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Abstract

Transcriptome resources can facilitate to increase yield and quality of walnuts. Finding the

best transcriptome assembly has not been the subject of walnuts research as yet. This

research generated 240,179,782 reads from 11 walnut leaves according to cDNA libraries.

The reads provided a complete de novo transcriptome assembly. Fifteen different transcrip-

tome assemblies were constructed from five different well-known assemblers used in scien-

tific literature with different k-mer lengths (Bridger, BinPacker, SOAPdenovo-Trans, Trinity

and SPAdes) as well as two merging approaches (EvidentialGene and Transfuse). Based

on the four quality metrics of assembly, the results indicated an efficiency in the process of

merging the assemblies after being generated by de novo assemblers. Finally, Evidential-

Gene was recognized as the best assembler for the de novo assembly of the leaf transcrip-

tome in walnut. Among a total number of 183,191 transcripts which were generated by

EvidentialGene, there were 109,413 transcripts capable of protein potential (59.72%) and

104,926 were recognized as ORFs (57.27%). In addition, 79,185 transcripts were predicted

to exist with at least one hit to the Pfam database. A number of 3,931 transcription factors

were identified by BLAST searching against PlnTFDB. Furthermore, 6,591 of the predicted

peptide sequences contained signaling peptides, while 92,704 contained transmembrane

domains. Comparison of the assembled transcripts with transcripts of the walnut and pub-

lished genome assembly for the ‘Chandler’ cultivar using the BLAST algorithm led to identify

a total number of 27,304 and 19,178 homologue transcripts, respectively. De novo transcrip-

tomes in walnut leaves can be developed for the future studies in functional genomics and

genetic studies of walnuts.
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Introduction

Persian walnut (Juglans regia L.) is an important, profitable species of the genus Juglans [1, 2].

The world’s walnut production and harvest area are 3,747,549 tons and 1,186,399 ha, respec-

tively. China, the United States and Iran are among the largest producers of walnut in the

world [3]. Walnut cultivation has a long, archaic history, but opting for breeding programs

have only started in the twentieth century. Designing breeding programs using molecular

tools have mostly been done in China, the USA, France, Turkey and Iran [4]. The main objec-

tives of breeding programs for the Persian walnut is to achieve specific traits such as late leaf-

ing, lateral bearing, good kernel color, high yield, ease of shell cracking, late flowering, early

harvest dates and resistance to major diseases. In particular, the prevalence of walnut blight

and anthracnose among cultivars has provided good potential for research, which may or may

not be coupled with the induction of tolerance to abiotic stresses (e.g. drought and salinity) for

rootstocks [2, 4].

Juglans regia has a diploid genetic structure, with 2n = 32 chromosomes. It has approxi-

mately 606 Mb per 1C genome [5]. Nonetheless, the current information on the genetic

modalities of walnut is not as comprehensive as it should be, and the provision of more genetic

information can assist researchers in developing efficient breeding strategies for further

improvements.

RNA sequencing (RNA-Seq) is a promising application of next generation sequencing

(NGS) that has been successfully used for analyzing the entire transcriptome, even for non-

model plants such as walnut that lack a complete reference genome [6]. This method enables

researchers to identify transcriptome structures, novel transcripts, genes that are differentially

expressed, alternative splicing and genetic variants (such as single nucleotide polymorphism)

[7]. In addition, the RNA-Seq method can be applied in molecular breeding, especially in rela-

tion to research that promote the development of molecular markers [8].

In certain occasions, reference genomes are not available to researchers. A reference tran-

scriptome can be built from RNA-Seq data through de novo transcriptome assembly. However,

there is a great challenge in terms of accuracy in assembling an RNA-Seq dataset for reliable

downstream genetic analysis, which is partly due to the lack of a unique approach to the disci-

pline [9]. Accordingly, there is a clear absence of knowledge about the most suitable assem-

bling algorithms and the best k-mer length for assembling vast amounts of RNA-Seq reads. In

this context, there have been few studies about the walnut transcriptome. For instance, more

than 49.9 million sequencing reads have been made possible in four organs of walnut (i.e. leaf,

bud, female flowers and male flowers). These sequencing reads have been carried out by the

Illumina sequencing technology [10], through the process of which one assembly of software is

used (Trinity, version 2.0.6). In a previous research, 117,229 transcripts were discovered (N50

of 1955 bp) and, in another study, the Trinity assembly was used for assembling 13,2041,772

reads into 111944 transcripts with a mean length of 1,180 bp and an N50 value of 1,833 [11].

Recently, the biodiversity and plant–microbe interactions in the walnut ecosystem have been a

subject of studies using RNA-Seq in California. These were carried out in the context of de
novo transcriptome studies on walnut [12, 13]. Trinity is the only assembler that has been used

for this purpose so far. To the best of our knowledge, no other assembler has been employed to

construct an appropriate transcriptome profile for walnut.

This study was designed in an effort to create new RNA-Seq data from Persian walnut. The

ultimate goal was to construct a comprehensive annotated transcriptome assembly for the Per-

sian walnut. De novo assemblies were constructed with seven independently developed de
novo transcriptome assemblers having various k-mer sizes. The assemblers were, namely, Brid-

ger (version r2014-12-01) [14], BinPacker (version 1.0.0) [15], SOAPdenovo-Trans (version
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1.03) [16], Trinity (version 2.0.6) [17] and rnaSPAdes (version 3.11.1) [18]. Here, there were

two widely-used merging approaches which included EvidentialGene (version 2013.07.27;

http://arthropods.eugenes.org/EvidentialGene/) and the Transfuse approach (version 0.5.0;

https://github.com/cboursnell/transfuse). Considering the applications of these altogether, this

research aimed at a combination of all independent assemblies and led to the production of a

final assembly. Based on different assembly metrics, 15 transcriptome assemblies were evalu-

ated comparatively so as to find the best de novo transcriptome assembly.

Material and methods

Plant material

Self rooted clonally propagated walnuts cv. ‘Chandler’ were used for transcriptome sequenc-

ing. Eleven two-year old plants were transplanted into 2 liter pots containing peat and perlite

(1/1, v/v). Before starting the experiment, the plants were grown in a research greenhouse

under controlled environmental conditions (with 16 h light/8 h dark photoperiod for 30 days).

RNA extraction and cDNA library preparation

The total RNA was isolated from approximately 100 mg of frozen leaf tissue using the RNeasy

plant mini kit (Qiagen) according to the manufacturer’s instructions. The concentration of

RNA was measured with NanoDrop (Thermo Scientific™ NanoDrop 2000) and the purity of

samples were checked on 1% agarose gels for evaluating the 28S and 18S ribosomal RNA

bands (28S/18S ratio). If samples had a ratio (28s/18s) of over 1.8 and an OD 260/280 ratio

greater than 1.9, they were sent to BGI Co. in China for sequencing. In BGI Co., the RNA

integrity number (RIN) was determined using the RIN algorithm of the Agilent Bio analyzer

2100 system (Agilent RNA 6000 Nano Kit, Agilent, Cat No.5067-1511). Only RNA samples

that showed a RIN higher than 7 passed the quality test and were used for cDNA library con-

struction. All cDNA libraries were sequenced using a paired-end strategy (read length, 150 bp)

on an Illumina HiSeq 2000 platform.

Read pre-processing

Raw reads were evaluated qualitatively by the FastQC tool (v0.11.5) (http://www.

bioinformatics.bbsrc.ac.uk/projects/fastqc/). Low quality bases (Q < 20) and adapter

sequences were trimmed using the Trimmomatic (v.0.36) [19] software. Then, clean reads

were screened for errors and corrected accordingly using the Rcorrector software (version

1.0.1). The process is actually a Kmer-based error correction of RNA-Seq reads.

De novo transcriptome assembly

All clean and error-corrected reads were assembled into unique putative transcripts by five dif-

ferent assemblers, namely, Bridger (version r2014-12-01) [14], BinPacker (version 1.0.0) [15],

SOAPdenovo-Trans (version 1.03) [16], Trinity (version 2.0.6) [17] and rnaSPAdes (version

3.11.1) [18]. It is well known that transcriptome assembly algorithms are strongly affected by

k-mer length (i.e. the size of overlapping sequences used in aligning the reads) [20]. Therefore,

two k-mer sizes of 25 and 32 were applied for Bridger, BinPacker and Trinity assemblers. The

SOAPdenovo-Trans was run with k-mer values of k = 25, 31, 41, 51, 61 and 71. Also, the rnaS-

PAdes was run with an automatic route of determining the k-mer lengths. Furthermore, CAP3

was used for producing longer consensus transcripts and for reducing the redundancy of con-

tigs obtained through all assemblers. The mentioned production and reduction were per-

formed by setting the minimal identity (%) of the overlap as 95% [21]. For all methods, the
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minimum transcript length was set at 200 bp. In addition, all transcriptome assemblies that

had been assembled using single k-mer assemblers were then merged into a single assembly

using two different pipelines, namely, EvidentialGene version 2013.07.27; (http://arthropods.

eugenes.org/EvidentialGene/) and the Transfuse v0.5.0 (https://github.com/cboursnell/

transfuse). EvidentialGene pipeline (tr2aacds) is usually known to select an ‘optimal’ set of de
novo assembled transcripts based on the coding potential. The selection is specifically made

from a pool of transcript sequences. This pipeline enables researchers to reduce the complexity

of the de novo transcriptome assemblies by discarding highly similar transcripts, by sequencing

fragments and transcripts with low coding potential [22, 23]. On the other hand, the Transfuse

can intelligently reconstruct and merge multiple de novo transcriptome assemblies [24]. In

total, 15 different transcriptome assemblies were compared with each other in the current

study.

Assembly quality assessment

All assemblies (i.e. 13 individual (single k-mer) and two concatenated transcriptome assem-

blies) were evaluated in terms of accuracy and completeness using typical methods: 1) N50

length (as the shortest contig length representing 50% of the total assembled length) in the

transcriptome assemblies, 2) the total number of contigs, 3) the total number of bps in the

assembly, 4) the percentage of reads that were mapped back to transcriptomes (or reads being

mapped back to the transcriptome RMBT) and 5) the BUSCO analysis (Benchmarking Uni-

versal Single-Copy Orthologs, version 2.0.1) for assessing the degree of annotation [25]. The

assembly statistics (including N50 length and total number of contigs) were calculated using

the TrinityStats.pl from the Trinity package. Bowtie2 (version 2.3.0) was applied in a very-sen-

sitive mode for computing the proportion of clean reads that could be mapped to each assem-

bly [26]. The BUSCO (which is a gene-based quality assessment software) was employed to

assess the completeness of the assemblies in terms of gene content. This was performed using

the OrthoDB v9.1 ‘embryophyta’ base as a reference, which contains 1,440 BUSCO groups. All

15 transcriptome assemblies were evaluated via the mentioned criteria. The assembly with the

best characteristics was selected as the most optimum assembly in terms of performance.

Functional annotation

The best performing assembly was annotated using different databases as well as bioinformat-

ics tools. The assembled transcripts were translated into putative coding sequences by Trans-

Decoder (version v2.0.1, available at http://transdecoder.github.io) using default parameters.

Also, the transcripts were processed through a similarity search against numerous databases at

the transcript and peptide levels. To do this, BLASTX (version 2.3.0) was used for comparing

the transcripts against the NCBI non-redundant (nr) protein database and against the Uni-

ProtKB database (E-value cutoff of 1E-5). Moreover, all predicted proteins (as obtained by

TransDecoder) were processed through a BLASTP (version 2.3.0) search against the three

databases with an E-value cutoff of 1E-5. The results of BLAST were then processed using ‘ana-

lyze_blastPlus_topHit_coverage’ – which is a script of the Trinity package – to assess the frac-

tion of nearly full-length assembled transcripts. In addition, the transcripts were searched for

conserved functional domains and transcription factors against the Pfam database and against

the plant transcription factor database (PlnTFDB) (version 4.0) using both the HMMER tool

(version 3.1b2) [27] and the BLASTn, respectively. The signal peptide and a prediction of the

transmembrane domain were estimated by the signalP (version 4.1) and by the tmTMHMM

server (version 2.0) programs, respectively. Ultimately, these transcripts were searched against

all transcripts of walnut (55,846) which are constantly available in the “Nucleotide” database at
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NCBI and also available in the genome assembly describing the ‘Chandler’ cultivar of walnut

[11].

Results

Sequencing the transcriptome in walnut leaf

A high-quality reference-transcriptome-assembly was constructed by extracting the total RNA

from 11 leaf samples of Persian walnut seedlings. The transcriptome was sequenced by Illu-

mina HiSeq 2000 platform. In total, 240 million paired-end reads (each having a read length of

150-bp) were generated with a GC content that ranged from approximately 44 to 46%. On

average, individual samples yielded 21.8 million (±0.3) reads. After quality trimming, which

also included the correction of errors, a total of 231 million high-quality reads were made for

de novo transcriptome assembly, followed by the relevant analysis. In other words, screening

out poor quality reads (Q<20) led to the removal of 3.77% of the raw reads, implying a very

high quality of the RNA-Seq data. The results pertaining to the RNA sequencing of the 11 sam-

ples were recorded in detail and then summarized (Table 1).

Quality evaluation of the walnut leaf transcriptome assemblies

Five assemblers (i.e. Bridger, BinPacker, SOAPdenovo-Trans, Trinity and SPAdes) were used

along with different k-mer sizes and two merging pipelines (i.e. transfuse and EvidentialGene).

Then, 15 de novo transcriptome assemblies were created for Persian walnut. Fig 1 shows an

overview of the steps concerning the assembly process of pipelines de novo. Part of the objec-

tive was to find the best transcriptome assembly which differs characteristically from the stan-

dard assembly. A summary of the assemblies and their characteristics which are produced by

each assembler (including the different k-mer) are shown in Table 2. The number of assembled

transcripts varied greatly among the assemblies. Additionally, the number of transcripts

decreased when the k-mer lengths of the seven different assemblers increased. In this context,

the highest and the lowest number of assembled transcripts were produced by Transfuse

(379,406 transcripts) and SOAPdenovo-Trans (k-mer = 71; 88,787 transcripts) methods,

respectively. In general, the Transfuse produced about 2 to 5 times more transcripts than the

other assemblers. Like the number of transcripts, the output of assemblers varied considerably

in terms of the contigs length. Among all assemblies, the Transfuse consistently generated the

Table 1. Summary of transcriptome sequencing of J. regia obtained from Illumina HiSeq-2000 platform. QC (Quality control).

Sample Raw result Trimming results %GC Deletion (%)

Total Sequences Total Sequences

1 22326005 21434277 45 3.99

2 22371442 21554690 46 3.65

3 22020370 21032721 46 4.48

4 19106437 18278891 46 4.33

5 22344235 21550592 46 3.55

6 21758291 20881689 46 4.02

7 21637929 20755888 46 4.07

8 22179079 21452220 45 3.27

9 21804304 20912738 46 4.08

10 22187321 21514931 46 3.03

11 22444369 21749718 44 3.09

Total 240179782 231118355 45.63 3.77

https://doi.org/10.1371/journal.pone.0232005.t001
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longest contigs length than any other assemblies, followed by Trinity (k-mer = 32, 1,194.58

bp). The average contig length was 1,282.08 bp. Furthermore, the shortest contig length was

measured in SOAPdenovo-Trans, having a k-mer of 25 (247.39 bp). The results of preliminary

analysis varied in terms of the contig size in different assemblies (Fig 2). Variations in the con-

tig lengths of the assemblies showed that the contig size frequently occurred within the range

of 200-300 bp in all assemblies except when using EvidentialGene (whereby the contig lengths

frequently occurred within a range of 300-400 bp). In order to further evaluate the perfor-

mance of the assemblies, the overall transcriptome sizes were compared. Assemblies from the

largest to the shortest transcriptome size were ranked according to the following order: Trans-

fuse (418,444), Trinity (k-mer = 25; 256,396), Trinity (k-mer = 32; 247,229), EvidentialGene

(183,191), BinPaker (k-mer = 25; 172,656), BinPaker (k-mer32 =:170,356), Bridger (k-mer =

25; 169,608), Bridger (k-mer = 32; 173,037), SPAdes(154,730), SOAPdenovo-Trans (k-mer =

25; 234,442), SOAPdenovo-Trans (k-mer = 31; 206,075), SOAPdenovo-Trans (k-mer = 41;

179,386), SOAPdenovo-Trans (k-mer = 51; 158,125), SOAPdenovo-Trans (k-mer = 61;

123,329), SOAPdenovo-Trans (k-mer = 71; 88,787). One of the most commonly used metric

scales for comparing de novo transcriptome assemblies is N50. Assemblies with the longest to

the shortest N50 length were, in order of appearance, Transfuse (2,151 bp), Trinity (k-mer 32,

2,104 bp; k-mer = 25, 1981 bp), BinPaker Trinity (k-mer 32, 1,967 bp; k-mer = 25, 1,966 bp),

Bridger (k-mer 32, 1854 bp; k-mer = 25, 1,838 bp), EvidentialGene (1,831 bp), SPAdes (1,751

Fig 1. Diagram of the workflow for the walnut leaf transcriptome sequencing, de novo assembly and functional annotation. First, mRNA was extracted

from leaves of J. regia, followed by cDNA preparation and construction of the library. Sequencing was done using a paired-end strategy (read length: 150 bp)

on an Illumina HiSeq 2000 platform. After quality control and trimming, the de novo assembly was constructed via BinPaker, Bridger, SOAPdenovo-Trans,

Trinity, SPAdes, EvidentialGene and Transfuse. Then, CAP3 was used for producing longer consensus transcripts and for reducing the redundancy of contigs

obtained via all assemblers. The quality of a de novo assembled leaf transcriptome was then evaluated by N50 length, the total number of contigs, the number of

reads mapping back to the transcriptome (RMBT) and BUSCOs. Finally, the best performing assembly was annotated using different databases, including the

UniProtKB database, Pfam database, Signal peptide, ORFs detection, NCBI non-redundant (nr) protein database and the transmembrane domain.

https://doi.org/10.1371/journal.pone.0232005.g001
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Fig 2. The distribution of contig size and number for all assemblies. A) BinPaker (k-mer; 25 and 32), B) B) Bridger C) SPAdes, D)

EvidentialGene, E) Transfuse, F) Trinity (k-mer; 25 and 32), G) SOAP deNOVO-Trans (k-mer; 25, 31, 41, 51, 61 and 71).

https://doi.org/10.1371/journal.pone.0232005.g002
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bp) and SOAPdenovo-Trans (k = mer 71 = 736, k = mer 61 = 600, k = mer 51 = 510, k = mer

41 = 463, k = mer 31 = 394 and k-mer 25, 343 bp) (Fig 3). Generally, N50 length of Transfuse

was higher than all other assemblies. The implication here is that this method could either

remove the small transcripts or merge them together. The results showed that N50 length

increased parallel to the increase in the k-mer length in four of the assemblers (i.e. Bridger,

BinPacker, SOAPdenovo-Trans and Trinity). Generally, one assembly can be considered as

accurate and complete if a large proportion of the reads can map back to the assembly [21].

Apart from the SOAPdenovo-Trans assembler, the other assemblers produced a similar per-

centage of RMBT, ranging from 99.48% (Transfuse) to 94.25% (BinPaker, k-mer=25). On

average, less than 90% of the reads managed to map back to the assemblies generated by

SOAPdenovo-Trans. In terms of uniqueness, the highest percentage of mapped reads which

uniquely mapped back to the transcriptome were, respectively, the Transfuse (99.48%), Trinity

(k-mer=32, (98.8%); k-mer=25, (98.26%)), SPAdes (97.94%), Bridger (k-mer=32, (96.73%)),

BinPaker (k-mer=32, (96.72%)), EvidentialGene (96.06%), Bridger (k-mer=25, (94.13%)) and

BinPaker (k-mer=25, (94.11%)) (Table 3). The other assemblies (except the SOAPdenovo-

Trans) were similar in terms of their percentages of reads which uniquely mapped back to the

transcriptome. These appeared to range between specific percentages: Transfuse (99.39 to

99.64%), Trinity (k-mer=32, (98.68 to 98.92%); k-mer=25, (98.09 to 98.36%)), SPAdes (97.72

Fig 3. N50 index for each assembler with the k-mer size of walnut leaf transcriptome.

https://doi.org/10.1371/journal.pone.0232005.g003
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to 98.04%), Bridger (k-mer=32, (96.46 to 96.93%)), BinPaker (k-mer=32, (96.43 to 96.80%)),

EvidentialGene (95.57 to 96.45%), Bridger (k-mer=25, (93.67 to 94.35%)) and BinPaker (k-

mer=25, (93.63 to 94.33%)). Similar to earlier observations, the SOAPdenovo-Trans showed

the worst performance in this case and had the lowest percentage of reads which were uniquely

mapped back, ranging from 73.84% to 91.23%. In addition to RMBT, it is quite necessary to

achieve a measure of completeness in terms of the number of genes that are detected. For this

purpose, transcriptome assemblies for walnut were accessed based on their completeness, con-

tiguity and accuracy, as measured by the BUSCO approach, whereby the assemblies displayed

different scores. While the Transfuse and EvidentialGene methods preformed best in the

BUSCO score, SOAPdenovo-Trans operated badly in the category. Out of the 1,440 single-

copy ortholog genes that are common in plants, 94.8% (1,364 BUSCOs) and 94.3% (1,358

BUSCOs) were identified in Transfuse and EvidentialGene assemblies, respectively. Transfuse

performed best in terms of having the least number of missing BUSCOs (48, 3.3%), followed

by EvidentialGene (54, 3.8%). Then, with regard to fragmented transcripts, Transfuse (1.9%)

and EvidentialGene (1.9%) assemblies contained a minimum number of fragmented BUSCOs,

while each of the other assemblies (except SOAPdenovo-Trans assemblies) contained BinPa-

ker (4.3%), Bridger (3.95%), SPAdes (8.8%) and Trinity (5.85%) within the fragmented tran-

scripts. SOAPdenovo-Trans assemblies contained the highest number of fragmented (19.08%

on average) and missing (21.45% on average) BUSCOs (Fig 4).

Functional annotation

After evaluating the different de novo assemblies, EvidentialGene was selected as the final

assembly and was utilized for the functional annotation analysis. Out of 183,191 transcripts, a

total of 111,451 transcripts were annotated using one or more databases. Based on the initial

transcript sequences and the TransDecoder tool, 104,926 ORFs were predicted. In total, 84,384

transcripts and 71,314 protein sequences shared similarities when compared against the Uni-

ProtKB database using the BLASTx and BLASTp searches, respectively. When aligned against

the NCBI nr database, the number of significant homologous transcripts and protein

sequences increased to 109,413 and 85,523, respectively. Protein sequences with little similarity

at the sequence level can share conserved domains, and thus a domain-based annotation was

performed. Accordingly, 79,185 transcripts were found with at least one hit to the Pfam data-

base. The final assembly included 79,185 transcripts with at least one hit to the Pfam database.

Moreover, 3,931 transcription factors were identified by BLAST searching against PlnTFDB.

In comparing the transcripts with the Rfam database, 882 significant matches were found. On

the other hand, 6,591 and 92,704 of the predicted peptide sequences contained signaling pep-

tides and transmembrane domains, respectively. Finally, a total number of 27,304 and 19,178

of transcripts revealed similarities based on BLAST search against all transcripts of the walnut

and of the published genome assembly for the ‘Chandler’ cultivar, respectively (Table 4, S1 and

S2 Tables).

Discussion

In plant species without a published genome or with an incomplete sequenced genome, such

as walnut, the occurrence of de novo transcriptome assembly facilitates the study of transcrip-

tomes and that of relevant genes of expression. However, lacking an optimum standard for de
novo transcriptome assembly can entail several challenges and limitations. The current study

was an attempt to alleviate those challenges and reduce the limitations. Specifically, it involved

identifying a transcriptome reference in walnut leaves, one that is likely to be complete and in

detail when compared to the 15 transcriptome assemblies that were generated with five de
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Fig 4. Identifying BUSCOs in each assembler with different k-mer sizes of walnut leaf transcriptome.

https://doi.org/10.1371/journal.pone.0232005.g004

Table 4. Functional annotation summary of walnut leaf transcriptome.

Category No. of transcripts)

Total transcripts 183,191

Predicted proteins 109,413

Predicted ORFs 104,926

Pfam 79,185

SignalP 6,591

Rfam 882

Transcription factor 3931

ATNDW� 27,304

ATGAPCh�� 19,178

�Assembled transcripts searched against all nucleotides of walnut

�� Assembled transcripts searched against the published ‘Chandler’ genome assembly

https://doi.org/10.1371/journal.pone.0232005.t004
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novo assemblers and two merging approaches. Additionally, the best assembly was selected

based on the quality of assembly in terms of N50 length, the total number of contigs, the total

number of bps in the assembly, RMBT and BUSCOs. Our analyses took advantage of the 11

RNA-Seq libraries with increasing numbers of Illumina paired-end reads. In total, a compre-

hensive strategy for walnut transcriptome assembly was applied. This can be applied to settings

that require the reconstruction of high quality transcriptome in non-model species other than

the walnut.

After trimming the raw reads, 96.23% of the reads (i.e. 231 million) were used for de novo
transcriptome assembly. Previous studies have reported that the range of GC content in differ-

ent samples has important effects on transcriptome assemblies and on the variation of the GC

content among the libraries which can lead to shorter assembled transcripts [28, 29]. Here, the

GC content in all samples ranged approximately from 44 to 46%. This finding is in agreement

with a previous study that showed a GC content of 46.6% in Juglans hopeiensis [30].

In line with previous studies, the results showed that there is a variation among the metrics

of the assemblies. Previous research indicated that different assembly methods generate signifi-

cantly different assemblies [20, 31]. However, apart from SOAPdenovo-Trans, most of the

assemblers that were used in the current research were equally good and, in many aspects,

proved to be competitive and comparable to each other. Since SOAPdenovo-Trans is men-

tioned as an exception, the assemblies being generated thereof were excluded from further

evaluation. Generally, the quality metrics were fairly even among the top performing assem-

blies (i.e. all assemblies except the SOAPdenovo-Trans) in terms of N50 and contig lengths.

All of the top performing assemblies showed an N50 length of more than 1,800 bp with similar

contig length distributions. Previous research demonstrated that N50 in the walnut transcrip-

tome is 1,833 bp when processed through Trinity [11]. In another study on Juglans mandshur-
ica, N50 length was reportedly 1,863 bp [13]. The average contig length was higher than 900

bp in all of the top performing assemblies, which is comparable to previous studies on plants

such as J. hopeiensis (731 bp) [30], Camelina sativa L. (1198 bp) [32], Pinus contorta (715 bp)

[33] and Lens colinaris (770 bp) [34]. The current results are in line with earlier studies, even

though N50 and contig lengths cannot be used for selecting the best assembly. Basic parame-

ters such as N50 and contig lengths can be used in genome assembly, but it is well known that

these parameters are inappropriate for the evaluation of transcriptome assembly, mainly

because the expected transcript lengths remain unknown in some species. Furthermore, longer

transcripts or larger total assemblies do not necessarily indicate a better transcriptome assem-

bly [35]. In addition, the available scientific literature suggests that N50 values can be artifi-

cially changed based on the defined k-mer size or based on the minimum contig length [36].

On the other hand, the average of RMBT in this study appeared to be more than 94% in all

assemblies that showed high levels of performance. It is worth noting that the RMBT percent-

age in this study turned out to be higher than those reported in previous studies, thereby indi-

cating a high quality of the assemblies. For example, the RMBT is reportedly 89.93% in

pistachio (pistacia vera L) [37] and 83.68% in almond (Prunus dulcis Mill.) [38]. Despite the

fact that the three mentioned metrics (i.e. N50, contig length and RMBT) can evaluate the

assemblies in different aspects, understanding the biological differences between the assem-

blies becomes quite difficult when evaluations are based on these metrics. Accordingly,

BUSCO can be considered as an important measure of performance in studies of this kind.

BUSCO is capable of searching against a database of highly conserved single-copy ortholog

genes. It checks whether each BUSCO group is either complete, duplicated, fragmented or

missing in the transcriptome assembly. Among the assemblies, the merging pipelines per-

formed better as Transfuse (94.8%, with 1364 complete BUSCOs) and as EvidentialGene

(94.3%, with 1358 complete BUSCOs), thereby yielding the highest BUSCO scores. These
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results accord closely with previous studies which reported a better performance of merged

transcriptome assemblies generated from multiple assemblies [39]. In addition, the number of

duplicates appeared to be high in the Trinity, but had a lower score of 88.2% (with 1,270 com-

plete BUSCOs in kmer = 25) and of 90% (with 1,296 complete BUSCOs in kmer = 32) when

compared to EvidentialGene and Transfuse. Taken together, each of the assemblers has differ-

ent algorithms and can potentially identify a small number of unique transcripts relative to

each other [20, 40]. Thus, it might be worthwhile to combine assemblies that are generated by

different assemblers, which might reconstruct a more complete transcriptome reference. How-

ever, these methods are more complicated to perform than the straightforward de novo assem-

blers like Trinity in terms of time and resources.

Of the merged assemblies, Transfuse showed a slightly better performance based on the

final score of BUSCO, but it produced more than double the number of contigs generated by

the other merging assembler, indicating that this tool produced more redundancy relative to

EvidentialGene. Also, this finding was not in line with a few previous studies on walnut and on

other close plants [11, 37, 41]. In this regard, the number of duplicated copies (based on

BUSCO analysis) was higher in Transfuse (85.8%) than in EvidentialGene (44.1%), which can

be considered as a weakness of Transfuse. In contrast, the percentage of complete and single

copy scores of BUSCOs by EvidentialGene was higher than by Transfuse, which can be more

handy in downstream analysis. On the other hand, Transfuse (92.49%) had 27.98% more reads

than EvidentialGene (64.50%). These reads were aligned concordantly more than once (S3

Table). It reiterates that the assembly generated by the Transfuse method contained more

redundancy than when generated by EvidentialGene. This can lead to a bias in downstream

gene expression and enrichment analysis. Therefore, a higher percentage of reads being

uniquely mapped back and the lower percentage of duplicated BUSCO scores can make Evi-

dentialGene be selected as the final transcriptome, which might be preferable to other down-

stream analyses. Of the 193,422,472 transcripts produced by EvidentialGene, 61% were

annotated using one or more databases, which is better than those reported previously on wal-

nut and on the other close plants. In another report on walnut, only 22.26% of the transcripts

were annotated [11]. In the current study, 104,926 ORFs were predicted, while another study

on walnut predicted a total of 35,836 ORFs out of a total of 111,944 transcripts [11]. In mango

(Mangifera indica L.), 80,969 transcripts were reported, out of which 33,142 ORFs were pre-

dicted [42]. The current study revealed 3,931 transcription factors when the transcripts were

searched by BLAST against PlnTFDB (S4 Table). Some of these transcription factors were

identified as MYB, WRKY, bHLH, NAC and bZIP. To the best of our knowledge, only seven

studies have so far investigated walnut transcriptome assemblies. Those studies are publicly

available and can be compared with our study. The past seven studies had used Trinity alone

and by default parameters so as to construct de novo assemblies [10, 11, 12, 13, 30, 43, 44]. In

addition, none of the studies made use of BUSCOs to evaluate the quality of assemblies. Here,

however, we evaluated the walnut transcript according to the relevant database along with

BUSCOs. Previous results had shown that 1,440 single-copy ortholog genes are common in

plants by 89.9% (indicating 1,294 BUSCOs). This is while the current study led to the identifi-

cation of 94.8% (with 1364 BUSCOs) and 94.3% (with 1358 BUSCOs) by Transfuse and

EvidentialGene.

Conclusion

The purpose of the current study was to construct a complete transcriptome assembly in wal-

nut leaves. This involved using a range of tools and k-mer values. To the best of our knowl-

edge, this is the first study in which different assemblers were evaluated with a range of k-mers
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to create a de novo transcriptome assembly in walnut. Combining assemblies that are gener-

ated by straightforward de novo assemblers can lead to the construction of a more comprehen-

sive transcriptome assembly. In addition, based on various quality metrics of assembly, the

transcriptome assembly which is produced by EvidentialGene can be prioritized over other

assemblies in walnut leaves. In summary, the reference transcriptome assembly which was

generated by EvidentialGene included 183,191 transcripts with an N50 length of 1,831 bp,

among which 64,702 transcripts were longer than 1 kb.
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