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Lower respiratory infections are among the leading causes of morbidity and mortality
worldwide. These potentially deadly infections are further exacerbated due to the growing
incidence of antimicrobial resistance. To combat these infections there is a need to better
understand immune mechanisms that promote microbial clearance. This need in the
context of lung infections has been further heightened with the emergence of SARS-CoV-
2. Group 3 innate lymphoid cells (ILC3s) are a recently discovered tissue resident innate
immune cell found at mucosal sites that respond rapidly in the event of an infection. ILC3s
have clear roles in regulating mucosal immunity and tissue homeostasis in the intestine,
though the immunological functions in lungs remain unclear. It has been demonstrated in
both viral and bacterial pneumonia that stimulated ILC3s secrete the cytokines IL-17 and
IL-22 to promote both microbial clearance as well as tissue repair. In this review, we will
evaluate regulation of ILC3s during inflammation and discuss recent studies that examine
ILC3 function in the context of both bacterial and viral pulmonary infections.
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INTRODUCTION

Th1 and Th2 helper cell subsets were initially defined by cytokine secretion (1, 2) and this was
expanded to other T cell subsets including Th17 cells in the early 2000s, which demonstrated that
IL-17 secreting CD4+ T cells arise independent of transcription factors of Th1 (STAT4) and Th2
(STAT6) cells (3–5). However, shortly after the expansion of these Th subsets, it was recognized that
many of these cytokines could also be produced by non-T-cell receptor bearing innate cells such as
IFNg-producing NK cells. Th2 cytokines, such as IL-5 and IL-13, were found to be expressed in
innate lymphoid cells (ILCs) by several groups (6, 7) and these cells have been subsequently termed
group 2 or ILC2 cells. Similarly, cytokines associated with Th17 lineage, IL-17 and IL-22, were
originally found in ILCs within tonsils and the gastrointestinal tract (8, 9) and termed group 3 or
ILC3 cells. A key early finding showing the functionality of ILC3 cells was demonstrating that they
could mediate colitis in mice lacking T cells (9). As opposed to the gastrointestinal tract, where ILC3
cells are abundant, ILC2 cells predominate in the lung, seeding tissues during fetal development (10,
11). However, it has been increasingly recognized that ILC3s play a role in lung immunity. Like
other ILC populations, ILC3s require IL-7R signaling and derive from Id2 expressing progenitor
cells (12). ILC3s also express the transcription factor RORgt, which differentiates them from ILC1 or
ILC2 cells. This review will highlight recent advances in ILC3 biology in the lung.
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REGULATION OF ILC3 IN THE LUNG

ILC3s localized to the lung are ideally positioned to regulate
mucosal immunity within the context of constant exposure to
environmental insults. Indeed, in newborn mice, insulin-like
growth factor 1 (IGF1)-dependent maturation and expansion
of ILC3 precursors in lungs was essential for protection against
respiratory pathogens (13). Importantly, disruption of ILC3
development in neonates resulted in increased susceptibility to
infection into adulthood, emphasizing the importance of early
establishment of these surveyors of lung health. Several
chemokines may facilitate ILC3 positioning in the lung. The
CXCL13-CXCR5 axis has been implicated in localization of ILC3
to inducible bronchial associated lymphoid tissue (iBALT)
structures that develop in the lungs in Mycobacterium
tuberculosis infection in mice (14), while both CCR6 and
CXCR5 were expressed by ILC3s recruited to sites of lung
tumors in patients (15). Trafficking of ILC3s to the lung
during pneumonia was attributed to CCR4 expression, as
deficiency of CCR4 in adoptively transferred ILC3s abrogated
homing to the lungs in newborn mice (16). This study also
demonstrated the possibility that some lung ILC3 populations
may derive from circulating ILC3s. Finally, the CXCR6-CXCL16
axis, which is critical for ILC3 precursor localization to the
mouse lamina propria (17), enabled homing of ILC1 and ILC2
cells to the lung under inflammatory conditions (18).

Further studies that define mechanisms for how ILC3s or
their progenitors traffic to and function in the lung are much-
needed, as research on ILC3s largely centers on the
gastrointestinal tract where large populations of these cells
reside. This gap in knowledge likely stems from the difficulty
of studying these cells, as ILC3s comprise < 5% of total ILCs in
the mouse lung (19). Similarly, in human lungs, frequencies of
IFNg+ ILCs were higher than IL-17+ or IL-22+ ILCs, though
ILC3 and ILC3-like cells encompassed the highest percentage of
total ILCs. However, in chronic obstructive pulmonary disease
that is associated with iBALT and chronic infection, the
percentage of ILC3 cells were increased compared to healthy
lung tissue (20), suggesting that environmental exposures may be
key drivers of ILC3 accumulation and that studies in mice will
need to include modeling such exposures to study ILC3 biology.

Once in the lung, ILC3s are believed to primarily reside in
their resident tissue. Parabiosis studies in uninfected mice
revealed that > 95% of all ILCs from various tissues were of
host origin (21), though ILC3s were not analyzed in the lungs,
perhaps due to the low numbers of these cells at rest (19).
However, evidence also supports an increase in circulating ILCs
can occur during inflammation. Indeed, helminth infection of
mice induced an increase in circulating ILC2s derived from the
small intestine and lung (22, 23), though only lung-derived ILC2
were able to migrate back into the lung (23). Commensal bacteria
in the intestines of newborn mice were also found to induce
expression of CCR4 on ILC3s, enabling subsequent migration to
the lungs during pneumonia (16). Nevertheless, analysis of
human blood found low numbers of ILC3s in circulation at
rest (24), suggesting that while mature ILC3s may migrate during
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inflammation, the majority of ILC3s may reside and proliferate
within their resident tissue.

As ILC3s do not bear T-cell receptors, other factors including
cytokines, alarmins, and co-stimulatory molecules can mediate
ILC3 stimulation to induce effector function. ILC3s provide
immune surveillance of the lung at the steady state, delivering
immediate innate protection after host exposure to pathogens.
During inflammation, IL-1b and IL-23 stimulate ILC3s to
produce IL-17 and IL-22 (8, 25), which in turn regulate
epithelial barrier function and mediate host response to
infections (8, 26, 27). In the lungs, these cytokines function to
enhance production of antimicrobial proteins, facilitate barrier
repair through promotion of epithelial cell proliferation, and
augment neutrophil recruitment, resulting in increased clearance
of pulmonary pathogens (28–30). Thus, activated ILC3s are well-
poised to provide immediate and direct action toward foreign
antigens. Importantly, ILC2s may also provide IL-17-mediated
benefits upon infection. Indeed, ILC2s from nasal polyps of
cystic fibrosis patients or skin lesions of psoriasis patients
transdifferentiated to an ILC3-like cell—expressing RORgt and
producing IL-17—upon ex vivo stimulation with IL-1b, IL-23,
and TGFb (31, 32). Therefore, given the abundance of ILC2 in
the lung, their potential for plasticity could contribute to ILC3-
attributed functions during inflammation.

The inducible T cell costimulatory molecule (ICOS) may also
stimulate ILC3s in the lung. Differential expression of ICOS,
which is also expressed on T cells, has been observed in both
mouse and human ILC3s (33, 34). However, the role of this
molecule in regulating ILC3 function remains to be fully
determined. Mice deficient in ICOS had no change in the total
amount of ILC3 in the lung at rest compared to their wild-type
counterparts (19), though < 2% of ILCs studied were ILC3s. As
not all ILC3s express ICOS, it is possible in the deficient
background the balance between ICOS+ and ICOS- ILC3s is
shifted, especially since the total population of ILC3s in the lung
at rest is very low (19, 20). Indeed, we have shown administration
of a neutralizing anti-ICOS antibody to mice prior to bacterial
infection resulted in a decrease in Icos expression as well as
expression of Il17 and Il22 after infection with Klebsiella
pneumoniae (33). In addition, ex vivo stimulation of ILC3s
isolated from K. pneumoniae infected mice with ICOS ligand
(ICOSL) resulted in proliferation of cells (33), indicating the
ICOS : ICOSL pathway may be important in mediating ILC3
function and proliferation (Figure 1). Interestingly, mouse and
human ILC2s express both ICOS and functional ICOSL (35)
which can stimulate ICOS+ Treg cells (36), raising the possibility
that a coordinated interplay could also exist between ILC3 and
ICOSL-expressing ILC2. Such interactions could play a key role
in regulating ILC3 activation and providing a swift response
upon pathogen presentation in the lungs.

Recent data also suggests a role for the aryl hydrocarbon
receptor (AhR) in mediating ILC3 function in the lungs. AhR is
an environmental sensor expressed in barrier tissue cells that is
critical for ILC3 maintenance and function in the gut (37).
Within the environment of the lungs, AhR tunes immune
responses to a variety of insults through regulation of ILC3s.
April 2021 | Volume 12 | Article 672523
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Indeed, Ahr-/- mice displayed a decrease in ILC3s during
pulmonary paracoccidioidomycosis (38), indicating this
receptor could be critical for expansion or recruitment of ILC3
to sites of infection within the lung. In support of this, activation
of AhR resulted in recruitment of ILC3 during chronic exposure
of mice to ozone (39).
ILC3s IN BACTERIAL PNEUMONIA

Even in an era of antimicrobial treatments, pneumonia remains
the leading cause of morbidity and mortality in children aged 28
days to 5 years (40, 41). Among the most common etiological
bacterial agents in these cases of pneumonia are pathogens such
as Streptococcus pneumoniae, Streptococcus pyogenes,
Frontiers in Immunology | www.frontiersin.org 3
Pseudomonas aeruginosa, and Klebsiella pneumoniae (41–43).
Since the discovery of the cytokine IL-17 in 1993 and its receptor
in 1995, IL-17 has been demonstrated to be critical in protection
against extracellular bacteria and fungi. Further, the coregulated
cytokine IL-22 has been shown to promote epithelial integrity
and tissue repair at barrier surfaces such as in the gut and lung
following inflammation (44). As ILC3s are maintained in lung
tissue and can rapidly produce IL-17 and IL-22 upon
stimulation, it is clear that they play an important role in the
innate immune response against bacterial pneumonia (45).

Though the discovery of ILC3s is recent, there have been
numerous studies that have linked ILC3s to bacterial clearance in
lung infections. A recent study illustrated that antibody depletion
of IL-17 decreases mouse survival against K. pneumoniae by 50%.
Further, IL-17 induction occurs within the first 3 hours of infection
FIGURE 1 | ILC3-induced antimicrobial and tissue regenerative responses. Depiction of factors that influence both inflammatory and regenerative responses in
ILC3s upon microbial pulmonary infections. During an infection, ILC3s can be stimulated through ICOS: ICOSL interactions or by the cytokines IL-1b and IL-23.
Stimulated ILC3s expand and secrete the cytokines IL-22 and IL-17. Figure created with BioRender.com.
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suggesting it is mediated by innate cells such as ILC3s or gd T cell
rather than Th17 cells. In T- and B-cell-deficient Rag2-/- mice, the
dominant source of IL-17 is ILC3 cells. Depletion of these cells
using anti-CD90 or Rag2-/- mice that also are deficient in Il2rg (a
common cytokine receptor for IL-7, among other cytokines)
ablated IL-17 expression and exacerbated pulmonary infection
with K. pneumoniae (46). It is important to recognize that due to
limited ILC3 depletion models, these studies only illustrate that
ILC3s are sufficient to clear infection in T-cell-deficient mice.
Further studies are required to determine whether ILC3s are
required for clearance. Using single cell RNA sequencing, we
determined IL-17+, IL-22+, and ICOS+ ILC3s are imperative to
protection against carbapenem resistant K. pneumoniae in a
murine challenge model (33). This study also demonstrated that
lung burdens in Rag2/Il2rg-/- mice can be significantly reduced
through the addition of exogenous IL-22.

ILC3s also play a role in the clearance of S. pneumoniae in
murine models of lung infection. One group found that lethal
challenge with intranasal S. pneumoniae resulted in increased IL-
22, IL-17A, and IL-17F expression in lung tissue within 24 hours
suggesting a rapid innate response (45). ILC3s appeared to be
sufficient for this response as infected Rag2-/-mice had no change
in IL-22 levels compared to wild-type controls, while Rag2/
Il2rg-/- mice were unable to produce IL-22 upon S. pneumoniae
infection. While these models demonstrate the utility of ILC3s in
response to S. pneumoniae, future studies are required to
demonstrate their necessity. Boosting of ILC3 function could
prove therapeutic, as treatment with flagellin at the time of S.
pneumoniae infection enhanced IL-22 expression in ILC3s and
decreased bacterial burdens in mice (45). This was supported by
previous findings that treatment with flagellin enhanced ILC3
production of IL-17 and IL-22 in the intestinal lamina propria
and spleen (47, 48). The importance of ILC3s in S. pneumoniae
infections in the neonatal period was demonstrated by Gray et al.
This group found that in newborn mouse lungs, 90% of the cells
producing IL-22 carried the phenotypic markers of ILC3.
Depleting ILC3s by administering diphtheria toxin to
RORgtiDTR newborn mice dramatically increased their
susceptibility to S. pneumoniae and all mice succumbed to
infection within 20 hours. Adoptive transfer of ILC3s into the
ILC3-depleted mice restored their resistance to S. pneumoniae
(16). More recently, it was found that intranasal administration
of interleukin 7, an important factor for RORgt+ cell survival and
homeostasis, increased the number of RORgt+ innate T cells in
the lung, enhanced expression of IL-17A, and reduced bacterial
burdens upon S. pneumoniae challenge (49).

Many additional studies since the early 2000s characterize the
importance of early IL-17 and IL-22 expression in the clearance of
bacterial lung infections. Though these studies do not specifically
investigate ILC3s, the ability of ILC3s to readily produce IL-17 and
IL-22 upon stimulation suggests they are integral in an early IL-17/
IL-22 response (44, 50). Additionally, IL-17 evolutionarily predates
RAG, the protein needed for adaptive immune responses, as
demonstrated by its function in invertebrates (51). This suggests
that animals developed IL-17-dependent innate immune responses
against bacterial pathogens before the advent of Th17 cells. In one
Frontiers in Immunology | www.frontiersin.org 4
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infection, we found that IL-17R knockout mice had significantly
higher bacterial burdens 24 hours post-infection than their wild-
type counterparts (52). A similar study infected IL-17R knockout
and wild-type mice with K. pneumoniae intratracheally and found
that 100% of the IL-17R knockout mice succumbed to infection
within 48 hours. By comparison, only 20% of the wild-type mice
succumbed to infection within the same time frame (53).
Interestingly, intratracheal administration of recombinant CXCL5
was able to decrease bacterial burdens in IL-17R knockout mice
within 2 hours of treatment (52). Though CXCL5 is predominantly
expressed in epithelial cells, ILC3s have been shown to secrete
CXCL5 upon stimulation, further implicating them in bacterial
immunity. It has also been demonstrated that IL-23-dependent IL-
17 production was the most important for survival against K.
pneumoniae challenge in adult mice (54). This is noteworthy as
IL-23 is a potent activator of ILC3s (55). Highlighting the
importance of IL-17 and IL-22 in response to K. pneumoniae
challenge, we demonstrated that bacterial burdens in the lungs
dramatically increase upon depletion of both IL-17 and IL-22 (30).

IL-17 has also been demonstrated to play a key role in
immunity to S. pneumoniae. In a murine model it was
demonstrated that systemic depletion of IL-17 at the time of
infection resulted in persistent bacterial burdens in the
nasopharynx detectable at day 21 post infection (56),
suggesting that IL-17 expression at the time of infection may
prevent pneumococcal colonization. Another study found that
following pneumococcal vaccination, 95% of mice that produced
> 0.3 ng/mL IL-17A upon antigen stimulation were protected
from bacterial colonization (57). A murine intranasal vaccination
study further illustrates the importance of IL-17A in
pneumococcal immunity, as IL-17A neutralization abolished
all vaccination protection while IFNg neutralization had no
impact on vaccine efficacy (58). Though this is likely indicative
of a Th17 response, ILC3s do not produce IFNg suggesting they
are playing a role in the IL-17 dependent protection (12).

Both IL-17 and IL-22 have proven critical in clearing P.
aeruginosa lung infections. A recent study using human
sputum samples found that patients with the highest levels of
IL-17 prior to being placed on a mechanical ventilator did not get
ventilator-associated pneumonia (59). The importance of IL-17
was supported in a murine lung infection model using P.
aeruginosa-infused agar beads. In this study, IL-17R knockout
mice had inhibited clearance of P. aeruginosa infections. Of note,
the authors used a clinical isolate from a cystic fibrosis patient
and found that IL-17R knockout mice had exacerbated bacterial
burdens and increased weight loss 14 days post-infection.
Further, in innate immune cells, IL-17 production appeared to
be dependent on ILC3s as 90% of the IL-17-producing CD3- cells
in the lung carried the phenotypic markers for ILC3s (60).
Regarding IL-22, it was demonstrated in mice that absence of
IL-22 in P. aeruginosa pneumonia enhanced neutrophil
recruitment thus exacerbating lung pathology (61). Supporting
this, a recent study found that IL-22 upregulated IFNl
expression in a murine P. aeruginosa pneumonia model.
Increased IFNl correlated with decreased neutrophil
April 2021 | Volume 12 | Article 672523
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recruitment and knocking out IFNl led to exacerbated lung
inflammation and pathology (62).
ILC3s IN VIRAL LUNG INFECTIONS WITH
IMPLICATIONS FOR COVID-19

Studies investigating ILC3s in viral lung infections are very
limited, with much of the focus centered on ILC2s (63).
However, there have been numerous studies on the effects of
IL-22, a key cytokine of ILC3s, in influenza infections. Though
IL-22 does not appear to reduce viral titers, it has been
demonstrated to reduce disease severity though its functions in
tissue repair and regeneration (64, 65). A recent study by Hebert
et al. found that inflammation from influenza infection could be
significantly reduced by knocking out IL-22 binding protein (IL-
22BP, Il22ra2), a soluble inhibitor to IL-22 (66). Additionally,
this group showed that Il22ra2-/- knockout mice had enhanced
tight junctions during influenza infection promoting tissue
integrity (67). Supporting this was the finding that addition of
exogenous IL-22 in a murine model of influenza infection limited
tissue damage (68).

Expression of IL-22 and IL-17 during viral lung infections also
promotes prevention of secondary bacterial infections. Secondary
bacterial infections commonly occur after moderate to severe
respiratory viral infections and are a significant contributor to
morbidity and mortality (69). During the 2009 H1N1 influenza
pandemic, up to 26% of case-patients had a bacterial co-infection,
which was associated with longer stays in the ICU and a need for
mechanical ventilation (70, 71). Currently it is believed that primary
infection with a virus impairs the function of mucus and cilia in
clearing otherwise normally nonpathogenic bacteria resulting in
opportunistic infection (69). As such, it stands to reason that the
regenerative properties of IL-22 secreted by ILC3s may function in
prevention of secondary bacterial infections. This was recently
demonstrated using a murine model of influenza A (IAV) viral
infection followed by a secondary S. pneumoniae bacterial infection.
The group found that within 2 days of IAV infection there was
upregulation of IL-1b, IL-23, and most importantly IL-22. Further,
the group found an increase of RORgt cells and IL-22+ ILC3s in the
lung. While IL-22-deficient mice had no change in viral clearance,
these same mice had dramatically impaired survival after S.
pneumoniae secondary infection (68). A similar study used
transgenic IL-22BP knockout mice infected with influenza
followed by Staphylococcus aureus or S. pneumoniae challenge.
The study found that IL-22BP knockout mice had increased
bacterial clearance and decreased mortality from secondary
bacterial infection, and improved airway epithelial integrity (72).

IL-17 production during influenza infections was also
demonstrated to promote the clearance of secondary bacterial
infections. One study using a murine model of IAV infection
followed by S. aureus challenge found that overexpression of IL-
23 during infection resulted in enhanced production of IL-17 and
IL-22 and promoted bacterial clearance (73). It was subsequently
demonstrated that IAV infection prior to secondary S. aureus
pneumonia inhibited IL-1b production, decreasing IL-22 and
Frontiers in Immunology | www.frontiersin.org 5
IL-17 expression and worsening the S. aureus infection.
Overexpression of IL-1b during IAV infection rescued the
generation of IL-17 and IL-22 and promoted bacterial
clearance (74).

The emergence of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which causes the acute
respiratory disease COVID-19, has been one of the most severe
pandemics and public health crises of the last century. As a newly
emerged virus, much remains to be elucidated on effective
immune responses distinguishing severe and mild disease. As
COVID-19 is a respiratory disease that shares some symptoms
with influenza, it is possible that ILC3 production of IL-17 and
IL-22 also may serve to limit disease severity. In addition to
benefits in influenza infection (65, 72), it was recently
demonstrated that IL-22 promotes immunity against
respiratory syncytial virus; these benefits of IL-22 may also
extend to SARS-CoV-2 infection (75). Similar to influenza, it
has also been demonstrated that secondary bacterial infections
are common in COVID-19 patients. One study found that of
3,338 total COVID-19 patients, 14.3% developed a secondary
bacterial infection (76). It is likely IL-17 may also play a role in
preventing secondary bacterial infections in COVID-19 patients,
though its role has yet to be demonstrated.

Recently, a function for ILCs has been demonstrated in
COVID-19. Evaluation of the blood from COVID-19 patients
found that severely infected individuals had fewer ILC1, ILC2,
and ILC precursor cells than those with mild disease.
Additionally, ILCs in severely infected individuals had higher
expression of CD69, a marker for activation and tissue homing.
The decrease in blood ILCs coupled with the increase in CD69+
ILCs in severely infected individuals suggests that there is more
tissue homing to the lungs in severe infections (77). Silverstein
et al. corroborate these findings by establishing that a higher ILC
abundance in the blood was associated with less time spent in the
hospital. Further, hospitalized individuals with COVID-19 had
1.78-fold fewer ILCs in the blood (78). Taken together, these
studies illustrate a correlation between decreased ILCs in the
blood periphery and severe SARS-CoV-2 infection. As current
data regarding ILCs in COVID-19 infections are obtained
though analysis of blood, further studies are required to
elucidate their exact role in COVID-19 infection since ILC3s
are predominantly tissue resident.
DISCUSSION

Overall, regulation of ILC3s in both normal and disease states
remains an understudied area of research. It is clear these cells
contribute significantly to mediating disease as an imbalance of
ILC3 has been linked to both COPD and asthma (20, 25). Given
their role in barrier protection from invading pathogens, ILC3s
or their cytokines could be an ideal target for development of
immunotherapies. For example, several groups have FDA
approval to study IL-22 in COVID-19 (79, 80) (completed,
findings pending). Therefore, it is imperative to develop a
complete understanding of how these cells are regulated within
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the microenvironment of the lungs, which should enable
discovery of novel targets for immunotherapeutic development.
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