.27) 15 (26.32) 8 (32.00)

≥50% 33 (40.24) 21 (36.84) 8 (32.00)

NA 21 (25.61) 15 (26.32) 7 (28.00)

TNM stage 0.566

Stage III 40 (48.78) 29 (50.88) 11 (44.00)

Stage IV 42 (51.22) 28 (49.12) 14 (56.00)

ECOG PS score 0.424

≤1 74 (90.24) 50 (87.72) 24 (96.00)

≥2 8 (9.76) 7 (12.28) 1 (4.00)

Treatment regimen 1.000

Single-agent immunotherapy 12 (14.63) 8 (14.04) 3 (12.00)

Immunotherapy + chemotherapy 70 (85.37) 49 (85.96) 22 (88.00)

Treatment line 0.372

1 62 (75.61) 41 (71.93) 21 (84.00)

2 20 (24.39) 16 (28.07) 4 (16.00)

PFS, months 13.37 (13.93) 13.90 (14.45) 12.80 (12.93) 0.992

OS, months 17.48 (11.78) 17.13 (14.03) 17.67 (8.90) 0.426

The data are presented as the mean ± SD, median (interquartile range), or n (percentage). PD-L1, programmed death ligand-1; NA, not 
available; TNM, Tumor Node Metastasis; ECOG PS, Eastern Cooperative Oncology Group performance status; PFS, progression-free 
survival; OS, overall survival; SD, standard deviation.
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was 91.3%. The Rad-scores in the validation set were also 
calculated using the same method (Figure 2C), and ROC 
curves were plotted accordingly (Figure 2D), which yielded 
an AUC of 0.812 (95% CI: 0.641–0.982). The optimal 
threshold for the Rad-scores in the validation set was 1.572, 
at which the sensitivity was 78.6% and the specificity was 
81.8%. The calibration curve of the radiomics model is 
shown in Figure 3, which indicated that the radiomics 
model had good performance and reliability in predicting 
the efficacy of immunotherapy.

Baseline data and hematologic features

In the training set, no valid predictor, including age, gender, 
or smoking history, was identified in the univariate analyses 
of the baseline data (Table 2). Based on the peripheral blood 
cell profiles before immunotherapy and after two cycles 
of immunotherapy, we calculated the NLR, PLR, and SII, 
and their change in value before treatment and after two 
cycles of treatment. In the training set, the Mann-Whitney 

test showed that NLR (P=0.03) before immunotherapy 
and SII (P=0.006) and NLR (P=0.04) after two cycles of 
immunotherapy were valuable predictors, while serum 
tumor markers such as neuron-specific enolase (NSE), 
carcinoembryonic antigen (CEA), and cancer antigen 125 
(CA-125) did not show predictive value. The ROC curves 
of the three screened indices were plotted and generated 
the following results: the AUC of NLR was 0.676 (95% 
CI: 0.536–0.817) before immunotherapy, with an optimal 
cutoff value of 3.26; the AUC of SII after two cycles of 
immunotherapy was 0.717 (95% CI: 0.581–0.851), with an 
optimal cutoff value of 500.88; and the AUC of NLR after 
two cycles of immunotherapy was 0.676 (95% CI: 0.536–
0.817), with an optimal cut-off value of 2.08. The screened 
blood inflammation indices were dichotomized according to 
their respective cutoff values and subjected to multivariate 
binary logistic regression analysis, which showed that an 
SII score of <500.88 after two cycles of treatment was a 
protective factor for PFS >12 months [odds ratio (OR) 
0.054; 95% CI: 0.008–0.365; P=0.003].

Figure 1 Screening of the radiomics features in the training set via LASSO regression. (A) A path diagram displaying the LASSO 
coefficients of radiomics features. Line 1: wavelet_HHL firstorder Skewness; Line 2: wavelet_LLL glszm GrayLevelNonUniformity; Line 
3: wavelet_LLL glszm ZoneEntropy; Line 4: wavelet_HLH firstorder Median; Line 5: wavelet_HLH firstorder Minimum; Line 6: original 
shape maximum 3D diameter; Line 7: wavelet_LHH firstorder Mean; Line 8: original shape elongation. (B) Cross-validation curves. (C) 
Optimal feature selection based on mean-squared error. LASSO, least absolute shrinkage and selection operator.
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Figure 2 Rad-score distribution in the training and validation sets and ROC curves of the radiomics model. (A) Rad-score distribution in 
the training set. (B) ROC curves of the radiomics model in the training set. (C) Rad-score distribution in the validation set. (D) ROC curves 
of the radiomics model in the validation set. Rad-score, radiomics score; PFS, progression-free survival; AUC, area under the curve; ROC, 
receiver operating characteristic.
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Table 2 Comparison of baseline characteristics between the two groups during training

Feature PFS <12 months (n=23) PFS ≥12 months (n=34) P value

Age, years 66.09±9.07 66.97±8.97 0.718

Gender >0.99

Male 21 (91.30) 31 (91.18)

Female 2 (8.70) 3 (8.82)

History of smoking 0.239

Yes 12 (52.17) 23 (67.65)

No 11 (47.83) 11 (32.35)

Tumor location 0.968

Central 15 (65.22) 22 (64.71)

Peripheral 8 (34.78) 12 (35.29)

Histological type 0.093

Squamous cell carcinoma 13 (56.52) 15 (44.12)

Adenocarcinoma 8 (34.78) 19 (55.88)

Other 2 (8.70) 0 

PD-L1 expression 0.744

<1% 2 (8.70) 4 (11.76)

1–49% 8 (34.78) 7 (20.59)

≥50% 8 (34.78) 13 (38.24)

NA 5 (21.74) 10 (29.41)

TNM stage 0.955

Stage III 12 (52.17) 18 (52.94)

Stage IV 11 (47.83) 16 (47.06)

ECOG PS score 0.106

≤1 18 (78.26) 32 (94.12)

≥2 5 (21.74) 2 (5.88)

Treatment regimen >0.99

Single-agent immunotherapy 3 (13.04) 5 (14.71)

Immunotherapy + chemotherapy 20 (86.96) 29 (85.29)

Treatment line 0.126

1 14 (60.87) 27 (79.41)

2 9 (39.13) 7 (20.59)

The data are presented as the mean ± SD or n (percentage). PD-L1, programmed death ligand-1; NA, not available; TNM, Tumor Node 
Metastasis; ECOG PS, Eastern Cooperative Oncology Group performance status.
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Figure 5 Components and the ROC curves of the comprehensive forecasting model. (A) The components of the comprehensive 
forecasting model and the corresponding eigenvalues. (B) The ROC curves of the comprehensive forecasting model in the training set and 
validation set. Rad-score, radiomics score; SII, systemic immune-inflammation index; AUC, area under the curve; ROC, receiver operating 
characteristic.
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Establishment and evaluation of CFM

The Rad-scores and SII scores after two cycles of 
immunotherapy were included in the logistic regression 
analysis; accordingly, the CFM was established and the 
nomograms were plotted (Figure 4). The eigenvalues of the 
features in the CFM are shown in Figure 5A. The CFM 
scores were calculated, and the ROC curve was plotted 
based on these eigenvalues (Figure 5B). In the training set, 
the CFM had an AUC of 0.930 (95% CI: 0.866–0.993), a 
Youden index score of 0.765, a sensitivity of 76.5%, and a 
specificity of 95.7%. In the validation set, the CFM had an 
AUC of 0.922 (95% CI: 0.794–1.000) and a Youden index 
score of 0.818, with the diagnostic sensitivity and specificity 
being 100.0% and 91.8%, respectively.

The calibration curves of the CFM in the training and 
validation sets are shown in Figure 6A,6B, which indicate 
that the CFM had good reliability and was superior to a 
single radiomics model. The DCA curves (Figure 6C,6D) 
suggested that both the radiomics model and the CFM had 

clinical applications in both the training and validation sets.

Comparison between radiomics model and CFM

The AUC of the radiomics model in the training group was 
0.858 (95% CI: 0.763–0.953), while in the validation group, 
it was 0.812 (95% CI: 0.641–0.982). The AUC of the 
comprehensive prediction model in the training group was 
0.930 (95% CI: 0.866–0.993), and in the validation group, it 
was 0.922 (95% CI: 0.794–1.000). Regardless of whether it 
was in the training or validation group, the comprehensive 
prediction model seemed to outperform the radiomics 
model based on the AUC values. However, after calculating 
the differences between the two models using Delong’s 
test, the differences between the radiomics model and the 
comprehensive model were not statistically significant in 
both the training and validation groups (P values were 0.077 
and 0.111, respectively).

Interpretation of the calibration curves revealed that 
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compared to the radiomics model, the calibration curve of 
the comprehensive model exhibited a higher consistency 
with the ideal diagonal line, indicating better calibration 
and higher reliability of the model. In the DCA curve, the 
net benefit of the comprehensive model was also higher.

Discussion

The radiomics model established in this study had a 
certain predictive value for whether DCB can be achieved 
in patients with stage IIIa/IVb NSCLC receiving 
immunotherapy; furthermore, the CFM, which includes 
both radiomic features and peripheral blood inflammation 
indices, had higher reliability than the radiomics model, as 
shown in both the training set and the validation set.

Immunotherapy remarkably prolongs the PFS and 
improves the prognosis of patients with NSCLC. However, 
the delayed immune response and pseudoprogression 
during immunotherapy may impact the choice of treatment 
plan. The model developed in our present study can serve 
as a decision support tool for prognosis prediction and 
treatment planning, as it can aid in identifying patients who 
may achieve DCB following immunotherapy and prevent 

premature discontinuation of immunotherapy or delay in 
changing an ineffective immunotherapy protocol.

Twenty-one (25.6%) patients in this study were not tested 
for PD-L1 expression levels, possibly due to economic 
circumstances or insufficient specimen volume, which 
might have been one of the reasons why PD-L1 was not 
included in the CFM. Similar problems may exist in real-
world clinical practice. In addition, local PD-L1 expression 
may not accurately reflect its expression in the whole 
tumor due to tumor heterogeneity. Furthermore, PD-L1 
is continuously expressed, and its expression level can be 
affected by external factors (39) such as radiochemotherapy. 
Initial diagnostic biopsy cannot reliably predict the long-
term outcomes of immunotherapy (40). CT radiomics has 
been extensively studied as an economical, convenient, 
noninvasive, and repeatable tool. Its potential in developing 
predictive models to aid clinical decision-making has also 
been investigated.

In the study, all patients were divided into three groups 
based on stage IIIa, stage IIIb–IIIc, and stage IVa–IVb. 
The analysis found that the differences among the three 
groups were no significant difference (P=0.15). Regarding 
the failure of TNM staging to demonstrate differences 

Figure 6 Calibration curves and DCA curves of the comprehensive forecasting model in the training and validation sets. (A) Calibration 
curve of the comprehensive forecasting model in the training set. (B) Calibration curve of the comprehensive forecasting model in the 
validation set. (C) DCA curves of the radiomics model and comprehensive forecasting model in the training set. (D) DCA curves of the 
radiomics model and comprehensive forecasting model in the validation set. PFS, progression-free survival; Pr, probability; Rad-score, 
radiomics score; DCA, decision curve analysis.
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between the two groups of PFS <12 months and PFS  
≥12 months, possible reasons include: (I) insufficient sample 
size and insufficient follow-up time; (II) immunotherapy has 
improved the prognosis of patients, resulting in PFS longer 
than 12 months for some stage IV NSCLC patients; (III) 
the existence of selection bias.

With the advancements in radiomics, various models 
with good performance have been built using machine 
learning and deep learning. For example, the PD-L1 
expression prediction model constructed by Wang et al. (25)  
using deep learning combined with radiomics showed 
good performance in assessing OS when combined with 
clinical features. Deep learning integrates the processes 
of both feature extraction and model evaluation and can 
automatically conduct repeated learning and training, 
thus consuming considerably less manpower. However, it 
is associated with the risk of overfitting and poor model 
interpretability, and an optimized evaluation system is needed 
to improve its clinical applications. Moreover, its efficacy is 
limited to really big samples which are not typical for such 
studies. In our study, we used the LASSO method to compress 
the regression coefficients of the screened radiomics features 
by generating a penalty function, which helped to prevent 
overfitting. In addition, we combined the radiomics features 
with the screened blood inflammation indices to create a 
CFM, which showed good prediction performance.

Despite these promising findings, our study was limited 
by the small sample size, a lack of external validation, 
missing data on PD-L1 expression, and inconsistent 
immunotherapy protocols due to its retrospective design, 
which may affect the application and generalization of our 
model. Multicenter, large-sample, prospective, randomized 
controlled trials are warranted to optimize our model. 
In addition, we only collected CT images and blood test 
results before immunotherapy and only delineated the 
tumor foci. In our future studies, we will collect CT images 
and blood test results before and after immunotherapy and 
delineate both tumors and peritumor areas so as to extract 
a larger number of radiomics features, identify differential 
radiomic characteristics, and determine the potential 
correlation between the changes in the blood test results and 
the efficacy of immunotherapy. By doing so, we can discover 
additional factors related to the prognosis of immunotherapy 
for patients with NSCLC and develop prediction models 
with improved performance and greater clinical applicability. 
On the other hand, the authors in (41) have observed that 
radiomic features with high predictive potential perform much 

worse when combined with increased feature numbers than 
when used isolated. It suggests the importance of selective 
algorithm sensitive to feature interactions. It may be also 
useful to take advantage of information from multiple lesions 
to improve predictive ability of radiomic-based prediction 
model [as suggested in the study by Wilk et al. (42)].

Conclusions

The radiomics model and the CFM performed well in 
predicting whether patients with locally advanced or 
metastatic NSCLC can achieve DCB after receiving 
immunotherapy. Radiomics assessment is essential in 
the follow-up of patients with cancer, and the efficacy 
of antitumor therapy is not only reflected in the change 
of tumor size. More specifically, radiomics can help to 
detect the early change of internal texture features of the 
tumors, thus evaluating the efficacy of immunotherapy 
and informing the adjustment of treatment plans, which is 
critical for longer survival. However, further prospective 
studies are required to validate this radiomics technology.

There is still a long way to go before it can be widely 
used in the clinic as TNM staging, PD-L1 expression 
and other indicators, and we need to pay attention to the 
standardization of model construction and the rigor of 
patient inclusion and data analysis, avoiding the influence 
of confounding factors on the model, and at the same time, 
we can combine imaging genomics with the indicators 
commonly used in the clinic, and even the genomics 
and pathomics that are developing rapidly, to find the 
predictive indicators that can really solve the clinical 
problems. predictive indicators that can really solve the 
clinical problems. Clinicians and researchers can also make 
efforts to integrate clinical information, biological and 
imaging data into databases to facilitate the construction of 
multicenter and large-sample imaging genomics models, 
in order to promote imaging genomics to help doctors and 
patients solve problems more quickly.
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