
Impact of the gonococcal FC428 penA allele 60.001 on ceftriaxone resistance
and biological fitness
Ke Zhoua,b,c*, Shao-Chun Chena,b*, Fan Yangc*, Stijn van der Veen c,d,e and Yue-Ping Yina,b

aPeking Union Medical College, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People’s Republic of China;
bNational Center for STD Control, China Center for Disease Control and Prevention, Nanjing, People’s Republic of China; cDepartment of
Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; dDepartment of
Dermatology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People’s Republic of China; eState Key
Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious
Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, People’s Republic of China

ABSTRACT
Global dissemination of the Neisseria gonorrhoeae ceftriaxone-resistant FC428 clone jeopardizes the currently
recommended ceftriaxone-based first-line therapies. Ceftriaxone resistance in the FC428 clone has been associated
with the presence of its mosaic penA allele 60.001. Here we investigated the contribution penA allele 60.001 to
ceftriaxone resistance and its impact on biological fitness. Gonococcal isolates expressing penA allele 60.001 and
mosaic penA allele 10.001, which is widespread in the Asia-Pacific region and associated with reduced susceptibility to
ceftriaxone and cefixime, were genetic engineered to exchange their penA alleles. Subsequent antimicrobial
susceptibility analyses showed that mutants containing penA 60.001 displayed 8- to 16-fold higher ceftriaxone and
cefixime minimal inhibitory concentrations (MICs) compared with otherwise isogenic mutants containing penA 10.001.
Further analysis of biological fitness showed that in vitro liquid growth of single strains and in the competition was
identical between the isogenic penA allele exchange mutants. However, in the presence of high concentrations of
palmitic acid or lithocholic acid, the penA 60.001-containing mutants grew better than the isogenic penA 10.001-
containing mutants when grown as single strains. In contrast, the penA 10.001 mutants outcompeted the penA 60.001
mutants when grown in competition at slightly lower palmitic acid or lithocholic acid concentrations. Finally, the penA
60.001 mutants were outcompeted by their penA 10.001 counterparts for in vivo colonization and survival in a mouse
vaginal tract infection model. In conclusion, penA allele 60.001 is essential for ceftriaxone resistance of the FC428
clone, while its impact on biological fitness is dependent on the specific growth conditions.
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Introduction

Neisseria gonorrhoeae causes the widespread bacterial
sexually transmitted disease gonorrhoea, which is pre-
dicted to have an annual global incidence of 87 million
new cases [1]. Infections commonly manifest as ure-
thritis or cervicitis, but asymptomatic infections of
the cervix or pharynx are very frequently observed
[2,3]. These untreated infections occasionally result in
severe complications, including ectopic pregnancies
and pelvic inflammatory disease, and they are a
major source for transmission of N. gonorrhoeae [4].
N. gonorrhoeae is a multidrug-resistant pathogen that
has developed resistance against all previously used
antimicrobial therapies [5]. Current first-line treatment
guidelines generally recommend ceftriaxone as a single
drug therapy or ceftriaxone in combination with azi-
thromycin as a dual therapy. However, many countries

have reported increasing incidences of azithromycin
resistance, including high-level azithromycin [6–8],
and therefore the inclusion of azithromycin in the
dual therapy has recently become under scrutiny [9].
Furthermore, gonococcal susceptibility to ceftriaxone
is decreasing in many countries [8,10–12] and ceftriax-
one treatment failures are increasingly reported glob-
ally [13–18]. Importantly, while initially ceftriaxone
treatment failures were attributed to sporadic infec-
tions of unrelated strains containing mosaic penA
alleles providing ceftriaxone resistance [17,19–22], in
recent years many of the reported ceftriaxone treat-
ment failures are the result of the FC428 clone ident-
ified in 2015 in Japan [23]. This clone contains the
mosaic penA allele 60.001 and has successfully trans-
mitted on a global scale, with reported cases in Japan
[24], China [25–27], Denmark [28], Canada [29], Aus-
tralia [30], Ireland [31], UK [32], and France [14]. In
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addition, incidences where this penA 60.001 allele has
transferred to unrelated strains and subsequently
caused treatment failure have also been reported [33].
In recent years, the FC428 clone has widely transmitted
throughout China, since cases have been reported from
many geographically distinct regions [34], and its inci-
dence also appears to be rapidly increasing [35].

The mosaic penA allele 60.001 contains the A311 V
and T483S polymorphisms that were considered as
essential mutations in the high-level ceftriaxone-resist-
ant strains HO41, A8804 and GU140106 isolated pre-
viously in Japan and Australia [21,22,36], although
additional I312M, F504L, N512Y and G545S poly-
morphisms associated with reduced cephalosporin sus-
ceptibility in mosaic penA alleles [37,38] are also
present in penA allele 60.001. Importantly, the mosaic
alleles penA 37 (HO41) and penA 42 (F89), which pro-
vide high-level ceftriaxone resistance, incur a biological
fitness cost. Cloning of these penA alleles in unrelated
gonococcal isolates had a negative impact on in vitro
growth and these mutants were outcompeted by their
otherwise isogenic wild-type strains for colonization
in a mouse model of infection [39]. The negative
impact of these penA alleles on biological fitness
might explain why these ceftriaxone-resistant strains
have thus far remained sporadic and have not widely
transmitted. However, this might have changed with
the occurrence of the ceftriaxone-resistant FC428
clone, which has transmitted globally. The penA allele
of this strain might not incur a severe fitness cost as
observed for other ceftriaxone-resistant penA alleles,
which could explain its successful global transmission.
Therefore, the aim of the present study was to investi-
gate the impact of penA allele 60.001 on biological
fitness during in vitro growth in cultures and in vivo
in a mouse model of infection.

Materials and methods

Bacterial strains, mutants and culture
conditions

N. gonorrhoeae strains ATCC49226, SZ20 (penA
60.001, mtrR 1, ponA 1) [26], SRRSH78 (penA
10.001, mtrR 1, ponA 1) [8] and their derivatives
were cultured on GC agar (Oxoid Ltd., Basingstoke,
UK) containing 1% (v/v) Vitox (Oxoid Ltd., Basing-
stoke, UK) at 37°C and 5% CO2 and stored in GC
broth containing 15% glycerol (Biosharp, Hefei,
China) at −80°C. The streptomycin-resistant deriva-
tives of strains SZ20 and SRRSH78 were selected on
GC agar containing 1% Vitox and streptomycin (BBI,
Shanghai, China). These streptomycin-resistant deriva-
tives were named SZ20-penA60 and SRRSH78-penA10,
respectively, and contained their original penA alleles,
but were given this name for clarity throughout the
study about phenotypes associated with penA alleles.
Strains SZ20-penA60.001 and SRRSH78-penA10.001

were genetically engineered using the dominant strep-
tomycin-susceptible rpsL gene to exchange their penA
alleles without leaving a selection marker [40]. Frag-
ments of penA 60.001 and penA 10.001 were amplified
from the SZ20 and SRRSH78 genomes, respectively,
using primers penA-F (GCGAGCTCGCAGTGG-
GAGGCTGAGAT), penA-R (GCTCTA-
GACGCTGGTTACGACGACTTTAT), penA-F2
(GCAGATCTCCGTCTTAATCCGAGTATCA) and
penA-R2 (GCGTCGACGCAACCGAATACGCAC-
CAT) and cloned into vector pUC57-kanR-rpsL [40],
thereby generating vectors pUC57-penA60 and
pUC57-penA10. These vectors were subsequently line-
arized and transformed into strains SZ20-penA60 and
SRRSH78-penA10 to generate SZ20-penA10 and
SRRSH78-penA60. The chloramphenicol-resistant
derivatives SZ20-penA60-catA2, SZ20-penA10-catA2,
SRRSH78-penA10-catA2, and SRRSH78-penA60-
catA2 were generated with the vector pUC57-lctP-
catA2-aspC [41], which inserts the chloramphenicol-
resistant gene catA2 in the unrelated convergent lctP-
aspC locus. The kanamycin-resistant derivatives
SZ20-penA60-kanR, SZ20-penA10-kanR, SRRSH78-
penA10-kanR, and SRRSH78-penA60-kanR were gen-
erated with the vector pUC57-lctP-kanR-aspC [42],
which inserts the kanamycin-resistant gene kanR in
the ctP-aspC locus.

Ceftriaxone and cefixime susceptibility assays

N. gonorrhoeae strains were tested for ceftriaxone and
cefixime susceptibility using the agar dilution method
according to WHO guidelines and N. gonorrhoeae
ATCC49226 was included for quality control. Over-
night grown bacteria were suspended into GC broth
containing 1% Vitox and droplets containing 104

CFU were spotted onto GC agar plates containing 1%
Vitox and a twofold dilution series of ceftriaxone or
cefixime. Plates were incubated for 24 h at 37°C and
5% CO2 and the minimal inhibitory concentration
(MIC) was determined as the lowest concentration at
which no growth was observed.

Liquid growth and in vitro competition assays

Overnight grown bacteria were suspended in 12 mL
GC broth containing 1% Vitox at an optical density
(OD600) of 0.025. Cultures were incubated at 37°C
and 200 rpm and samples were taken every two
hours for OD600 measurements. For growth in the
presence of fatty acids or bile, 2 mg/L (SZ20 deriva-
tives) or 4 mg/L (SRRSH78 derivatives) palmitic
acid (Aladdin, Shanghai, China), or 10 mg/L (SZ20
derivatives) or 85 mg/L (SRRSH78 derivatives) litho-
cholic acid (Aladdin, Shanghai, China) were added.
For competition assays, overnight grown isogenic
strains containing penA 60.001 and penA 10.001
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and expressing different selection markers were
mixed at equal numbers and suspended in 12 mL
GC broth containing 1% Vitox at an OD600 of
0.025. Culture was incubated at 37°C and 200 rpm
and every two hours samples were taken, serially
diluted and plated onto GC agar containing 1%
Vitox and 100 mg/L kanamycin (Inalco SpA, Milano,
Italy) or 7.5 mg/L chloramphenicol (Inalco SpA,
Milano, Italy). Plates were incubated for 24–48 h at
37°C and 5% CO2 and colonies were enumerated.
For competition assays in the presence of fatty
acids or bile, 1.25 mg/L (SZ20 derivatives) or
1.5 mg/L (SRRSH78 derivatives) palmitic acid, or
5 mg/L (SZ20 derivatives) or 60 mg/L (SRRSH78
derivatives) lithocholic acid was added.

Spot assays

Overnight grown bacteria were suspended in GC
broth containing 1% Vitox and 5 μL droplets of a
tenfold dilution series were applied on GC agar con-
taining 1% Vitox and on GC agar containing 1%
Vitox and 12 mg/L (SZ20 derivatives) or 160 mg/L
(SRRSH78 derivatives) palmitic acid, or 10 mg/L
(SZ20 derivatives) or 70 mg/L (SRRSH78 derivatives)
lithocholic acid. Plates were incubated for 24–48 h
at 37°C and 5% CO2 and colonies were enumerated.
The growing fraction of bacteria on the fatty acid/
bile-supplemented agar plates was expressed relative
to the growing fraction on agar plates without fatty
acid/bile.

In vivo competition assays in a mouse vaginal
tract model of infection

Competition assays in a mouse vaginal tract infection
model were performed as described previously
[40,41,43]. Dioestrus stage female BALB/c mice
(Shanghai SLAC Laboratory Animal Company,
Shanghai, China) at six to eight weeks of age were
injected subcutaneously with 0.1 mg of β-estradiol
(Aladdin, Shanghai, China) in sesame oil (Sigma-
Aldrich Co., St Louis, USA) on days –2, 0 and
2. In addition, mice also received two doses of
0.6 mg vancomycin (Meilunbio, Dalian, China) and
1.2 mg streptomycin every day and drinking water
was spiked with 0.4 g/L trimethoprim (Meilunbio,
Dalian, China). Mixed bacterial suspensions contain-
ing equal numbers of strain SZ20-penA60-catA2 and
strain SZ20-penA10-kanR or equal numbers of strain
SRRSH78-penA10-kanR and strain SRRSH78-
penA60-catA2 were formulated in PBS with 0.5
mM CaCl2 (Sigma-Aldrich Co., St Louis, USA), 1
mM MgCl2 (Sigma-Aldrich Co., St Louis, USA) and
1% (w/v) gelatin (Aladdin, Shanghai, China) and
inoculated intravaginally on day 0 at a total dose of
2×107 CFU. Daily bacterial load in the vaginal tract

were monitored by swabbing and plating on GC
agar containing with 1% Vitox, 3 mg/L vancomycin,
7.5 mg/L colistin (Meilunbio, Dalian, China),
2.8 mg/L nystatin (Meilunbio, Dalian, China), 5 mg/
L trimethoprim, 100 mg/L streptomycin and
100 mg/L kanamycin or 7.5 mg/L chloramphenicol.
The competition index (CI) was calculated as
(penA10/penA60)output/(penA10/penA60)input. All ani-
mal experiments were approved by the Zhejiang Uni-
versity Animal Care and Use Committee under
project license number ZJU2015-032-01. Procedures
followed the guidelines of the Administration of
Affairs Concerning Experimental Animals of the
People’s Republic of China and adhered to the prin-
ciples of the Declaration of Helsinki.

Results

Contribution of penA allele 60.001 to
cephalosporin resistance

Ceftriaxone resistance in the FC428 clone has been
widely attributed to the presence of penA allele
60.001, although its specific contribution has never
been experimentally verified. Therefore, penA allele
replacement mutants were generated for
N. gonorrhoeae strains SZ20 and SRRSH78, which con-
tain penA allele 60.001 and penA allele 10.001, respect-
ively. Strain SZ20 was isolated in 2016 from a patient in
Suzhou [26], and is closely related to the FC428 clone
because besides an identical penA allele, it also shows
identical MLST (ST1903), NG-MAST (ST3435) and
NG-STAR (ST233) sequence types. Strain SRRSH78
was isolated in 2016 from a patient in Hangzhou [8],
and contains penA allele 10.001. This penA allele is
the most widespread mosaic penA allele in China and
other Asia-Pacific countries and is generally mostly
associated with low-level cefixime resistance or reduced
susceptibility (MIC ≤0.25 mg/L) [8,44,45]. Further-
more, penA allele 10.001 contains the I312M, F504L,
N512Y and G545S polymorphisms associated with
reduced cephalosporin susceptibility, similar to penA
allele 60.001, but not the A311 V and T483S poly-
morphism associated with high-level resistance. Cef-
triaxone and cefixime susceptibility analysis showed
that strain SZ20 was indeed resistant against ceftriax-
one (MIC=0.5 mg/L) and cefixime (MIC=2 mg/L),

Table 1. Ceftriaxone and cefixime susceptibility of gonococcal
wild-type strains and penA allele exchange mutants.

Strain

MIC (mg/L)

Ceftriaxone Cefixime

ATCC49226 0.016 0.03
SZ20 0.5 2
SZ20-penA60 0.5 2
SZ20-penA10 0.03 0.25
SRRSH78 0.06 0.25
SRRSH78-penA10 0.06 0.25
SRRSH78-penA60 0.5 2
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while strain SRRSH78 was susceptible to ceftriaxone
and low-level resistant to cefixime (Table 1). Impor-
tantly, isogenic strains in which the penA 60.001 and
10.001 alleles were exchanged showed an inversion of
susceptibility, highlighting that penA allele 60.001 pro-
vides higher resistance to cephalosporins compared

with penA allele 10.001 The strains containing
penA60 showed eight- to sixteen-fold higher ceftriax-
one MIC values compared with isogenic strains con-
taining penA10. Similarly, penA60 strains showed
eightfold higher cefixime MIC values compared with
penA10 strains. These results highlight the important

Figure 1. In vitro growth curves of the gonococcal penA60/penA10 allele exchange mutants in liquid culture. (A) Growth of single-
strain SZ20 penA mutants (SZ20-penA60 and SZ20-penA10) determined by absorbance measurements (OD600) in liquid culture. (B)
Growth of single-strain SRRSH78 penAmutants (SRRSH78-penA60 and SRRSH78-penA10) determined by absorbance measurements
(OD600) in liquid culture. (C) Growth of strains SZ20-penA60-catA2 and SZ20-penA10-kanR in competition in liquid culture deter-
mined by CFU counts on selective agar plates. (D) Growth of strains SRRSH78-penA60-catA2 and SRRSH78-penA10-kanR in compe-
tition in liquid culture determined by CFU counts on selective agar plates. (E) Growth of strains SZ20-penA60-kanR and SZ20-
penA10-catA2 in competition in liquid culture determined by CFU counts on selective agar plates. (F) Growth of strains
SRRSH78-penA60-kanR and SRRSH78-penA10-catA2 in competition in liquid culture determined by CFU counts on selective agar
plates. The graphs represent the average and standard deviation of three biological independent experiments.
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contribution of penA allele 60.001 to both ceftriaxone
and cefixime resistance.

Impact of penA allele 60.001 on in vitro
biological fitness

The in vitro biological fitness of the penA allele
exchange mutants was determined during in vitro
growth both in the presence and absence of the
host antimicrobial compounds palmitic acid and
lithocholic acid, which are highly abundant in the
mucosal epithelia and rectum, respectively. In the
absence of antimicrobial compounds, liquid growth
of single strains was indistinguishable for both SZ20
(Figure 1(A)) and SRRSH78 (Figure 1(B)) when com-
paring the penA mutants expressing penA60 and
penA10. To compare growth in competition, the
chloramphenicol-resistance selection marker catA2
was inserted in the penA60 strains and the kanamy-
cin-resistance marker kanR in the penA10 strains and
competitive growth was evaluated by CFU determi-
nation on agar plates containing chloramphenicol
or kanamycin. Again, no differences in growth
between the penA60- and penA10-containing mutants
were observed for both SZ20 (Figure 1(C)) and
SRRSH78 (Figure 1(D)). To ensure results were not

affected by the respective selection markers, selection
markers were changed, which gave similar results
(Figure 1(E,F)). Subsequently, penA mutants were
tested for their ability to grow in liquid cultures as
single strains in the presence of high palmitic acid
and lithocholic acid concentrations. Interestingly,
for both strains the mutants containing penA60
grew significantly better at the highest permissive pal-
mitic acid concentrations than the mutants contain-
ing penA10 (Figure 2(A,B)). Similar results were
obtained in spot assays where penA60-containing
mutants displayed a higher growing fraction on
agar plates containing high palmitic acid concen-
trations (Figure 2(C)). Also, penA60 mutants grew
significantly better in liquid culture containing the
highest permissive lithocholic acid concentrations
than the penA10-containing mutants (Figure 2(D,
E)) and they showed a higher growing fraction in
spot assays on plates with elevated lithocholic acid
concentrations (Figure 2(F)). Subsequently, compe-
tition assays were performed with the penA exchange
mutants for liquid growth in the presence of palmitic
acid and litocholic acid using slightly lower concen-
trations than for the single-strain growth exper-
iments, which was more permissive for growth of
the penA10 strains. Interestingly, under these slightly

Figure 2. In vitro growth of the gonococcal penA60/penA10 allele exchange mutants in the presence of palmitic acid and lithocholic
acid. (A) Growth curves determined by OD600 measurements of SZ20-penA60 and SZ20-penA10 in the presence of 2 mg/L palmitic
acid. (B) Growth curves determined by OD600 measurements of SRRSH78-penA60 and SRRSH78-penA10 in the presence of 4 mg/L
palmitic acid. (C) Growing fraction of the penAmutants on agar plates containing 12 mg/L (SZ20 derivatives) or 160 mg/L (SRRSH78
derivatives) palmitic acid relative to growth on control agar plates. (D) Growth curves determined by OD600 measurements of SZ20-
penA60 and SZ20-penA10 in the presence of 10 mg/L lithocholic acid. (E) Growth curves determined by OD600 measurements of
SRRSH78-penA60 and SRRSH78-penA10 in the presence of 85 mg/L lithocholic acid. (F) Growing fraction of the penA mutants
on agar plates containing 10 mg/L (SZ20 derivatives) or 70 mg/L (SRRSH78 derivatives) palmitic acid relative to growth on control
agar plates. The graphs represent the average and standard deviation of three biological independent experiments. Significant
differences between the penA60/penA10 mutants at corresponding time-points were identified by Student’s two-tailed unpaired
t-test (GraphPad Prism). *P<0.05; **P<0.01; ***P<0.001.
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less stressful conditions, the mutants containing
penA10 were actually outcompeting the mutants con-
taining penA60 for growth in the presence of palmitic
acid, since the penA10-containing strains reached
higher CFU counts after four to six hours growth
(Figure 3). After six hours of growth, a decline in
CFU counts was observed for most experiments.
Similar results were obtained when selection markers
were changed. Finally, competition experiments were
performed in the presence of elevated lithocholic acid
concentrations. Again, mutants containing penA10
outcompeted penA60-containing mutants and
reached higher CFU counts after six hours of growth
and CFU counts remained higher in the decline
phase after eight hours incubation (Figure 4). Also
under these conditions, the selection markers did
not affect the final outcome, since similar differences
between the penA60 and penA60 mutants were
observed when selection markers were changed.

Overall, these data provide a mixed picture on the
impact of penA allele 60.001 on in vitro biological
fitness.

Impact of penA allele 60.001 on in vivo
biological fitness in a mouse vaginal tract
infection model

The in vivo biological fitness of the penA allele
exchange mutants was investigated by competition
assays for colonization of the mouse vaginal tract. Bac-
terial suspensions containing equal numbers of the
SZ20 or SRRSH78 mutants expressing catA2
(penA60) or kanR (penA10) were used to inoculate
the mouse vaginal tract and colonization was moni-
tored for three days by daily swabbing. For both
SZ20 and SRRSH78 in vivo competition assays, the
penA10-containing mutants showed higher recovery
of CFU counts for all three days compared with the

Figure 3. In vitro competition assays of the gonococcal penA60/penA10 allele exchange mutants in the presence of palmitic acid. (A)
Growth of strains SZ20-penA60-catA2 and SZ20-penA10-kanR in competition in liquid culture containing 1.25 mg/L palmitic acid. (B)
Growth of strains SRRSH78-penA60-catA2 and SRRSH78-penA10-kanR in competition in liquid culture containing 1.5 mg/L palmitic
acid. (C) Growth of strains SZ20-penA60-kanR and SZ20-penA10-catA2 in competition in liquid culture containing 1.25 mg/L palmitic
acid. (D) Growth of strains SRRSH78-penA60-kanR and SRRSH78-penA10-catA2 in competition in liquid culture containing 1.5 mg/L
palmitic acid. Competitive growth was determined by CFU counts on selective agar plates. The graphs represent the average and
standard deviation of three biological independent experiments. Significant differences between the penA60/penA10 mutants at
corresponding time-points were identified by Student’s two-tailed unpaired t-test (GraphPad Prism). *P<0.05; **P<0.01;
***P<0.001.
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penA60-containing mutants (Figure 5). Also, the calcu-
lated CI-values for all colonized mice ranged between
five and two thousand, indicating that mutants con-
taining penA10 outcompeted the penA60 mutants
(Figure 5). Therefore, these data indicate that penA
allele 60.001 has a negative impact on in vivo biological
fitness in a mouse vaginal tract infection model.

Discussion

The emergence and global transmission of the gono-
coccal FC428 clone over the past few years has become
a major threat to ceftriaxone-based therapy, which is
currently the last-remaining first-line treatment. Cef-
triaxone resistance in the FC428 clone has been attrib-
uted to the presence of mosaic penA allele 60.001,
although thus far its contribution to ceftriaxone resist-
ance has been established only by association. In the
current study, we showed by genetic engineering

strategies that otherwise isogenic strains expressing
penA allele 60.001 showed up to sixteen-fold higher
ceftriaxone MIC values compared with strains expres-
sing mosaic penA allele 10.001. Allele penA 10.001 is
frequently encountered in gonococcal isolates in the
Asia-Pacific region and has been associated with cefix-
ime resistance or reduced susceptibility, and less abun-
dantly with lower-level ceftriaxone resistance (up to
ceftriaxone MIC = 0.25 mg/L) [8,44,45]. However,
even though penA allele 10.001 is able to provide a
major reduction in ceftriaxone susceptibility compared
with many other mosaic and non-mosaic penA alleles,
likely because it contains the I312M, F504L, N512Y
and G545S polymorphisms previously associated with
reduced susceptibility [37,38], penA allele 60.001 was
still able to further reduce susceptibility over penA
allele 10.001. The key polymorphisms in penA allele
60.001 that are associated with higher-level ceftriaxone
resistance are A311 V and T483S. These

Figure 4. In vitro competition assays of the gonococcal penA60/penA10 allele exchange mutants in the presence of lithocholic acid.
(A) Growth of strains SZ20-penA60-catA2 and SZ20-penA10-kanR in competition in liquid culture containing 5 mg/L lithocholic acid.
(B) Growth of strains SRRSH78-penA60-catA2 and SRRSH78-penA10-kanR in competition in liquid culture containing 60 mg/L litho-
cholic acid. (C) Growth of strains SZ20-penA60-kanR and SZ20-penA10-catA2 in competition in liquid culture containing 5 mg/L
lithocholic acid. (D) Growth of strains SRRSH78-penA60-kanR and SRRSH78-penA10-catA2 in competition in liquid culture containing
60 mg/L lithocholic acid. Competitive growth was determined by CFU counts on selective agar plates. The graphs represent the
average and standard deviation of three biological independent experiments. Significant differences between the penA60/
penA10 mutants at corresponding time-points were identified by Student’s two-tailed unpaired t-test (GraphPad Prism).
*P<0.05; **P<0.01; ***P<0.001.
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polymorphism were also present in the ceftriaxone-
resistant Australian strain A8804 [21]. This strain dis-
played a ceftriaxone MIC of 0.5 mg/L, which is similar
to the MIC observed for the penA 60.001-expressing
strains in our study. A previous study on the contri-
bution of these polymorphisms showed that the intro-
duction of individual A311 V and T483S mutations in
the mosaic penA allele of strain 35/02 provided a 2- and
4-fold increase in ceftriaxone MICs, respectively [36].
Since that study focused on the identification of essen-
tial polymorphisms for ceftriaxone resistance in strain
HO41, which contains and additional key T316P poly-
morphism, the combined A311 V and T483S
mutations were not tested [22]. However, combining
the A311 V, T316P and T483S mutations in the penA
allele of strain 35/02 resulted in similar ceftriaxone sus-
ceptibility levels as isogenic strains expressing the
HO41 penA allele [36].

It is often assumed that mutations providing anti-
biotic resistance are costly and reduce biological
fitness [46,47]. Therefore, susceptible bacteria are
able to outcompete resistant bacteria in the absence
of antibiotic pressure, which might prevent wide-
spread transmission of some of the most resistant
strains. Indeed, it has been shown that mosaic
penA alleles of the ceftriaxone-resistant gonococcal
strains HO41 and F89 reduced biological fitness
during in vitro liquid growth and in vivo in a
mouse model of infection [39], which would explain
why these strains have not shown widespread trans-
mission. Interestingly, in vivo competition assays
with isogenic strains expressing the ceftriaxone-resist-
ant penA alleles of HO41 (allele 37) and F89 (allele
42) allowed for the rapid arise of compensatory
mutations for the HO41 penA allele, but not the
F89 penA allele for which resistance was dependent

Figure 5. In vivo competition assays of the gonococcal penA60/penA10 allele exchange mutants in a mouse vaginal tract infection
model. (A) Recovery of SZ20-penA60-catA2 and SZ20-penA10-kanR CFUs from the mouse vaginal tract after competitive coloniza-
tion. (B) Competition indices (CIs) between SZ20-penA60-catA2 and SZ20-penA10-kanR based on recovered CFU counts from the
mouse vaginal tract. (C) Recovery of SRRSH78-penA60-catA2 and SRRSH78-penA10-kanR CFUs from the mouse vaginal tract
after competitive colonization. (D) CIs between SRRSH78-penA60-catA2 and SRRSH78-penA10-kanR based on recovered CFU counts
from the mouse vaginal tract. The CIs were calculated as (penA10/penA60)output/(penA10/penA60)input. Significant differences in
recovered CFUs between penA60/penA10 mutants and between CIs calculated for the in vivo mouse vaginal tract infection
model and in vitro growth in liquid culture at corresponding time-points were identified by Student’s two-tailed unpaired t-test
(GraphPad Prism). *P<0.05; **P<0.01; ***P<0.001.
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on an A501P polymorphism [17,39,48]. Importantly,
for N. gonorrhoeae several mutations have already
been described that provide antibiotic resistance
and also improve biological fitness. Mutations in
mtrR and its promoter, which alleviate repression
of the MtrCDE multidrug efflux pump, are advan-
tageous for fitness during colonization of a mouse
model of infection [49,50]. Multidrug-resistant strains
generally contain one or more mtrR mutations to
increase efflux of hydrophobic or amphipathic anti-
biotics, while increased efflux of host-derived antimi-
crobial compounds such as fatty acids, bile and
antimicrobial peptides allows for increased in vivo
fitness [41,49,50]. Similarly, the 23S rRNA A2059G
polymorphism is the sole mutation providing high-
level azithromycin resistance and furthermore
enhances in vivo biological fitness in a mouse vaginal
tract infection model [40]. Our current results pro-
vide a more mixed picture on the impact of penA
allele 60.001 on biological fitness. Strains expressing
penA allele 60.001 were outcompeted by isogenic
strains expressing penA allele 10.001 for in vivo colo-
nization in a mouse model of infection and for in
vitro liquid growth in the presence of additional
stress (fatty acid/bile). However, both single-strain
growth and competitive growth in vitro in liquid cul-
tures in the absence of additional stress was identical
between the penA 60.001 and penA 10.001 isogenic
strains. Furthermore, during single-strain in vitro
growth experiments in the presence of additional
stress, which was at a higher stress level than during
the competitive growth experiments, the penA 60.001
strains actually grew better. Therefore, it seems that
penA allele 60.001 actually allows N. gonorrhoeae to
grow at a higher stress level, even though it nega-
tively impacts competitive growth at a lower stress
level. Translation of these results to fitness during
colonization of the human host will be difficult.
Whether strains containing penA allele 60.001 will
show reduced fitness in the human host might really
be dependent on the combination of stresses encoun-
tered, but given that the FC428 clone has already
shown global transmission, its fitness defects in the
human host are likely very limited.

In conclusion, here we showed that penA allele
60.001 of the ceftriaxone-resistant gonococcal FC428
clone reduces ceftriaxone susceptibility by eight- to six-
teen-fold compared with mosaic penA allele 10.001.
Further analysis of the impact of penA allele 60.001
on biological fitness provided a mixed picture where
penA 60.001 negatively impacts in vivo fitness in a
mouse vaginal tract infection model, while in vitro
liquid growth in the absence of additional stress
seemed unaffected. Therefore, the negative impact of
penA allele 60.001 on biological fitness might not be
very severe, which would explain the successful global
transmission of the FC428 clone in recent years.
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