
Treatment timing shifts the
benefits of short and long
antibiotic treatment over
infection
Erida Gjini ,1,* Francisco F. S. Paupério1,2 and Vitaly V. Ganusov3
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A B S T R A C T

Antibiotics are the major tool for treating bacterial infections. Rising antibiotic resistance, however,

calls for a better use of antibiotics. While classical recommendations favor long and aggressive

treatments, more recent clinical trials advocate for moderate regimens. In this debate, two axes of

‘aggression’ have typically been conflated: treatment intensity (dose) and treatment duration. The third

dimension of treatment timing along each individual’s infection course has rarely been addressed. By

using a generic mathematical model of bacterial infection controlled by immune response, we examine

how the relative effectiveness of antibiotic treatment varies with its timing, duration and antibiotic kill

rate. We show that short or long treatments may both be beneficial depending on treatment onset, the

target criterion for success and on antibiotic efficacy. This results from the dynamic trade-off between

immune response build-up and resistance risk in acute, self-limiting infections, and uncertainty relat-

ing symptoms to infection variables. We show that in our model early optimal treatments tend to be

‘short and strong’, while late optimal treatments tend to be ‘mild and long’. This suggests a shift in

the aggression axis depending on the timing of treatment. We find that any specific optimal treatment

schedule may perform more poorly if evaluated by other criteria, or under different host-specific condi-

tions. Our results suggest that major advances in antibiotic stewardship must come from a deeper

empirical understanding of bacterial infection processes in individual hosts. To guide rational therapy,

mathematical models need to be constrained by data, including a better quantification of personal dis-

ease trajectory in humans.

Lay summary: Bacterial infections are becoming more difficult to treat worldwide because bacteria are

becoming resistant to the antibiotics used. Addressing this problem requires a better understanding of

how treatment along with other host factors impact antibiotic resistance. Until recently, most theoret-

ical research has focused on the importance of antibiotic dosing on antibiotic resistance, however,
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duration and timing of treatment remain less explored. Here, we use a mathematical model of a generic bacterial infection to study

three aspects of treatment: treatment dose/efficacy (defined by the antibiotic kill rate), duration, and timing, and their impact on sev-

eral infection endpoints. We show that short and long treatment success strongly depends on when treatment begins (defined by the

symptom threshold), the target criterion to optimize, and on antibiotic efficacy. We find that if administered early in an infection,

“strong and short” therapy performs better, while if treatment begins at higher bacterial densities, a “mild and long” course of antibiot-

ics is favored. In the model host immune defenses are key in preventing relapses, controlling antibiotic resistant bacteria and increas-

ing the effectiveness of moderate intervention. In order to improve rational treatments of human infections, we call for a better quanti-

fication of individual disease trajectories in bacteria-immunity space.

K E Y W O R D S : antibiotic resistance; infection dynamics; treatment duration and timing; immunity-resistance tradeoff

INTRODUCTION

Treatment of bacterial infections has for many decades relied

on the use of antibiotics. Although antibiotics have saved many

lives and enabled uncountable medical practices, their wide-

spread use in human and animal populations has led to the rise

of antibiotic resistance, posing now a threat to human health

and modern medicine [1]. Of particular concern is the rise of

multidrug-resistant bacteria, favored by the use of wide-

spectrum antibiotics especially in clinical settings [2, 3]. To con-

front these challenges, much research has been devoted to

understand the molecular, genetic and non-genetic mecha-

nisms leading to drug resistance in bacteria [4–6], their popula-

tion dynamic and interplay with treatment strategies [7–9].

While alternative approaches such as anti-virulence therapies

[10], or therapies that stimulate the host’s capacity to deal with

infection [11], are also being considered, with their own poten-

tial limitations [12], reducing antibiotic use remains essential in

addressing the antibiotic resistance crisis. In this context, it is

important to understand the rational principles by which antibi-

otics succeed and fail in clearing infections, and whether and

when aggressive or moderate treatments are superior. It is here

that mathematical models, alongside clinical trials and surveys,

can help.

The conventional wisdom of treating infections with high-

antibiotic doses (aggressive treatment) [13] to avoid resistance

emergence has recently been challenged [14, 15], on the basis

of evolutionary arguments showing a bigger risk of resistance

selection with more aggressive treatments (see [7] for a review).

Many studies including clinical trials have by now shown that

for some infections shorter treatment is not inferior to the lon-

ger ones and that longer treatment may in fact result in failure if

resistant bacteria are already present when treatment starts

[16–20]. This issue is now recognized in clinical practice and

checklists of improving antibiotic prescribing have been sug-

gested [21].

On one hand, clinical studies have been concerned mainly

with optimal duration of therapy, on the other, the multiple

mathematical studies addressing the question of optimal anti-

biotic treatment of bacterial infections [22–25], have focused

mainly on the dosing dimension, with a few studies exploring

duration [26] and timing of treatment [27]. While these studies

have highlighted the various complexities in optimal treatment,

typically two axes of aggression have been conflated: treatment

length and treatment intensity, and a single criterion for defin-

ing optimality, e.g., resistance emergence or selection, has been

often considered.

Here, we develop a more comprehensive approach to ad-

dress the treatment–infection interplay along several additional

dimensions (Fig. 1). We use a simple mathematical model of a

bacterial infection that is controlled by the immune response,

capturing not only dynamic build-up of host defenses as a result

of infection but also baseline immune competence in terms of

efficiency for controlling low pathogen numbers. This model

element adds a dose-dependency to the natural outcome of in-

fection, which previous treatment models have not accounted

for or emphasized. Furthermore, this feature enables the

Fig. 1 Antibiotic treatment and optimization in a multi-dimensional context.

In this study, we evaluate treatment of an infection in a 3D space spanned

by antibiotic strength, duration and timing, along several target criteria of

clinical and epidemiological importance. Optimizing the parameters of anti-

biotic treatment is likely to involve several alternative goals (e.g. reducing

bacterial load or minimizing antibiotic resistance), but from the perspective

of the patient and treating physician, successful treatment generally means

rapid reduction in symptoms and no disease relapse after treatment. Some

of these will be more possible to reach than others, depending on the stage

of infection and characteristics of the patient starting treatment.
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contextualization of other processes such as temporary im-

mune suppression or vaccination, which may interfere with the

need for and effect of antibiotic treatment.

With this model, we investigate the role of treatment timing,

intensity and duration, across different metrics of successful

treatment. We show that duration of antibiotic treatment, anti-

biotic efficacy (defined as the antibiotic kill rate) and treatment

timing interact non-linearly to determine the final outcome, and

that optimal regimes vary with target criterion for optimization

even at a single host level. While our results suggest that it is

unlikely that one optimal treatment duration exists, they also in-

dicate many parameter regimes where short and long treat-

ments are both successful, and point to useful gradients for

future empirical and clinical investigation.

THE MODEL

We describe a typical bacterial infection, where the pathogen

grows, stimulates host immunity and ultimately is controlled by

a sufficiently expanded immune response. Infection is initiated

by the drug-sensitive bacteria (Bs) which grow exponentially at a

rate r, and experience density-dependent limitation via a carry-

ing capacity C, similar to previous models [26]. Drug-resistant

bacteria (Br) may not be present initially but can be generated

via mutation with rate m. We assume that resistance bears a

cost c which reduces the growth rate of the drug-resistant sub-

population to rð1� cÞ and prevents it to overcome Bs in the

absence of treatment. For bacterial infections of humans, it is

generally poorly understood which types of immunity—innate

or adaptive—are most important in the control of the specific

infection, and in general, they do interact via complex bidirec-

tional feedbacks. Here, we do not make an explicit distinction

between innate and adaptive immunity, but rather implement

two modes of immune control: (i) one static immune response,

I, which is more effective at low pathogen numbers and is

assumed constant and (ii) a dynamic immune response, E, that

displays infection-coupled kinetics and is triggered at higher

pathogen loads. Both of these defenses (capturing roughly con-

stitutive and inducible mechanisms) exert a negative feedback

on infection, albeit each one at a different characteristic dynam-

ic range. The major assumption for the static immune response

is that the per-capita pathogen killing rate it displays goes down

with pathogen level B. This saturated strength of killing could

mechanistically result from constraints of handling time, and

minimal ratios of respective cell numbers required for effective

killing, for example, a critical number of phagocytes (e.g. neu-

trophils or macrophages) per bacteria [28]. The maximal kill

rate per unit bacteria per unit static response, in the limit of

very low pathogen numbers, is captured by d.

For the dynamic immune response, we assume saturating

stimulation by pathogen load; its growth gets triggered after

total bacteria reach some density, defined by a half-saturation

constant k. The bacterial density at which the specific immune

response grows at one-half of its maximum rate has an inter-

mediate value between the initial bacterial density and carrying

capacity, similar to [22]. When bacterial density is high, the im-

mune response increases at maximal rate r until the infection

is cleared. Killing of bacteria by this immune response is

assumed to occur at a rate directly proportional to the magni-

tude of the immune response, with a killing rate constant d,

equal for sensitive and resistant bacteria, similar to [22, 29]. The

initial immunity level is given by Eð0Þ ¼ E0, higher levels of

which, are expected to reduce from the start of the net growth

rate of bacteria within the host.

Some of these dynamic motifs in the immune response

against bacterial infections appear also in other modeling stud-

ies. For example, the saturating stimulation of the antigen-

dependent immune response (E in our model) has been used

also by [22] when implementing their pathogen density-

dependent response. The feature of our other immune response

(I), whereby the rate at which bacteria are killed saturates as the

bacterial load increases, has been used also in the study by [29],

in their immune response models 2 and 4, but [29], in addition,

include also a pathogen-independent growth dynamics of such

response that is triggered upon onset of infection, while here

we take I roughly constant over infection.

With these biological features, our model is given by the fol-

lowing ordinary differential equations:

dBs

dt
¼ rBsð1�

B

C
Þ�dEBs � dI

Bs

1þ hB
� AmBsgðtÞ; (1)

dBr

dt
¼ rð1� cÞBrð1�

B

C
Þ�dEBr � dI

Br

1þ hB
; (2)

dE

dt
¼ rE

B

Bþ k
; (3)

where B ¼ Bs þ Br and gðtÞ are step-function, varying between 0

and 1 to reflect antibiotic treatment during a given time interval

(s1 � t � s1 þ s2). Notice that the deterministic equation for

Br is only active after this sub-population has been generated

within host, assuming infections start with the drug-sensitive

bacteria. Following the hybrid approach and deterministic ap-

proximation proposed by [30], that treats population growth as

deterministic, but the time of first appearance of mutants as

stochastic, similar to the original Luria–Delbruck model [31], for

resistance emergence, we track the probability of no-emergence

by time t: PðtÞ ¼ e
�m
Ð t

0
BsðxÞdx

. Thus, we simulate the arrival of

the resistant sub-population when this probability hits a deter-

ministic threshold, in our case P¼ 0.5, which implies our simu-

lated emergence time, tem, corresponds to the median arrival

time. Then Br is initialized at level Bem, and subsequently let to

follow the deterministic growth of Eq. (2) during t > tem (see

Supplementary Figs S1 and S2 for an illustration). Finally, our

model implements an extinction threshold Bext when either
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bacterial compartment falls below this level, in line with previ-

ous studies [23, 27]. This prevents too low bacterial densities

from artificially bouncing back after a decline. Numerical predic-

tions of the model are carried out using MATLAB.

TREATMENT AND METRICS OF SUCCESS

Typically, the timing of treatment relative to the natural infec-

tion course is not known. Previous models have assumed that

treatment occurs throughout infection [23] or when infection

reaches a peak [22], which imposed strong constraints on the

model dynamics. In [27], treatment timing is explored in more

detail, showing that it has dramatic consequences on the effect-

iveness of antibiotic treatment, both when it is given as a fixed

regimen, and especially when it is administered in a more adap-

tive fashion, coupled to infection dynamics. Similar to [27],

here, we also couple treatment timing to a threshold during in-

fection, and vary it to accommodate different levels of host tol-

erance to the infection burden. It is possible, though, that other

factors such as the degree of inflammation trigger the onset of

symptoms, and thus, the seeking of treatment by the patient.

Antibiotic treatment starts when the total bacterial density

exceeds value X, lasts for s2 days, and is described by the step-

function g. Antibiotics increase the death rate of drug-sensitive

bacteria Bs by the rate Am (antibiotic kill rate), while the Br strain

is assumed fully drug-resistant, making our study a conserva-

tive investigation of a ‘worst-case’ scenario of empiric therapy.

To investigate whether alternative treatment goals [15] con-

flict with optimal treatment (Fig. 1), we track several instantan-

eous or cumulative measures such as the density of bacteria

B(t) or the level of immunity E(t) after treatment, the duration

of infection, cumulative bacterial load (area under the curve,

AUCB) and total resistance burden (AUCR). By virtue of our hy-

brid modeling approach, our resistance burden is an average

combined measure that takes into account the probability of

emergence in an infection, and the subsequent mutant growth

and selection. In addition, we also consider a simple and clinic-

ally observable criterion, namely the resolution of symptoms,

which may be more readily linked with comparative surveys.

MODEL PARAMETERS

As our model shares some features with previous within-host

models [23, 25, 32], we adopt a similar range of parameters.

Rather than mimicking a specific host–bacterial species scen-

ario, our formulation is based on classical dynamic motifs of

host–pathogen interaction, and is likely to apply to extra- and

intra-cellular bacterial infections. Quantitative details of bacter-

ial infections of humans are nearly absent, and therefore, we

chose model parameters to constrain the overall bacterial dy-

namics in the absence of treatment. Replication rates of

bacteria in vivo are assumed in the range 3–10 per day, consist-

ent with previous modeling studies and empirical estimates for

bacteria like Staphylococcus aureus, Escherichia coli and

Pseudomonas aeuriginosa [33]. Bacterial net growth rate is

reduced within a few days since infection [34], which in our

model is obtained via rapidly activating and expanding antigen-

dependent immune response [35–37].

Antibiotic kill rates have been accurately measured for several

drugs in vitro [38] but not in humans, and thus were varied with-

in expected range, to comprise both sub-inhibitory and supra-

inhibitory effects on the pathogen population during infection.

Modeling only kill rates instead of explicit drug concentrations

and concentration-dependent killing via Hill functions, as done

by previous studies [22, 25, 29], has, for us, a three-fold advan-

tage: it reduces the number of heuristic parameters to specify in

an in vivo infection model, enables different antibiotics at differ-

ent concentrations to achieve the same effect, and helps to

strengthen our focus on the three main axes of treatment. In

particular, we rely on the assumption that antibiotic concentra-

tions to achieve effective killing of sensitive bacteria are above

the MIC measured in vitro, while for the resistant strain, the

MIC is assumed to exceed the concentration that could be feas-

ibly administered to the patient, thus leading to a zero effective

kill rate of Br in the model. Specific values of parameters are

given in Table 1.

RESULTS

Infection outcomes and dependency on initial conditions

Despite its simplicity, the model generates a variety of behav-

iors (Fig. 2A). In our analysis, we focus on acute infections gen-

erated in the presence of an immune response and on the role

of immunity in the dynamics of antibiotic resistance. We first in-

vestigate the effect of pathogen inoculum size and initial im-

mune response parameters on infection outcomes without

treatment. It is straightforward to see from the model that, for

B0 � C, the initial per-capita growth rate of bacteria within-host

in the absence of intervention is given by:

/ ¼ 1

B

dB

dt
jt¼0 ¼ r � dE0 �

dI

1þ hB0
¼ d Ecrit � E0ð Þ � dI

1þ hB0
;

(4)

where E0 reflects the initial level of specific immunity, B0 the in-

oculum size and Ecrit ¼ r=d. Under negligible background static

immunity (I¼ 0) the last term in Eq. (4) vanishes, and the initial

growth or decline of bacteria will depend only on initial levels of

the inducible response E0: More precisely, there is a critical value

Ecrit, such that if E0 > Ecrit, bacteria immediately decline and

there is no infection. If E0 < Ecrit, bacterial growth is possible

leading to an acute infection. However, background static im-

munity (I> 0) reduces the net bacterial growth rate, and this
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reduction is larger for smaller bacterial numbers B0. Only if B0 is

high enough, will there be growth of the initial inoculum. This is

a pattern expected across many infections, including those

caused by Streptococcus pneumoniae, Listeria monocytogenes,

E.coli and S.aureus. Notably, depending on the magnitude and

potential fluctuations of other parameters such as d, I and h, this

dose-dependent effect can be different not only across hosts but

also within the same host at different time points. For example,

as a result of prior infection by the influenza virus, I or d can tran-

siently go down, which would enhance the susceptibility of this

host to infection by lower doses of bacterial pathogens, for ex-

ample, S. pneumoniae, a phenomenon that has been reported

[40]. Similarly, the effects of vaccination in enhancing phagocyt-

osis efficiency could also be implemented in this background

static immunity as a higher d, which would make the particular

host refractory to higher doses of pathogen challenge. Thus, an

important feature of the model is the mechanistic dose-

dependent risk of infection, above the stochastic extinction

threshold, and this is expressed by a critical line connecting E

and B values, including (E0, B0) combinations, where / ¼ 0. This

Table 1 Parameters of the mathematical model.

Symbols Parameter Default Typical range References

r Growth rate of bacteria 3 3–10/day [27, 33]

C Carrying capacity of bacteria 109 cell/ml C > k [23]

c Fitness cost of resistant bacteria 0.2 0.05–0.2 [22]

B0 Initial inoculum 104 cell/ml B0 < k [25, 32]

r Maximal growth rate of the immune

response

1/day 1–4 [27]

k Half-saturation constant for antigen-

dependent immunity

108 cell/ml k < C [27]

d Elimination rate of bacteria by host

immunity

1� 10�6=day 10�6 � 10�4 [39, 22]

E0 Initial immunity 0:5� Ecrit E0 < Ecrit � r
d [32]

Static-immunity parameters

d Effectiveness of static immune

response

1 1–50 Illustrative of variable

baseline immunity

I Background immune response that

acts at low pathogen levels

1 Scaled Assumed constant dur-

ing infection

h Handling time per bacterial cell/ml

by one unit of the static immune

response

0.005 Fixed To reproduce threshold

B0 below 104 leading

to clearance [40]

m Mutation rate conferring drug resist-

ance per sensitive cell

10�5 10�6 � 10�4 [41]

Bext Pathogen extinction threshold

(¼Bem, emergence threshold)

10 1� 10 [23]

Pem Probability threshold for resistant

mutant to emerge

0.5 ½0; 1� [30]

X Bacterial density threshold leading

to symptoms and onset of

treatment

106 cell/ml 105 � 107 Sets treatment onset s1,

coupled to infection

course before the

peak, i.e. when BðtÞ ¼
X [42]

Am Antibiotic kill rate of drug-sensitive

bacteria (efficacy)

1=day 0:1� 10=day [27]

s2 Duration of antibiotic treatment 3, 7 days 1� 14 days [43]

These parameter values were chosen to generate an infection that would be self-limiting over a 10–20 day period, and display similar numerical range
to other models of acute infections [22, 23, 27].
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separatrix defines growth and clearance regimes, mediated by ini-

tial immunity and initial pathogen inoculum, and may shift for

different within-host parameters (Supplementary Fig. S3). We re-

mark to emphasize that the stochastic extinction threshold and

the dose-dependent risk of infection refer to different phenom-

ena. While with respect to the stochastic extinction threshold, the

net growth rate of bacteria is always the same for any inoculum

size B0, with respect to the growth separatrix defined by static im-

munity, the net growth or decline rate of bacteria is different for

different inoculum sizes.

Thus, acute infections start with sufficiently high inocula of

drug-sensitive bacteria and relatively low levels of immunity. As

the bacteria grow, the resistant mutant sub-population is gener-

ated and starts to increase, albeit at a lower rate, due to its fit-

ness cost. Both the resistant and susceptible populations

stimulate the dynamic immune response, which effectively grows

after B(t) > k. In the absence of drug treatment, infections are

self-limiting, brought under control by super-critical host

defenses (e.g. E > r=d), and the resistant population occupies

only a small part of the total load (Supplementary Fig. S1A).

Acute infection dynamics can also be represented as a 2D tra-

jectory in bacteria-immunity space, involving co-variation of

B(t) and E(t) (Fig. 2B and C), which helps to contextualize the

crucial role of an intervention. During a typical infection course,

sufficiently high inoculum sizes (on the right of the red separa-

trix), before being driven back to low numbers, make a big ex-

cursion in phase space and stimulate dynamic immune

response. Sometimes antibiotic treatment is necessary to re-

duce this excursion, or to drive bacteria to the clearance zone

with lower than absolutely critical immune activation; this limits
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pathology and can be life-saving for the host. When antimicro-

bial treatment is started, the sensitive population declines due

to the drug-mediated killing, which allows the resistant popula-

tion to increase. Depending on immune response levels, popu-

lation composition and treatment parameters, there can be

growth, relapse or clearance, as a result of treatment. The bene-

ficial effects of treatment can be obtained with appropriate anti-

biotic kill rates (Fig. 2B) or appropriate duration (Fig. 2C);

typically a good match between the two is key, but not easy to

find (Supplementary Fig. S4). Although one treatment may

seem more effective in disease-space, because a smaller B – E

area is covered, the time to ‘travel’ in disease space may be

faster in alternative treatments, leading to faster recovery and

also less resistance selection (see Supplementary Fig. S4). How

the beneficial effects of treatment can be amplified or compli-

cated by multiple factors, is what we study next in more detail.

The relativity of the infection course and treatment effects

In the model, we assume that symptoms are pathogen-driven,

thus treatment starts when the total bacterial density B ¼
Bs þ Br reaches a critical level X, the symptom threshold.

Treatment administration lasts for s2 days with a given antibiot-

ic efficacy (kill rate) Am which represents the average net rate of

antibiotic-induced bacterial killing at the infection site per unit

of time. But what does X really mean? Should it be seen in ab-

solute or relative terms?

First, when keeping all other parameters fixed, for a given in-

fection, a higher X implies being at a later, more advanced

stage of infection, where the pathogen level is surely higher, but

the corresponding level of immunity is also expected to be

higher. Second, when we shift patients, but keep the pathogen

the same, the same X may mean the same pathogen level trig-

gering treatment, but the corresponding level of immunity at

such treatment onset will be different if the immune parameters

are different between these two patients. Third, when we shift

pathogens, in a slow-growing pathogen, starting from a given

initial inoculum, the same X will be reached later than in a fast-

growing pathogen. Thus, the same symptom threshold will

mean a different point along their individual infection course.

Fourth, when we shift pathogens and hosts, which is indeed the

most common case, the critical point of treatment onset may

be very hard to interpret. In fact, we may be dealing with the

same instantaneous pathogen level that triggers symptoms, but

with very different underlying infection history and kinetics (see

Fig. 3). At the same pathogen level, a fast-growing infection, in

contrast to a slower-growing one, likely harbors resistant bac-

teria, bound to be selected upon treatment and cause a relapse.

Which treatment should be optimal then? How can one tailor

antibiotic dose (kill rate) and treatment duration to such patient

to patient variation? Indeed, this is rarely done. Typical treat-

ment protocols involve fixed prescriptions, such as 3-day or 7-

day treatments for a generic bacterial infection, with fixed anti-

biotic dosing (hence kill rate), independently of many patient

characteristics or pathogen characteristics except patient’s age,

sex and weight. Bacterial characteristics such as the number of

bacteria, their growth rate and antimicrobial susceptibility to
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the prescribed drug are rarely measured (in part due to the diffi-

culty of doing this in clinical practice). Such a lack of contextual

information prior to treatment, may lead to different outcomes,

even when the intention of treatment is to do no harm. We

show that starting therapy at different bacterial densities and

varying duration of treatment (3 vs. 7 days) results in the differ-

ent global outcome (Fig. 4). Specifically, earlier treatment, when

immune responses are just being developed, is likely to lead to

higher relapses but a similar duration of infection, than the

same treatment administered later. Increasing treatment dur-

ation prolongs the resolution of infection at both treatment tim-

ings, due to a higher selection of resistance. For short

treatments, treatment results are more sensitive to the antibiot-

ic kill rates. This happens because of the stronger role of the

still-present sensitive bacteria in determining the competitive

advantage of the resistant ones. For longer treatments, how-

ever, once the sensitive bacteria have been removed, the relative

growth of the drug-resistant sub-population continues in a simi-

lar fashion unaffected by antibiotics. Thus, in longer treatments,

resistant bacteria are typically causative of relapse, namely the

relapse would not happen if the resistance were not there.

Whereas in shorter treatments, relapses do not necessarily

imply underlying drug-resistance, they may well indicate sensi-

tive bacteria regrowth due to immune slowing down.

0 5 10 15 20 25 30

10
5

10
10

Time (days)

B
ac

te
ria

l d
en

si
ty

 (
ce

lls
/m

l)

A

0 5 10 15 20 25 30

10
5

10
10

Time (days)

B
ac

te
ria

l d
en

si
ty

 (
ce

lls
/m

l)

B

0 5 10 15 20 25 30

10
5

10
10

Time (days)

B
ac

te
ria

l d
en

si
ty

 (
ce

lls
/m

l)

C

0 5 10 15 20 25 30

10
5

10
10

Time (days)

B
ac

te
ria

l d
en

si
ty

 (
ce

lls
/m

l)

D

Treatment
A

m
=3

A
m

=5

A
m

=10

Ω

Fig. 4 Treatment duration and timing effects on bacterial density dynamics over infection. We simulate the dynamics of the model (given in Eqs 1–3) and vary

the timing of treatment (defined by X which influences s1), the duration of treatment (s2), and antibiotic kill rate (Am). (A) X ¼ 105; s2 ¼ 3 days. (B) X ¼
105; s2 ¼ 7 days. (C) X ¼ 106; s2 ¼ 3 days. (D) X ¼ 106; s2 ¼ 7 days. Different lines denote BðtÞ ¼ BsðtÞ þ BrðtÞ for different antibiotic kill rates Am, and the

horizontal red line denotes the symptom threshold X. Other parameters as in Table 1.

0 5 10

0

10

20

30

40

50

F
ol

d−
di

ffe
re

nc
e

3−
da

y 
vs

. 7
−

da
y

Bacterial load at treatment endA

0 5 10
0

0.2

0.4

0.6

0.8
Bacterial burden (AUC)B

0 5 10
−1

−0.5

0
Resistance burden (AUC)C

0 5 10
0

1

2

3

Antibiotic kill rate A
m

F
ol

d−
di

ffe
re

nc
e

3−
da

y 
vs

. 7
−

da
y

Infection peakD

0 5 10
−0.4

−0.3

−0.2

−0.1

0

Antibiotic kill rate A
m

Infection durationE

0 5 10
0

0.1

0.2

0.3

0.4

0.5

Antibiotic kill rate A
m

Final immunityF

Ω=105

Ω=106

Ω=107

3−day
treatment
 always
non−inferior

3−day
treatment
 always
non−inferior

Fig. 5 Quantitative comparison of short (3-day) versus longer (7-day) treatment along different metrics of success. For our mathematical model (Eqs 1–3)

and varying X and Am, we calculate the relative fold-difference of target criterion of successful treatment D ¼ Target3d=Target7d � 1. Positive and high values

favour 7-day treatment, while negative and low values favour 3-day treatment, when the aim is to minimize a given target criterion.

256 | Gjini et al. Evolution, Medicine, and Public Health



Next, we compared 3- versus 7-day treatment quantitatively on

different metrics of success (Fig. 5). The fold-difference in each

target criterion between the two duration values, relative to the

longer treatment (D), is plotted for a range of kill rates Am and

for three timings along the same infection course. The compari-

son depends non-linearly and non-monotonically on the antibiot-

ic kill rate. While the treatment timing does not qualitatively alter

the comparison, it shifts the kill rates for a given relative superior-

ity between long and short treatment. Close to the minimal in-

hibitory kill rates, and for suitably high kill rates, the two values

of treatment duration give a similar performance (D 	 0) in

terms of determining the peak of infection, the bacterial burden

and final immunity, suggesting that independently of X, the

shorter treatment could be applied in most of these cases.

Typically, for other kill rates, the 3-day treatment seems to be dis-

favored as it can yield up to about 20–40% higher bacterial bur-

den and immune activation, and about 2-fold higher peak

infection than 7-day treatment. There are only two exceptions

where a short treatment is almost universally favored: resistance

selection and infection duration (highlighted in Fig. 5C and E).

This happens because resistance selection is a direct conse-

quence of antibiotic treatment, and because infection duration is

typically extended by any treatment, unless the kill rates used are

extremely high. These graphs also display which infection charac-

teristics covary the most, highlighting that targeting one of these

could be sufficient to control the others.

While in the above comparison, detailed quantitative meas-

ures were used to compare treatment effectiveness, when pre-

scribing antibiotics, doctors rarely have access to such

quantitative picture of their patients, and randomized trials, typ-

ically rely on more crude but relevant measures such as recru-

descence of symptoms. By using this binary measure in our

simulations we next compared different antibiotic treatments

on how they satisfy the simple criterion: max½BðtÞ� < X during

all time after treatment, i.e., for all t > s1 þ s2: If satisfied, the

condition indicates treatment effectiveness in resolution of

symptoms, and, by logic, the patient should not require a se-

cond treatment. When this simpler measure is applied (Fig. 6),

we find that for many combinations of antibiotic kill rate and

duration of treatment, the shorter treatments are as effective as

a longer treatment, if the kill rate applied is sufficiently high.

The higher sensitivity of success (by this definition) to the kill

rate than to treatment duration supports that whenever pos-

sible, shorter treatments could be used. However, we can al-

ways find regimes in which, by other criteria, shorter treatment

is inferior to longer ones, further highlighting the challenge of

finding a universally optimal treatment schedule (e.g. Fig. 5).

Treatment timing and the immunity-resistance trade-off

The key to understanding how treatment duration affects infec-

tion dynamics is how bacterial load impacts the generation of
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the immune response. We assumed that immune response ex-

pansion is directly driven by the amount of bacteria and that im-

mune response does not contract during the timescale of

infection. This implies that the net growth rate of bacteria

declines progressively due to the activation of the immune re-

sponse, until it becomes negative for super-critical immunity.

Thus, although parallel to a growing bacterial population, the

probability of resistance emergence increases (Supplementary

Figures S1-S2), the effective growth rate of any emerging resist-

ant sub-population gets lower over time, limiting their eventual

ascent and competitive advantage upon treatment. In this con-

text, any treatment that does not clear bacteria but impairs im-

munity may lead to relapse. And the later such treatment

occurs, the more likely this relapse is predominantly drug-

resistant.

The details of such immunity-resistance trade-off likely vary

from infection to infection to determine which force is stron-

gest. For our default parameter values, we find that increasing

the length of treatment increases resistance selection irrespect-

ive of kill rates or treatment timing (Figure 7). However, the ef-

fect of increasing duration of treatment on ultimate resistance

selection depends on the bacterial density where treatment

begins. In particular, when treatment happens relatively early

over the same infection course (X ¼ 105 and m ¼ 10�5), inter-

ference in the immune buildup and, thus, on the balance be-

tween Bs and Br, can lead to a higher resistance burden than

when treatment starts later (X ¼ 106 and m ¼ 10�5). This effect

is pronounced at low kill rates (Fig. 7A), but gets reversed when

higher kill rates are applied (Fig. 7C). At higher antibiotic effica-

cies, starting treatment at X¼106 yields a higher resistance bur-

den than too early or too late treatments, indicating maximal

selection potential upon intermediate timing, when immune

activation is not yet complete, but with resistant bacteria al-

ready at sufficient levels. In general, the sensitivity of selection

of resistance to treatment duration is higher towards the lower

end of antibiotic kill rates (Fig. 7A) compared to the higher end

(Fig. 7B-C), because once Br gain a definite advantage over Bs,

they subsequently grow unaffected by treatment. Next, since re-

sistance selection depends on the actual mutation rate that

generates resistance in the first place, we also examined the

role of lower mutation rate on dynamics (Supplementary Fig.

S6). When resistance generation becomes more difficult

(m ¼ 10�6), we observe that early timing restricts resistance

more than later timing, indicating that when mutations are rare,

treatments at lower pathogen densities are superior, in favor of

the ‘hit fast’ principle (Supplementary Fig. S6). Yet, the pattern

that increasing length of treatment increases selection of resist-

ance, persists, also in this case, where late timings are the

worst.

Implications for optimal treatment

We find that shorter antibiotic courses would be better to con-

strain resistance risk in target bacterial populations, independ-

ently of treatment timing, with a higher relative benefit when

treatment occurs at lower pathogen densities (Fig. 7).

Antibiotic resistance however is only one indicator, among

others, for defining successful treatment. We, therefore, used

the model to probe treatment optimality by analyzing several al-

ternative metrics of successful treatment as a function of anti-

biotic kill rate and treatment duration. We fixed the range of kill

rates Am to 0:1� 8 and of treatment duration to 3–14 days, in

favor of limiting antibiotic exposure of a given patient as much

as possible (due to potential side effects of the treatment). We
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compared the resulting optimal treatments across different

treatment onset, as defined by pathogen load triggering symp-

toms X. Some criteria were unsurprisingly minimized in the

extremes of maximally aggressive (long treatment with high kill

rates) or no treatment—these included infection duration, im-

mune activation and resistance selection (results not shown).

For deeper analysis, we therefore selected (i) an instantaneous

measure that captures the severity of infection (infection peak),

(ii) a cumulative measure that integrates the area under the

curve of infection balancing severity and duration (total bacter-

ial burden) and (iii) a joint measure of three variables (the prod-

uct between peak sensitive bacteria, peak resistant bacteria and

peak immune response; therefore a balance between pathogen-

induced pathology, resistance selection and immune-induced

pathology) pathology (Fig. 8 and Supplementary Fig. S5).

We observe that optimal treatments tend to favor extremes in

the two axes of control: either antibiotic kill rate or treatment

duration, depending on the timing of administration. For early

treatments, high-killing rates and short treatments are favored

for all metrics of success (Fig. 8A, D and G). This suggests a

short and strong principle for early treatment (Fig. 8A, D and G).

In contrast, when treatment happens relatively later over infec-

tion, very long duration but low kill rates are favored, supporting

a mild and long principle (Fig. 8B, C, E, F, H and I). Notice that

the same treatment can have very different effects on the dynam-

ics depending on timing. For example in Fig. 8B and I, the infec-

tion profile varies because treatment is applied at lower

pathogen loads in one case and at higher pathogen loads in the

other, with longer time to clearance in the latter, but more resist-

ance selection in the former. It is interesting to observe that the

optimal treatment that minimizes the joint peak damage, for

intermediate timing (Fig. 8H), leads to a rapid clearance of infec-

tion, constrains substantially the ascent of resistance and

reduces the activation of immunity to the minimum necessary
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and sufficient. However, this treatment, relying on mild kill rates

and the ability of the immune response to grow during treat-

ment, supports the notion that patients might need to accept

getting slightly worse before getting better during treatment; a

temporal trade-off hard to reconcile at first sight with the aim of

clinical practice. Yet, with the exception of the early timing scen-

arios, in all other situations, this trade-off seems to apply, only

the ‘getting worse’ is delayed to post-treatment relapses. This

highlights that rationally confronting such trade-off is inevitable,

although it may well-depend on patient-specific characteristics.

In summary, for all metrics, when treatment happens relative-

ly early over the same infection course, the dominant leverage

is on antibiotic kill rates, as they only are effective to prevent

damage, by eliminating sensitive bacteria, restricting antibiotic

resistance emergence and preventing any immune-activation

that could lead to immunopathology. In contrast, when treat-

ment happens relatively later and the damage is in process,

strong kill rates can only make things worse, thus, milder killing

but with longer treatments tends to be better, because this

allows to control the damage, for example, by keeping the bac-

terial peak at most around the same level that triggered treat-

ment in the first place. These treatments also keep antibiotic

resistance in check because they counterbalance between high

emergence probability but lower growth rate. At more advanced

points along the infection course, the only option left is to har-

ness the already-mounted defenses and limit any further in-

crease in damage by treatment.

Overall, these results highlight fundamental motifs in anti-

biotic treatment success and failure that are likely to be shared

across host–pathogen systems. Dissecting such motifs in terms

of the interplay between treatment intensity, duration and host

response in real infections remains key to improve treatment

outcomes and reduce the risk of adverse effects, including the

selection of antibiotic resistance.

DISCUSSION

Antibiotics are essential to modern medicine and preserving

their effectiveness is a global priority. Avoiding antibiotic over-

use remains an important step in addressing the antibiotic re-

sistance challenge [44, 45]. While some epidemiological studies

have linked higher antibiotic use to higher levels of antibiotic re-

sistance in host populations [46, 47], others found this link to

depend on the drug with no significant correlation for many

drugs [48]. It is clear, though, that even at the single host level,

we need a better understanding of how individual infection

processes and treatment parameters affect resistance dynam-

ics. In this study, we examined the optimality of antibiotic treat-

ment, taking into account several infection target criteria, and

expanding on the previously neglected aspect of treatment start

time over the infection course (but see [27, 49, 50]).

We found several parameter regimes and target criteria by

which short (3 days) treatment is non-inferior and even superior

to longer (7 days) treatment, lending support to reduced

courses of antibiotics to achieve similar clinical outcomes [43].

Our results suggest that among treatments far away from the

aggressive spectrum, those that maintain slightly higher patho-

gen densities within the host can minimize the selection of re-

sistance, similar to other studies [42, 51]. In our parameter

regime, this effect comes mainly from heightened indirect com-

petition between drug-sensitive and drug-resistant populations

due to higher immune activation expected at higher bacterial

loads. In the model’s general mechanistic structure and in real-

ity, this effect is also compounded by resource-mediated com-

petition (e.g. the role of the within-host carrying capacity).

We also observe that optimal kill rate-duration combinations

vary, depending on the time point of treatment, infection criter-

ion to optimize and host characteristics. This difficulty in draw-

ing general principles for a multi-factorial problem is not new.

At the epidemiological level, it is also being recognized that

ranking antibiotic treatment protocols is highly dependent on

methodological factors, e.g., the criterion of choice for compari-

son [52]. It is likely that a better understanding of how individual

infection processes and treatment parameters affect resistance

dynamics and health across multiple biological scales will help

sharpen expectations and adapt treatment to meet the selected

goals.

Although we find a general qualitative pattern of optimal

treatments, supported by the model, shifting from ‘short and

strong’ for early treatments to ‘mild and long’ for later treat-

ments implementation of such principle may be difficult in prac-

tice. Distinguishing patients that are less tolerant (early

treatment seekers) from those that are more tolerant (later

treatment seekers) may be hard, and thus, adjusting antibiotic

kill rates and treatment duration to individual patients may be

an impossible task. However, our results suggest that strongly

bactericidal versus more bacteriostatic antibiotics could be

used in different patient groups if they can somehow be catego-

rized based on the point along their infection course at which

they report symptoms. This remains a conjecture since we did

not actually model the impact of bacteriostatic drugs on infec-

tion dynamics.

In our model, resistant bacteria, emerging at low frequency in

an infection, are more likely to go extinct in high-host immunity

settings (Fig. 3), where drug-sensitive competitors and high lev-

els of immune control reduce the absolute fitness of the resist-

ant mutants. This within-host pattern can have implications for

dynamics of resistance at the higher scale of populations, and

has been argued as a plausible hypothesis for drug resistance

in malaria parasites in high transmission versus low transmis-

sion settings [53]. Within-host competition remains to be

studied deeper analytically, in all its dimensions, beyond the
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ones covered here, and beyond simulations, as it is a key factor

shaping the evolution of drug resistance in infectious diseases.

Nested models connecting the within- to the between-host lev-

els are crucial for this aim [23, 52], but in the field of antibiotic

resistance, future models need to properly account also for vari-

ation in timing and duration of treatment in individual hosts.

There are a number of potential extensions to our modeling

analysis. We did not study the role of transmitted pre-existing

resistance; starting the infection with already pre-existing resist-

ant variants can be understood in this model via an increase in

mutation rate, which would generate resistance even faster

within the host. This is likely to disfavor longer treatments [15].

We ignored pharmacokinetics and pharmacodynamics of the

antibiotics which may also on their own add uncertainty in

defining optimal treatment duration. However, focusing on the

net kill rate at the infection site, the interplay between the three

major axes of treatment becomes more evident and easier to

understand. Opting for a more parsimonious representation of

antibiotic efficacy (only one parameter for kill rate instead of

four required to specify a full pharmaco-dynamic function [54]),

we allow for the same kill rate to be attained with different anti-

biotics, each possibly with a different concentration, hence add-

ing generality to our formulation. Other studies [22, 23, 25, 29],

motivated by in vitro data, have included explicit resource dy-

namics and explicit antibiotic concentrations via Hill functions

in their models. It is not clear how these functions apply to a

complex in vivo situation, where ultimately how microbial death

rates compare to growth rates matters. Thus, since much

remains unknown about in vivo dynamics of bacteria, resources

and drugs during resistance generation, we decided to repre-

sent essential processes in the simplest way (exponential

growth and decline), so that experiments or future in vivo data

can most directly inform the model parameters, a practice wide-

ly adopted in viral kinetics models [55, 56].

We opted for a hybrid approach to simulate the generation of

drug-resistant variants. Given that we consider a relatively high

mutation rate, drug-resistant mutants are expected to be pre-

sent often at the start of treatment (but see Supplementary Fig.

S2). Therefore, most of our results are likely to remain valid

even if the generation of mutants is described deterministically

(results not shown). We considered a single mutational step to

complete resistance. This is likely a simplification but serves as

a benchmark for a worst-case scenario in empiric therapy,

where complete resistance means that this treatment is ineffect-

ive in the short term for the patient, and urgent antimicrobial

susceptibility characterization of the underlying pathogen is

needed. In particular, when the antibiotic kill rate is very high,

our model provides a large advantage to drug-resistant bacteria,

which may be lower in most real-life infections, and generate

lower relapses than the ones predicted here. In our case, anti-

biotic treatment alone cannot clear a resistant-only infection—a

phenomenon observed more in critical clinical cases [57], there-

by emphasizing competition with drug-sensitives and immune-

mediated killing as crucial co-factors for infection control.

Furthermore, resistance is likely to be acquired in gradual

mutational steps [4, 58] where transient phenotypes in fitness

cost and antibiotic susceptibility may interact differently with

treatment, reducing Br’s competitive advantage, or altering their

interplay with the immune system. Similarly, spatial heterogen-

eity of an infection was not studied, focusing on infection that

develops more or less homogeneously at a single primary site.

Spread of bacteria in different tissues, and unequal distribution

of antibiotics in such within-host compartments, may select for

resistance at different rates, effectively resulting in different res-

ervoirs of infection, each with their own local dynamics, contri-

buting to more complex symptoms and infection profiles.

In our model, host immunity is a key player in treatment suc-

cess, resonating with previous studies [22, 27, 29]. How the dy-

namics of immune response, both innate and adaptive, depends

on the presence of infection in humans is not understood and

remains an active area of investigation. Variation according to

type of infection is expected [59] and different aspects of host

susceptibility must be accounted for in an integrative framework

[60]. The kinetics of most acute bacterial infections in humans

have not been accurately measured (but see [34, 61]). One critic-

al parameter in our analysis was the time when treatment starts

(which in the model was strictly determined by the bacterial

density). Physiological factors driving patient symptoms, toler-

ance to infection [62], pathology and treatment onset remain un-

clear, and are likely to widely vary between individuals, as

evidenced, for example, by differences in microbiologic confirm-

ation at baseline across patients with the similar symptoms [63].

All these aspects require attention in the future.

Deeper understanding of immune processes will not only aid the

antimicrobial resistance challenge but also help improve the man-

agement of infection, immune suppression, cancer and other dis-

eases, in a more personalized way. Recently, individual disease

trajectories have been introduced as a powerful way to represent

the dynamic nature of infection and its effect on health in single

hosts [64], where multiple infection and health variables are plotted

and analyzed together as they covary during disease progression.

Such approaches could be applied also to inform rational antibiotic

therapies, by revealing the critical infection stages or host types

where the benefits of treatment would be maximal. Empirical quan-

tification of mechanisms regulating bacterial loads and bacteria-

specific immune responses in tissues in human infections will def-

initely test and constrain mathematical models. Only this will en-

able robust predictions about interventions.
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