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Abstract: Four drug delivery systems were formulated by non-covalent functionalization of
carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent
(i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug
used in Parkinson’s disease. The chemical interaction between the coating agent and carbon
nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman
studies. The drug release profiles were revealed to be dependent upon the type of applied coating
material and this could be further adjusted to a desired rate to meet different biomedical conditions.
In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated
conjugates yielded a more prolonged and sustained release pattern compared to the uncoated
conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line.
Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved
the biocompatibility of all systems by 34–41% when the concentration used exceeded 100 µg/mL.
In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug
carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could
facilitate drug delivery to the brain with tunable physicochemical properties.

Keywords: single wall carbon nanotubes; nanomedicine; Parkinson’s disease; 3T3; MTT assay;
biopolymers

1. Introduction

Parkinson’s disease is a chronic degenerative disorder of the central nervous system that
commonly affects one in every 100 adults above 65 years of age [1]. The disease is characterized by low
level of dopamine in the brain and eventually may lead to severe difficulties with body motions such as
rigidity, tremor, unstable posture and slowness of body movements. To manage the disease symptoms,
patients are treated with levodopa (LD). Orally administered LD is absorbed and converted into
dopamine in the brain through the blood–brain barrier (BBB) [2]. However, once administered, LD is
actively metabolized in the periphery as well as in the central nervous system and, only a small amount
reaches the brain. Therefore, to achieve maximum therapeutic efficacy, LD is taken in combination with
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a peripheral decarboxylase inhibitor called carbidopa. This is to prevent LD from being broken down
rapidly in the peripheral system before it reaches the brain [3]. Apart from that, patients receiving
long-term LD therapy generally experience a “wearing off” effect which in turn shortens the duration
of benefit from each dose. Hence, as the treatment progresses, more frequent LD administration is
necessary [4]. This often results in adverse effects such as restlessness, nausea, low blood pressure
and muscle pain. As such, researchers are actively looking into various nanotechnological methods
which could possibly increase LD’s bioavailability in the central nervous system with improved drug
efficacy. The main strategies currently being developed are drug delivery systems [5], efflux pump
mechanisms [6], prodrugs [7], lipophilic analogs, intraventricular drug infusion, hyperosmotic opening
of the BBB and the bypass of the BBB through intracerebral delivery [8,9]. In the field of drug delivery
applications, nanoparticles (carbon nanotubes, dendrimers, liposomes, micelles, etc.) are the most
popular studied nanoscale materials for transportation of different therapeutic agents directly into the
targeted site of action [10].

Among various nanoparticles described above, functionalized carbon nanotubes (CNT) have
evolved as the enthusiastically researched therapeutic carrier for targeted drug delivery to the central
nervous system after the recent discovery of their ability to penetrate cellular membranes [11].
Despite that, transporting molecular drugs into brain is still a crucial challenge and is greatly
restricted due to the existence of the BBB [12]. The BBB is a highly selective semipermeable complex
structure formed by the brain endothelial cells, thereby constituting a physiological barrier that tightly
regulates the passage of ions, molecules and cells between the blood and the brain. Nevertheless,
many successful studies have been reported in the literature regarding the uptake of chemically
functionalized CNT into the brain by different kinds of neural tissue cells such as microglia, neurons
and astrocytes [13–15]. In addition, a recent transformative breakthrough of CNT is in the application
of neural interfaces owing to their electrically conductive properties which arise from the conjugated
π–electron systems [16]. Structurally, the nanotubes not only possess anisotropic conductivity features
which mimic to those of neurons but also having dimension parallel to that of dendrites (the branched
protuberance from neurons). Motivated by this fact, a group of scientists conducted in vivo chronic
studies in Parkinsonian rodents and they discovered that CNT fiber microelectrodes are capable
in stimulating mouse neurons as effectively as metal electrodes while producing lower levels of
inflammation [17]. This implies that electrical stimulation of the nervous system can be used to treat
symptomatic conditions related to Parkinson’s disease and therefore, could further help patients
recover muscular and sensory functions.

In this elementary work, carboxylated single walled carbon nanotubes (SWCNT) were chosen
as the nanoparticle-mediated delivery carrier due to their intrinsic nanostructure (length-to-diameter
ratio of up to 132,000,000:1), high cargo loading capacity, ultralight weight, non-immunogenic property
and good chemical stability [18]. As a nanoscale platform for drug delivery, their external surfaces can
be chemically functionalized with desired bioactive peptides [19], genes [20] or drugs [21], while their
internal cavities can be encapsulated with bioactive molecules [22]. Furthermore, these nanomaterials
are capable of transporting and translocating therapeutic molecules directly into the targeted cell
cytoplasm through nanoneedle-like mechanism without inducing cellular apoptosis [23]. However,
despite all the potential advantages highlighted above, pure nanotubes are highly hydrophobic in
nature due to the van der Waals forces and tend to form aggregates which may cause characteristic
cell changes and apoptosis when administered into human body. To overcome this technical barrier,
scientists used to attach hydrophilic functional groups such as hexadecyltrimethylammonium bromide,
sodium dodecyl sulfate [24], sodium cholate [25] onto the hydrophobic surfaces of SWCNT as an
attempt to impart water-solubility and biocompatibility to the nanotubes. Even though chemically
modified CNT have proven to enhance dispersibility in aqueous medium, there are findings suggested
that surface functionalization of carboxyl and hydroxyl groups may contribute to a higher extent of
in vitro cytotoxicity as compared to non-functionalized ones [26]. To further avoid the cytotoxicity
possibly induced by the functionalized SWCNT, we aimed to incorporate LD into four different
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biopolymer coatings, namely Tween 20, Tween 80, chitosan and polyethylene glycol, based on
carboxylated SWCNT as an effort to improve the delivery of LD in a more sustained and effective
manner. These coating agents are reported to efficiently disperse bundled nanotubes into aqueous
suspension of individual nanotubes by stabilizing the effect of their hydrophobic surfaces.

Tween 20 (T2) and Tween 80 (T8), as non-ionic polyoxyethylene surfactants, have been widely used
in the preparation of pharmaceutical and consumable products for both preventing non-specific surface
adsorption and as stabilizers against protein aggregation [27,28]. In fact, nanoparticles that are coated
with Tweens were found to be able to specifically transport several drugs such as doxorubicin [29],
loperamide [30], tacrine [31], tubocurarine [32] and hexapeptide dalargin [33] to the brain after
administration by enhancing the permeability of the BBB. These Tween series can be distinguished
by the content of fatty acid esters with the monooleate fraction of T8 making up to >58% and the
monolaurate fraction of T2 making up to approximately 40–60% of the mixture [34]. The chemical
structures of the Tween molecules are shown in Scheme 1.
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Chitosan (CS), a linear polysaccharide obtained by alkaline deacetylation of crustacean chitin,
has been prominently used for surface coating of CNT for various drug delivery systems [35] due to
its biodegradable, biocompatible, non-toxic and antimicrobial property. This abundantly available
biopolymer can impart aqueous solubility and, thus, improve biological compatibility of CNT for drug
delivery applications. In addition, it can be wrapped around CNT through electrostatic interactions and
hydrophobic forces without a linker [36]. Polyethylene glycol (PG), on the other hand, is considered as a
versatile coating material in the field of nanoparticle-assisted drug delivery system [37]. This non-ionic
material with a monomer unit of –O(CH2)2, is generally known to exhibit very low toxicity and,
hence, it is widely used as part of the pharmaceutical formulations in suppository, water-soluble
ointment and pill. Due to its polar (from oxygen atom) and non-polar (from (CH2)2) groups, it has
also been commonly used as a vehicle for the loading of hydrophobic drug molecules to improve
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their dissolution characteristics or aqueous solubility [38]. Furthermore, the circulation time of the
PG-coated drug delivery system in the bloodstream can be extended from approximately 1 h to
1–2 days [39]. The chemical structures of CS and PG are demonstrated in Scheme 1.

For this study, we prepared and investigated the drug delivery profiles of LD-loaded carboxylated
SWCNT (SWLD) in the presence of four different biopolymer coatings. The prepared samples were
denoted as T2-SWLD (SWLD coated with Tween 20), T8-SWLD (SWLD coated with Tween 80),
CS-SWLD (SWLD coated with chitosan) and PG-SWLD (SWLD coated with polyethylene glycol).
We then evaluated the cytotoxicity effect of these coating agents on standard mouse embryonic
fibroblasts 3T3 cell line because of their capacity for self-renewal, tissue remodeling and repair [40].
At present, there are no experimental studies concerning the cytotoxicity of SWCNT, especially on
drug-conjugated CNT with the extensively used T2, T8, CS and PG coating agents on normal standard
fibroblasts. It is critically important to evaluate the toxicity of CNT conjugates since these coating
materials are frequently being used in research laboratories and manufacturing industries.

2. Materials and Methods

Commercial SWCNT functionalized with carboxyl group (–COOH) were used as the drug delivery
platform. The nanotubes of 90% purity were purchased from Chengdu Organic Chemicals Co. Ltd.,
Chinese Academy of Sciences (Chengdu, China) and used without further purification. Their main
characteristics are given in Table 1. Pure commercial LD (C9H11NO4, molecular weight 197.19) of 99%
purity and PG (average molecular weight 300) were obtained from Acros Organics (Geel, Belgium).
T2 (C58H114O26, polyoxyethylenesorbitan monolaurate), T8 (C64H124O26, polyoxyethylenesorbitan
monooleate), CS (low molecular weight chitosan with 75–85% degree of deacetylation), phosphate
buffered saline (PBS) solution and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
powder were obtained from Sigma-Aldrich (Saint Louis, MO, USA). PBS solution was prepared using
PBS buffer tablet (pH 7.4) dissolved in 1 L of deionized water. Aqueous acetic acid solution of 99.8%
purity was obtained from HmbG Chemicals (Hamburg, Germany) and was used as solvent for CS.
Penicillin-streptomycin antibiotic, fetal bovine serum (FBS) and trypsin-EDTA were purchased from
PAA Laboratories (Pasching, Austria). RPMI 1640 with L-glutamine was purchased from Nacalai
Tesque Inc (Kyoto, Japan). Healthy fibroblast cell line (3T3) derived from mouse embryonic fibroblasts
were supplied by the American Type Culture Collection (ATCC, Manassas, VA, USA). Analytical
grade preparations were used for all the solvents and buffer solutions. Mili-Q plus System (Millipore,
Burlington, MA, USA) was used for the preparation of deionized water and used in all experiments
unless specified otherwise.

Table 1. Characteristics of the commercial SWCNT provided by Chengdu Organic Chemicals Co. Ltd.

Type OD (nm) Length (µm) Functional Group Content (wt %) Production Method

Short SWCNT 1–2 1–3 2.73 Chemical vapor deposition

2.1. Instruments and Measurements

Fourier transform infrared (FTIR) analysis was used for characterization of functional groups
using a Thermo Nicolet Nexus 671 spectrophotometer (model Smart Orbit) employing the KBr disc
method, except for T2 and T8 by a direct deposition approach. Infrared spectra of the samples were
measured in the range from 500 to 4000 cm−1 with 32 scans at a resolution of 2 cm−1. To estimate the
degree of functionalization and imperfection of the samples, the intensity ratio of the D to G modes
(ID/IG), Raman spectroscopy measurements were performed using a UHTs 300 Raman spectrometer
(WITec, Germany) at a wavelength of 532 nm. To study the surface morphology of the samples,
field emission scanning electronic microscopy (FESEM) was conducted using a Nova NanoSEM
230 microscope (FEI, Hillsboro, OR, USA) equipped with a field emission gun. Acceleration voltages
applied were 10 kV at magnification of 200,000×. UV-Visible Lambda 35 spectroscopy (Perkin Elmer,
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Waltham, MA, USA) was used for LD concentration measurement for drug loading and drug release
experiments. The polymer content of the coated SWCNT samples (without LD conjugation) namely
T2-SWCNT, T8-SWCNT, CS-SWCNT and PG-SWCNT was investigated by thermogravimetric analysis
(TGA) using a TA Instruments model Q500 (New Castle, DE, USA). The coating percentage of
each biopolymer sample, T2-SWCNT, T8-SWCNT, CS-SWCNT and PG-SWCNT was found to be
approximately 19%, 56%, 16% and 5%, respectively.

2.2. Preparation of Drug Loading onto Carbon Nanotubes

The loading of LD onto SWCNT functionalized with carboxylic acid moiety was conducted
following previous method with some slight adjustment [41]. Briefly, 50 mg LD was dissolved in
400 mL of deionized water at the optimized drug concentration of 0.125 mg/mL. Approximately
400 mg nanotubes were dispersed into the drug solution and sonicated in a water bath for 30 min
at room temperature. This was followed by continuous magnetic stirring for 24 h in the dark to
maintain drug activity. The suspension was slowly adjusted to pH 4.0 for optimum absorption of
LD onto nanotubes. Subsequently, the suspension was then centrifuged for 10 min at 4000 rpm,
filtrated and rinsed with deionized water (3 cycles) and oven dried at 60 ◦C. The solid product (SWLD)
was powdered and kept in a sample bottle for further use while the supernatant residue containing
unbound LD was collected for the determination of drug loading capacity of SWCNT.

The amount of unbound LD in the supernatant was measured by a UV-Vis spectrophotometer
at 280 nm (the characteristic absorbance wavelength of LD) with respect to the calibration curve
accomplished under the same conditions. The results were then used to estimate the drug loading
capacity according to the following equation:

Drug loading capacity (%) = (Winitial LD −Wunbound LD)/Winitial LD (1)

where W is the weight in mg, and Winitial LD and Wunbound LD are the initial amount of LD and the
amount of unbound LD in the supernatant residue, respectively. Using the equation, the LD loading
capacity was calculated to be about 38%.

2.3. Preparation of Biopolymer Wrapping onto Drug-Loaded Carbon Nanotubes

Four different types of biopolymer, namely T2, T8, PG and CS were employed to enhance the
biocompatibility level of SWLD through non-covalent surface wrapping. Briefly, SWLD (100 mg) were
added into deionized water (100 mL) containing 1% T2, T8, PG or 0.5% CS (v/v) and magnetically
stirred at room temperature for 24 h. After that, the biopolymer-wrapped SWLD was centrifuged and
rinsed thoroughly with deionized water to remove any unbound polymer. Finally, the solid product
was left to dry completely in an oven at 60 ◦C. The resulting products were named according to the
corresponding biopolymer as T2-SWLD, T8-SWLD, PG-SWLD and CS-SWLD.

2.4. In Vitro Drug Release of LD

To study the drug release profile at 37 ◦C, 1 mg of sample was added into 3.5 mL of PBS solution
at two different pH levels, i.e., pH 7.4 (to represent physiological environment) and 4.8 (to mimic
human stomach after food intake). The experiment was then terminated upon reaching saturation and
the accumulated release amount of LD in the medium was analyzed using UV-Vis spectroscopy at
preset time intervals measured at 280 nm. The drug release results were fitted to five mathematical
kinetic equations, i.e., zeroth order, first order, second order, Higuchi and Korsmeyer–Peppas models
to study the release mechanism of LD from different types of biopolymer wrapped nanotubes.

2.5. Cell Culture

The 3T3 normal cell lines were cultured in a T25 culture flask in RPMI 1640 medium supplemented
with 10% FBS and 1% penicillin/streptomycin (100 units/mL penicillin and 100 µg/mL streptomycin)
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in a humidified atmosphere at 37 ◦C in which the CO2 level was maintained at 5%. When reached
80% confluence, cells were subcultured in a new culture flask for seeding and treatment purpose
using 0.25% trypsin-EDTA solution. To measure cell viability, cultured cells were seeded at a density
of 1 × 104 cells per well in 100 µL of culture medium into 96 well plate and incubated for 24 h to
allow cell attachment. After that, the medium was replaced with fresh mediums containing T2-SWLD,
T8-SWLD, CS-SWLD, PG-SWLD, SWLD and LD at various concentrations, and the treated cells were
incubated for 72 h at 37 ◦C.

2.6. Cell Viability Assay

The in vitro cell cytotoxicity was assessed by the MTT assay through addition of 20 µL solution of
freshly prepared MTT reagent (5 mg/mL in PBS) and incubation for 3 h at 37 ◦C until a purple colored
formazan product developed. Then, the medium was discarded and replaced by 100 µL of dimethyl
sulfoxide to dissolve the formazan. The absorbance was read on an absorbance reader model EL 800X
(Winooski, VT, USA) after 1 h of incubation at a wavelength of 570 nm. All assays were done with
three parallel samples in triplicate independently. The cytotoxicity of the samples was calculated as
the percentage of cell viability with respect to control cells using the following equation:

Cell viability (%) = Abssample/Abscontrol × 100 (2)

where Abssample refers to the absorbance of the treated cells and Abscontrol indicates the absorbance of
the untreated cells.

2.7. Statistical Analysis

The obtained results were performed using the Statistical Package for Social Science (SPSS) version
22.0 software (Armonk, NY, USA) and data were expressed as mean ± standard deviation of triplicate.
The results were analyzed by one-way analysis of variance (ANOVA). A probability of p < 0.05 was
considered statistically significant.

3. Results

3.1. Characterization

The FTIR spectra of SWLD, pure T2 and T2-SWLD are demonstrated in Figure 1a. Characteristic
absorption peaks of T2 were observed at 3487, 2858, 1734, 1458 and 1092 cm−1, corresponding to the
functional groups of –OH, –CH2, –C=O, –CH3 and –CO, respectively. Majority of the band positions
of T2-SWLD are very similar to those of T2, with a slight shift to the lower wavenumber region,
suggesting that significant chemical interaction between SWLD and T2 has taken place. Apart from
that, the relative intensities of those bands were also detected in T8-SWLD, as shown in Figure 1b.
This is because the molecular structure of T8 is quite similar to that of T2, except that T8 consists of
mostly oleic acid. The FTIR characteristics of SWLD conjugate has already been extensively discussed
in our previous work [41].

The FTIR spectrum of pure CS in Figure 1c showed that the broad absorption band corresponding
to –OH and –NH stretching vibrations of alcohol and amine groups was observed at 3444 cm−1.
The weak absorption band at 2925 cm−1 corresponds to the –CH stretching vibration of hydrocarbon
while the band at 1640 cm−1 is attributed to the stretching of –C=O of acetamide group in CS.
The absorption bands at 1420 and 1384 cm−1 are associated with the bending vibration of –CH
and stretching vibration of –CN functional groups, respectively. In addition, the symmetric stretching
vibration of C–O–C produced the broad peak at 1091 cm−1. For CS-wrapped SWLD, stretching
vibrations from –OH, –NH, –CH and C–O–C were still observed at 3435, 2915, 2849 and 1169 cm−1,
respectively, but they were slightly shifted to the right region. On the other hand, a new band was
formed at 1577 cm−1 indicating the presence of –NH2 bending vibration from the pure CS molecules.
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The interaction of SWLD conjugate coated with PG is confirmed by FTIR spectra, as shown in
Figure 1d. Intense absorption bands for PG-SWLD conjugate were observed at 3437, 2914, 2850, 1722,
1575 and 1097 cm−1. The FTIR band at 3437 cm−1 is attributed to –OH stretching vibration of the
hydroxyl group in carboxylated nanotubes and PG molecules. The aliphatic –CH stretching was
observed at 2914 and 2850 cm−1, while the –CH bending vibration was seen centered at 1575 cm−1.
The absorption band at 1097 cm−1 shifted towards lower frequency compared to band at 1104 cm−1

for pure PG is due to the conjugation of C–O–C functional group with nanotubes. In addition,
the absorption band due to –C=O stretching mode was seen located at 1722 cm−1 which is due to the
carboxylic acid group in carboxylated nanotubes.
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Figure 1. FTIR spectra of: SWLD, T2, T2-SWLD in (A); T8, T8-SWLD in (B); CS, CS-SWLD in (C) and
PG, PG-SWLD in (D).

Based on Figure 2, the characteristic features of the graphitic layers in SWCNT were found in the
region of 1346 cm−1 (disorder-induced D mode) and 1579 cm−1 (tangential G mode). The G mode
refers to the main vibrational stretching of the graphene in two-dimensional hexagonal lattices, whereas
D mode is correlated with the existence of structural defects. These two essential modes of the SWCNT
were also detected in the Raman spectra of all coated conjugates and the data are summarized in
Table 2. In addition, another important peak, the radial breathing mode (RBM), was seen in the range of
100–300 cm−1 for all nanotubes samples, indicating that the structure of the nanotubes has not changed
after drug loading and coating process. This important phonon mode in Raman spectra provides
information on the nanotubes geometrical parameters and its frequency is inversely proportional to
the diameter of a CNT [42]. It is interesting to note that only CS-SWLD conjugate presented the highest
Raman intensity with a sharp narrow G mode of all the studied samples. This could be correlated with
the changes in orientation effect due to the crystalline supramolecular structure of the CS polymer
during the coating treatment [43].
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On the other hand, the increase in the intensity ratio between D and G mode (ID/IG) of the
carboxylated SWCNT reflects the relative degree of functionalization or the extent of structural defects
present in the nanotubes [44]. The ID/IG for all the coated conjugates showed an enhanced value
compared to that of SWLD, indicating that the biopolymers generated large cavity after coating
treatment, which led to high defect density in SWLD (Table 2). However, this is not the case for
CS-SWLD conjugate, in which the intensity ratio of ID/IG value decreased significantly from 0.292 to
0.136. This result implies that CS provides the best coverage on SWLD as a protective coating layer.
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CS-SWLD conjugates. Inset shows the Raman spectra of the RBM region for all the samples.

Table 2. The wavenumber and relative intensity of the D and G mode of all the samples.

Samples D Mode (cm−1) G Mode (cm−1) ID/IG

SWCNT (without coating and LD) 1346 1579 0.279
SWLD (without coating) 1350 1579 0.292

T2-SWLD 1342 1583 0.520
T8-SWLD 1350 1591 0.804
CS-SWLD 1342 1583 0.136
PG-SWLD 1350 1587 0.863

Figure 3 presents the FESEM surface morphologies of the starting material (carboxylated SWCNT),
SWLD and biopolymer-coated SWLD conjugates. It is worth noting that the characteristic tubular
feature of the nanotubes is well preserved under all these various surface functionalization steps
(drug loading and coating treatment). In particular, CS-SWLD (Figure 3e) was seen to reveal a denser
and more compact surface morphology when compared to the others and this explained satisfactorily
the decrease of ID/IG value, an indicator of defect density, obtained in Table 2.
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3.2. In Vitro Drug Release of LD

The pH of the release media is a crucial factor for studying drug release process in nanoparticles.
Therefore, we investigated the effect of LD in different pH levels, particularly at pH 7.4 and pH 4.8,
based on a real-time cumulative drug release experiment. A slightly alkaline pH value of 7.4 was
chosen to simulate the physiological environment of human body, whereas pH 4.8 is to mimic the
condition of human stomach after food consumption. Based on Figure 4a, initial drug release (or better
known as burst release) for biopolymer coated samples was observed to reduce considerably from
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32% (uncoated SWLD) to approximately 7–15% in the first 30 min. Burst release is a phenomenon
in which an initial large bolus of drug is released immediately upon placement in the release media
before reaching stable condition. The burst effect is useful in certain medical applications such as
wound treatment to promote immediate pain relief. However, it is not favorable in this context
because it can lead to negative consequences such as local or systemic toxicity due to initial high drug
concentrations and short half-life of drugs in vivo [45]. Therefore, an effective coating system such
as surfactant (e.g., Tweens) or biocompatible polymer (e.g., CS and PG) is desired to protect the drug
from fast-release and, at the same time, allow sustained release to prolong the therapeutic action of
drug in the circulation half-life. In addition, this may greatly benefit the treatment for PD patients
being that LD’s elimination half-life is relatively short, about 50 min, without carbidopa [46].

At pH 7.4, LD was released at a slow and sustained manner from SWLD, T2-SWLD, T8-SWLD,
CS-SWLD and PG-SWLD, to the extent of around 89%, 36%, 40%, 45% and 80%, respectively,
after 1500 min (Figure 4a). On the other hand, a faster but lower amount of LD was released at
pH 4.8 from SWLD (~44%), T2-SWLD (~13%), T8-SWLD (~36%), CS-SWLD (~22%) and PG-SWLD
(~43%) until a plateau was reached at approximately 600 min (Figure 4b). The rapid release of LD
into pH 4.8 at the initial stage could be affected by the acidity of the medium which leads to partial
dissolution of the polymers. Overall, the release rate of LD at pH 7.4 was found to be remarkably
higher than that at pH 4.8, suggesting that the release mechanism of LD is pH-triggered. In the neutral
environment (pH 7.4), the hydrophilic groups of –COOH will facilitate the release of LD as the polymer
swelled in the medium. However, the hydrophilic –COOH changed to hydrophobic when exposed to
acidic environment (pH 4.8), and tended to form aggregates, possibly by electrostatic interactions [47],
hindering the release of LD into the acidic medium.

As an ideal carrier for targeted drug delivery, the administration, absorption and transportation
of CNT must be carefully investigated to achieve optimum therapeutic effects. The commonly studied
routes of CNT administration include oral [48,49] and injection (subcutaneous injection, abdominal
injection and intravenous injection) [50,51]. The pH study (Figure 4) shows that LD is easily released
at pH 7.4 which is the blood pH, suggesting that the intravenous delivery is a possible way of
administration. According to the literature, well-functionalized CNT are not retained in the mice
reticuloendothelial system (e.g., liver and spleen) upon intravenous injection and they are gradually
excreted via fecal and renal pathways [52]. As compared to injection, oral is a preferable mode of
administration as it is a non-invasive route and widely accepted by patients. However, the greatest
challenge exhibited by orally administered LD is its low bioavailability (~30%) which is caused by the
metabolism of decarboxylase enzyme in the gut wall [53]. The LD release experiment in this study
showed that, generally, the polymer-coated drug conjugates have a higher release at pH 7.4 compared
to pH 4.8, indicating that LD will not be released in the stomach but release in the small intestines.
In addition, some CNT might also be readily absorbed into the blood stream, thereby further improve
the bioavailability of LD and leads to reduction in the frequency of LD administration.

In general, it was found that the drug release characteristic of LD from PG-SWLD exhibited the
highest release rate. This could be mainly associated with the polymer’s hydrophilic property which
further improves the dispersibility of the hydrophobic nanotubes in the release medium [54]. For the
case of Tween-coated conjugates, there were significant differences between the release pattern of
LD, in which T8-SWLD demonstrated a higher release rate compared to T2-SWLD at both pH levels.
This observation is in line with the chemical structure characterized by T2 and T8 based on their
hydrophilic–lipophilic balance (HLB) values. T8 is the most lipophilic in nature (HLB = 15.0) when
compared to T2 (HLB = 16.7) and, hence, the former has a higher affinity for lipophilic drugs such
as LD. Consequently, more LD molecules are available for diffusion into the outermost layer of the
water-filled surface coating and caused a constant slow release into the PBS medium. In addition,
the difference in the release rate can be attributed to the various degree of swelling triggered by
the repulsion forces among the ionized –COO– groups in the polymeric chain of the two Tween
surfactants [55]. To understand further the difference in the drug release pattern of LD from the
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surface-coated conjugates, we performed a detailed kinetic analysis of the considered drug from the
nanoparticle formulation as the dissolution kinetics governs the bioavailability of the drug.
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Five mathematical kinetic models were compared with the aid of equations presented in Table 3
and the correlation coefficient values (R2) obtained using these models are also summarized in Table 3.
Based on the release kinetics data and the R2 values, the release profiles of LD were found to govern
by the pseudo-second order (R2 = 0.9983–0.9996). This could be attributed to the dissolution kinetics
of ions exchanged between the surface-coated SWLD and the anions in the release medium [56].
The model is usually characterized by its linear form, as demonstrated in Figure 5. The rate-controlling
step in the drug release process could be due to chemisorption, where the exchange of electrons occurs
between the polymer and LD through diffusion mechanism. This is in agreement with previous
works on kinetic studies, where the diffusion process is the responsible mechanism that governed the
pseudo-second order kinetic [57,58]. On the contrary, when the release medium was changed to pH 4.8,
the release profiles of LD from the coated conjugates could not be generalized to a specific equation
as they follow different kinetics order for different materials. Thus, it is impossible to elucidate the
release profiles of LD in acidic pH compared to neutral pH.
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Table 3. Correlation coefficients obtained by fitting the release of LD from biocompatible
polymer-coated conjugates into PBS solutions at pH 7.4 and 4.8.

Formulation Correlation Coefficient, R2

Zeroth order
(qt = q0 + k0t)

Pseudo-first order
(ln(qe − qt) = ln qe − k1t)

Pseudo-second order
( t

qt
= 1

k2q2
e
+ t

qe
)

Korsmeyer–Peppas
model ( qt

q∞
= ktn)

Higuchi model
(qt = kH

√
t)

PBS solution at pH 7.4

SWLD 0.8980 0.9503 0.9989 0.9868 0.9651
T2-SWLD 0.7748 0.9847 0.9996 0.9065 0.8762
T8-SWLD 0.9255 0.9917 0.9983 0.9844 0.9811
CS-SWLD 0.8777 0.9735 0.9990 0.9755 0.9485
PG-SWLD 0.8960 0.9899 0.9987 0.9812 0.9637

PBS solution at pH 4.8

SWLD 0.5839 0.9944 0.9953 0.7854 0.7134
T2-SWLD 0.9071 0.9552 0.9123 0.9650 0.9487
T8-SWLD 0.9802 0.9480 0.8508 0.9656 0.9427
CS-SWLD 0.6551 0.9392 0.9971 0.8516 0.7756
PG-SWLD 0.9249 0.9818 0.9953 0.9786 0.9761

Note: qt, qe and q∞ represent the released amount of drug in time t, at equilibrium and at infinite time, respectively.
k0, k1, k2 and kH indicate the equilibrium rate constants of the models.
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3.3. In Vitro Cytotoxicity Assay

Mouse embryonic 3T3 fibroblasts were chosen in this initial screening experiment because they
represent a non-cancerous (normal) and sensitive cell line. These cells are most commonly used in
basal cytotoxicity testing as they are inexpensive, standardized and relatively easy to use [59,60].
The cytotoxicity effect of T2-SWLD, T8-SWLD, CS-SWLD, PG-SWLD, SWLD and LD as determined
by MTT assay is demonstrated in Figure 6 and the statistical analysis of the MTT data is summarized
in Table 4. As shown in Figure 6, the viability of 3T3 cells treated with increasing concentrations of
LD (from 1.56 to 100 µg/mL) resulted in a concentration-dependent decrease as compared to the
control. This observation is in accordance with the MTT result published by Kura et al., in which the
cell viability of 3T3 cells exposed to pure LD after 72 h of incubation was reduced by more than 50%
when the concentration exceeded 100 µg/mL [61]. Therefore, based on our findings, we conclude that
higher concentration of LD (>50 µg/mL) may contribute to inhibition of cell proliferation and then
led to apoptosis. In addition, SWLD alone showed a cytotoxicity effect in a concentration-dependent
manner which demonstrated approximately 50% reduction when concentration exceeded 50 µg/mL.
The decrease in cell viability was attributed to the effect of van der Waals forces among the nanotubes
and the nanotubes agglomeration may induce a great potential effect in cytotoxicity. Moreover,
different production methods may generate changes to their surface characteristics because CNT are
known to interact with hydrophobic organic compounds.

To mask the cytotoxicity effect induced by both LD and SWCNT, we subsequently coated
SWLD with T2, T8, CS and PG. All four coated formulations did not affect the viability of 3T3
cells in the tested concentration range and maintained greater than 70% cell viability even at
100 µg/mL. These preliminary results indicated that the coating treatment has significantly improved
the system’s biocompatibility, and, thus, they are safe to be used for further experiments. Nevertheless,
for this new class of nanomaterials, the viability assay of selection has to be ascertained because
the interaction between MTT-formazan and SWCNT are highly possible to occur, as reported in
the literature [62]. MTT is metabolically reduced to water-insoluble purple formazan crystals by
the mitochondrial dehydrogenase and these tetrazolium crystals are then clumped with CNT in the
reaction. Consequently, a reduction of MTT-formazan content is detected due to loss of crystals attached
to SWCNT and thereby, introducing a fake cytotoxic effect within the assay. As such, to accurately
assess the cytotoxicity of these conjugates further investigations are necessary and critical using several
well established independent test methods. Among them are lactate dehydrogenase, water-soluble
tetrazolium salts (WST) (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide)
(XTT) and iodonitrotetrazolium chloride assay (INT), and these assessments are currently underway.
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Table 4. In vitro 3T3 cell viability of T2-SWLD, T8-SWLD, CS-SWLD, PG-SWLD, SWLD and LD
obtained by MTT assay (mean ± SD, n = 3). Different alphabets indicate statistically significant
differences of the cell viability made between the concentrations of the same compound (ANOVA:
Duncan’s test, p < 0.05).

Concentration
(µg/mL)

Cell Viability (%)

T2-SWLD T8-SWLD CS-SWLD PG-SWLD SWLD LD

1.56 93.1 ± 3.6 a 86.7 ± 4.9 a 95.6 ± 0.8 a 92.1 ± 3.5 a 83.3 ± 3.8 a 89.4 ± 5.1 b

3.12 84.5 ± 1.9 c 80.7 ± 5.9 b 86.7 ± 1.6 b,c 85.7 ± 5.1 b 77.1 ± 4.5 a,b 97.8 ± 4.7 a

6.25 87.4 ± 1.7 b 77.5 ± 3.3 b,c 89.6 ± 3.2 b 82.4 ± 1.4 b,c 71.5 ± 4.8 b,c 79.8 ± 5.8 c

12.50 84.1 ± 0.8 c 72.5 ± 6.9 c,d 90.7 ± 0.8 a,b 85.2 ± 2.0 b 81.1 ± 3.9 a 76.4 ± 4.5 c

25.00 67.9 ± 2.7 d,e 70.8 ± 6.3 d 83.6 ± 3.5 c 79.9 ±3.7 c 62.7 ± 3.9 c 79.5 ± 1.5 c

50.00 69.5 ± 1.8 d 75.1 ± 0.9 c,d 78.3 ± 3.0 d 75.6 ± 3.3 d 44.6 ± 3.5 d 24.9 ± 1.6 d

100.00 66.8 ± 2.6 e 73.7 ± 0.5 c,d 70.5 ± 1.9 e 68.6 ± 5.5 e 33.1 ± 1.6 e 23.3 ± 1.3 d

4. Conclusions

In brief, we report the design and synthesis of a controlled and sustained-release nanodelivery
platform based on carboxylated CNT in the presence of different coating agents for the delivery of LD.
FTIR analysis showed the presence of functional groups of the coating agents and the drug conjugates,
suggesting that the coating process has taken place. All Raman spectra demonstrated the presence
of RBM and the two characteristic peaks of CNT which are the D and G modes. This indicates that
the structure of the CNT has not changed after drug loading and coating process. The qualitative
calculation of ID/IG for all coated conjugates showed an increased value after the coating treatment
(except for CS-SWLD), suggesting that the biopolymers have generated large cavity and resulted in
a considerably high amount of defect density in the drug conjugates. This phenomenon is further
supported by the FESEM surface morphology analysis. In vitro drug release experiments conducted
in human body-simulated environment at pH 7.4 implied that the drug release profiles of LD were
conformed to the pseudo-second order kinetic model. However, the drug release profiles of LD
performed at pH 4.8 could not be generalized to a specific model. The cumulative release of LD
was observed to exhibit higher release rate at pH 7.4 compared to pH 4.8, indicating that the release
rate is pH-triggered. Cytotoxicity was detected in a concentration-dependent manner when pure LD
and SWLD were exposed to normal fibroblast cells which showed more than 50% reduction in cell
viability at concentration exceeding 50 µg/mL. In contrast, there was no cytotoxicity detected in the
cell viability of these fibroblasts incubated with T2-SWLD, T8-SWLD, CS-SWLD and PG-SWLD with
similar range of concentration. With the addition of surface coating agents, these conjugates suggest
the possibility of a decreased dosing frequency without excessive exposure to large amounts of LD
and at the same time, prolonging LD’s efficacy due to the sustained-release ability of the formulation.
This is greatly beneficial for treating PD patients and thus further increases patients’ compliance.
Nonetheless, there is a need to verify cytotoxicity data with at least two or more independent test
systems using water soluble dyes to replace MTT assay.
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