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Potential pathogenic factors, other than well-known APP, APOE4, and PSEN, can be
further identified from transcriptomics studies of differentially expressed genes (DEGs)
that are specific for Alzheimer’s disease (AD), but findings are often inconsistent or even
contradictory. Evidence corroboration by combining meta-analysis and bioinformatics
methods may help to resolve existing inconsistencies and contradictions. This study
aimed to demonstrate a systematic workflow for evidence synthesis of transcriptomic
studies using both meta-analysis and bioinformatics methods to identify potential
pathogenic factors. Transcriptomic data were assessed from GEO and ArrayExpress
after systematic searches. The DEGs and their dysregulation states from both DNA
microarray and RNA sequencing datasets were analyzed and corroborated by meta-
analysis. Statistically significant DEGs were used for enrichment analysis based on
KEGG and protein–protein interaction network (PPIN) analysis based on STRING. AD-
specific modules were further determined by the DIAMOnD algorithm, which identifies
significant connectivity patterns between specific disease-associated proteins and non-
specific proteins. Within AD-specific modules, the nodes of highest degrees (>95th
percentile) were considered as potential pathogenic factors. After systematic searches
of 225 datasets, extensive meta-analyses among 25 datasets (21 DNA microarray
datasets and 4 RNA sequencing datasets) identified 9,298 DEGs. The dysregulated
genes and pathways in AD were associated with impaired amyloid-β (Aβ) clearance.
From the AD-specific module, Fyn, and EGFR were the most statistically significant
and biologically relevant. This meta-analytical study suggested that the reduced Aβ

clearance in AD pathogenesis was associated with the genes encoding Fyn and EGFR,
which were key receptors in Aβ downstream signaling.

Keywords: Alzheimer’s disease, meta-analysis, microarray analysis, RNA sequence analysis, bioinformatics

Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; BBB, blood-brain barrier; CMRgl, cerebral metabolic rate for
glucose; DEGs, differentially expressed genes; DIAMoND, DIseAse Module Detection algorithm; eCBs, endocannabinoids;
FDR, false discovery rate; IDE, insulin-degrading enzyme; KEGG, Kyoto Encyclopedia of Genes and Genomes; logORs, loge
odds ratios; PPIN, protein–protein interaction network; PrPC , cellular prion protein; ROS, reactive oxygen species; RNA-Seq,
RNA-sequencing; T2DM, type 2 diabetes mellitus; UPR, unfolded-protein response; UPS, ubiquitin-proteasome system.
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INTRODUCTION

Alzheimer’s disease is a neurodegenerative disease that is the
major cause of dementia worldwide (Alzheimer’s Association,
2009). The AD brain is characterized by the distribution of
amyloid plaques and neurofibrillary tangles, which are composed
of Aβ and hyperphosphorylated tau proteins, respectively (Wang
and Mandelkow, 2016; Wang J. et al., 2017). The generation
of Aβ from amyloid precursor protein (APP) is a central
theme in the field of AD. APP is a single transmembrane
protein with a large extracellular domain that is generated
in large quantities and efficiently metabolized. APP can be
processed via non-amyloidogenic or amyloidogenic generation
of Aβ (Chow et al., 2010). Aβ mainly exists in two forms,
Aβ40 and a more hydrophobic Aβ42, which consist of 40 and
42 amino acids, respectively (Marina et al., 2003). The Aβ

monomer is intrinsically disordered, and present as a dynamic
conformational structure (Chen et al., 2017), which allows the
monomer binds to numerous substrate with a high binding
affinity. The monomers of Aβ aggregate into oligomers, fibrils,
and plaques, when a critical concentration of amyloid is reached
due to dysfunctional homeostasis (Knowles et al., 2014). The
soluble Aβ oligomer is recognized as the major neurotoxic
species, and exists in an equilibrium with fibrils (Yang et al.,
2017). And the toxicity of Aβ oligomers is inversely correlated
with their oligomer size (Sengupta et al., 2016). Aβ is directly
neurotoxic and induces a series of cellular responses; for example,
it can induce excitotoxic signaling by increasing glutamate release
(Brito-Moreira et al., 2011), and alter Ca2+ homeostasis and
synaptic functions in neurons, astrocytes, and microglia (Parihar
and Brewer, 2010). Aβ located on the mitochondria generates
ROS, thus increasing oxidative stress and disrupting oxidative
phosphorylation (Caspersen et al., 2005). Aβ also activates
protein kinase to phosphorylate tau protein, resulting in the
formation of neurofibrillary tangles (Hernández and Avila, 2008).
The toxicity of both Aβ and hyperphosphorylated tau proteins
are dependent on one another; an absence of tau protein reduces
Aβ-induced memory impairment, while increased Aβ levels
promote tau pathology (Oddo et al., 2006; Roberson et al., 2007).

The amyloid cascade hypothesis was proposed in 1992,
and depicts Aβ as the causative factor in AD development
(Hardy and Higgins, 1992). This hypothesis has genetic-based
support, because mutations in genes related to Aβ formation
(APP and PSEN) and clearance (APOE4) induce early-onset AD
(Rovelet-Lecrux et al., 2006; Kline, 2012; St George-Hyslop and
Fraser, 2012). However, this hypothesis is challenged by two
facts, although there are also counterarguments that have been
proposed from other scientific findings. First, amyloid imaging
reveals that Aβ deposition also occurs in healthy aging subjects,
suggesting that Aβ deposition could be a normal phenomenon
of aging (Edison et al., 2007). However, Esparza et al. (2013)
suggested that Aβ oligomer levels, which are the neurotoxic
form of Aβ deposition, are higher in AD brains compared
with healthy subjects. Second, the degree of dementia does not
correlate well with amyloid plaque formation in AD (Nelson
et al., 2012). In fact, Aβ oligomers may exert their neurotoxic
effects much earlier, before the formation of amyloid plaques

(Broersen et al., 2010). Also, the drug development for the
treatment of AD has been guided by the amyloid cascade
hypothesis for the pass two decade, although most anti-Aβ drugs
fail in clinical trials and no novel drugs have been brought
to market since 2003 (Cummings et al., 2014). For example,
Solanezumab (currently in a phase 3 trial) recognizes Aβ at
the 13 to 28 amino acid position and lowers amyloid levels,
but does not show beneficial effects in subjects with mild
AD (Honig et al., 2018). Verubecestat (currently in a phase
3 trial), a β-secretase inhibitor, reduces Aβ levels in a dose-
dependent manner (Kennedy et al., 2016). However, a recent
clinical trial (Egan et al., 2019) indicated that verubecestat
does not have clinical effects in AD subjects. The failure of
development of anti-Aβ drugs does not discredit amyloid as
the central theme for AD treatment, because the sporadic
AD is caused by the changes of genes which potentiate the
neurotoxicity of Aβ in the brain over years, rather than solely Aβ

overproduction. Indeed, the cerebral Aβ42 kinetics were modified
by Aβ accumulation (Potter et al., 2013), resulting in the disease
preventative treatment required at least 95% lowering Aβ42
production if the treatment was started after Aβ accumulation
(Roberts et al., 2017). This suggests that the development of
anti-Aβ drugs should not be solely dependent on inhibition
of Aβ42 production. However, the incomplete knowledge of
AD pathogenic factors may hindered the investigation of AD
(Scott et al., 2014), not just Aβ production, but also the
Aβ-relevant receptors and their corresponding downstream
signaling cascades.

Alzheimer’s disease is a complex disorder, expressed as a
malfunction of defects in multiple genes. The discovery of AD
pathogenic factors can be revealed by transcriptome profiling
approach [i.e., DNA microarray and RNA-Seq (Sutherland
et al., 2011)] to identify DEGs in AD subjects compared with
healthy subjects. DEGs are genes that are potentially associated
with disease pathology. Table 1 shows the publications using
transcriptomic data and bioinformatics tools for identifying AD
pathogenic factors. Puthiyedth et al. (2016) identified common
DEGs from microarray datasets across six different brain regions.
All datasets were integrated using the Colored (α, β)-κ Feature
set approach (Puthiyedth et al., 2015), and a few common
DEGs were identified across the brain regions, revealing an
AD-specific signature. Kawalia et al. (2017) used the BC3Net10
algorithm to infer AD gene regulatory networks. This network
was generated by the integration of literature-based knowledge
and data-driven analysis. Inferences did not solely depend on the
network topology, but also integrated information about DEGs
and AD-related genes, after systematic searching from databases.
However, the DEGs obtained from different transcriptomic
studies of AD are sometimes conflicting because of many
factors, such as the use of different experimental designs or
statistical methods between studies. The integration of these
studies based on meta-analysis therefore resolves inconclusive
results and obtains a generalization (Haidich, 2010). The results
of meta-analysis are presented as logORs based on the number
of dysregulation events in both disease and control samples.
The effect sizes are integrated to assess the overall effect size
based on either fixed- or random-effect models. Meta-analysis
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TABLE 1 | The published transcriptomic data and bioinformatics tools for identifying AD pathogenic factors.

Title Authors
(publication
year)

Database Bioinformatic tools Pathogenic factors

Integrated Identification of Key
Genes and Pathways in Alzheimer’s
Disease via Comprehensive
Bioinformatical Analyses (Yan et al.,
2019)

Yan et al.
(2019)

GEO, KEGG, Reactome,
STRING, Wikipathway

Platform: Morpheus, RBPDB,
UCSC;
Software: Cytoscape, ClueGO,
Gluepedia, Graphpad Prism,
MCODE

BDNF, CACNA1A, CALB,
CD44, CDC42, OXT,
PDYN, TAC1, TH, VEGFA

Systematic Analysis and Biomarker
Study for Alzheimer’s Disease (Li X.
et al., 2018)

Li X. et al.
(2018)

GEO, International
Genomics of Alzheimer’s
Project

R package: affy, glmnet, limma,
MASS, PRROC, ROCR;
Software: Ingenuity Pathway
Analysis, MAGMA

NDUFA1, MRPL51,
RPL36AL

Network-based approach to
identify molecular signatures and
therapeutic agents in Alzheimer’s
Disease (Rahman et al., 2019)

Rahman et al.
(2019)

CMap, GEO, JASPAR,
miRTarBase, STRING,
TarBase

Platform: DAVID, GEO2R;
Software: CytoHubba, Cytoscape,
MCODE

AR, CREBBP, E2F1,
FOXC1, FOXL1, GATA2,
JUN, NFIC, PPARG, RAC1,
RPL12, RPL15, RPS11,
RPS6, SMAD3, SRF,
UBA52, UBC, USF2, YY1

Alzheimer’s Disease Master
Regulators Analysis: Search for
Potential Molecular Targets and
Drug Repositioning Candidates
(Vargas et al., 2018)

Vargas et al.
(2018)

CMap, GEO Algorithm: Algorithm for the
Reconstruction of Accurate Cellular
Networks, two-tail gene set
enrichment analysis;
R package: ggplot2, RedeR, RTN

ATF2, CNOT7, CSRNP2,
PARK2, SLC30A9,
TSC22D1

Condition-specific Gene
Co-expression Network Mining
Identifies Key Pathways and
Regulators in the Brain Tissue of
Alzheimer’s Disease Patients (Xiang
et al., 2018)

Xiang et al.
(2018)

Allen Brain Institute, GEO Algorithm: Local maximized
Quasi-Clique Merger;
Platform: REViGO;
R package: Affy, Enrichr, lmQCM

FOS, JUN, MEF2A, MIB2,
PCBP1, SMARCA2, SP1,
STAT1, TEAD4, ZFHX3,
ZNF281

Analytical Strategy to Prioritize
Alzheimer’s Disease Candidate
Genes in Gene Regulatory
Networks Using Public Expression
Data (Kawalia et al., 2017)

Kawalia et al.
(2017)

ArrayExpress, CPDB,
ENSEMBL, GEO,
GWAScatalog,
GWASCentral, GWASdb,
KEGG, NeuroTransDB,
RegulomeDB

Algorithm: BC3Net10;
R package: affy,
arrayQualityMetrics, bc3net, limma;
Platform: HaploReg, SCAIView

AP2A2, ARAP3, ATP2A3,
ATP2B4, HLA-C, HLA-F,
ITPR2, RAB11FIP4, STX2

The Bioinformatic Analysis of the
Dysregulated Genes and
MicroRNAs in Entorhinal Cortex,
Hippocampus, and Blood for
Alzheimer’s Disease (Pang et al.,
2017)

Pang et al.
(2017)

CMap, GEO, KEGG R package: affy, edgeR, limma,
WGCNA;
Platform: DAVID;
Software: CytoHubba, Cytoscape,
GSEA

CTSD, VCAM1

A Systematic Integrated Analysis of
Brain Expression Profiles Reveals
YAP1 and Other Prioritized Hub
Genes as Important Upstream
Regulators in Alzheimer’s Disease
(Xu et al., 2018)

Xu et al. (2018) GEO R package: in silico Merging,
limma, WGCNA

YAP1

Network Topology Analysis of
Post-Mortem Brain Microarrays
Identifies More Alzheimer’s Related
Genes and MicroRNAs and Points
to Novel Routes for Fighting with
the Disease (Chandrasekaran and
Bonchev, 2016)

Chandrasekaran
and Bonchev
(2016)

ArrayExpress, GEO, OMIN,
ResNet

Algorithm: Robust Multiarray
Average approach, empirical Bayes
method;
Platform: DAVID;
Software: Pajek, Pathway Studio

CD4, DCN, IL8

A Systematic Investigation into
Aging Related Genes in Brain and
Their Relationship with Alzheimer’s
Disease (Meng et al., 2016)

Meng et al.
(2016)

Biocarta, DisGeNet, GEO,
GenAge, GenMapP,
MetaBase

Algorithm: Condition-specific target
prediction;
Platform: DAVID, oPOSSUM;
R package: WGCNA;
Software: Ingenuity Pathway
Analysis

ESR1, SOX2, SP1

(Continued)
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TABLE 1 | Continued

Title Authors
(publication
year)

Database Bioinformatic tools Pathogenic factors

Identification of Differentially
Expressed Genes through
Integrated Study of Alzheimer’s
Disease Affected Brain Regions
(Puthiyedth et al., 2016)

Puthiyedth
et al. (2016)

GEO Algorithm: (α,β)-k Feature Set
approach, Minimum Description
Length Principle;
R package: GeneMeta, RankProd;
Software: Expression Analysis
Systematic Explorer

FGF, GPHN, INFAR2,
LARGE, PSMB2, PSMD14,
PTMA, RAB2A, RPL15,
RWDD2A, SEMA4C, WNK1

Meta-Analysis of Transcriptome
Data Related to Hippocampus
Biopsies and iPSC-Derived
Neuronal Cells from Alzheimer’s
Disease Patients Reveals an
Association with FOXA1 and
FOXA2 Gene Regulatory Networks
(Wruck et al., 2016)

Wruck et al.
(2016)

GEO, KEGG Platform: oPOSSUM;
R package: affy, Gostats, lumi,
oligo

FOXA1, FOXA2

A Computational Framework for the
Prioritization of Disease-gene
Candidates (Browne et al., 2015)

Browne et al.
(2015)

BIND, BioGPS, BioGRID,
DIP, GEO, HPRD, InACT,
MINT, PDB

Algorithm: Average of Pearson
correlation coefficients;
Platform: hORFeome;
R package: GOSemSim;
Software: Cytoscape, Significance
Analysis of Microarrays

CARD9, FHL3, KRT38,
LZTS2, MID2, MTUS2,
REL, TFCP2, TRAF1

Identification of Unstable Network
Modules Reveals Disease Modules
Associated with the Progression of
Alzheimer’s Disease (Kikuchi et al.,
2013)

Kikuchi et al.
(2013)

BioGRID, GEO Algorithm: Infomap algorithm, MAS
algorithm

UCHL5

R packages and genes are in italic font.

has been applied in genomic analyses to assess the effectiveness
of a particular gene in AD. Moradifard et al. (2018) conducted
a meta-analysis using the R package RobustRankAggreg to
identify statistically significant DEGs in AD across six microarray
datasets. The DEGs were further corroborated with three RNA-
Seq datasets and input for biological enrichment analysis to
reveal the miRNAs that regulate the DEGs. Furthermore, Wang
Q. et al. (2017) conducted a meta-analysis using the R package
RankProd to explore the molecular mechanisms of AD across
seven microarray datasets. They found 37 DEGs commonly
shared by six brain regions, and most of these DEGs were
downregulated. The significantly enriched pathways of DEGs
were associated with mitochondrial oxidative phosphorylation
and synaptic vesicle function. However, both studies only focused
on a single microarray platform (Affymetrix), and the meta-
analysis of DEGs did not include the gene expression profiles
from RNA-Seq. For the study by Moradifard et al., the DEGs from
RNA-Seq were only used to validate the results of microarray
datasets; that is, the DEGs common to both the RNA-Seq and
microarray datasets, in the same dysregulated direction. It seems
that the results of currently available meta-analyses of DEGS
for identifying AD pathogenic genes are limited by the use of
microarray platforms and the inability to integrate results from
both microarray and RNA-Seq.

This study aimed to identify potential pathogenic factors based
on the meta-analysis of transcriptomic data from different brain
regions in AD. The meta-analysis was conducted according to
PRISMA guidelines (Moher et al., 2009), including those for

dataset search, dataset selection, and statistical analysis. The
raw transcriptomic data were retrieved from databases after a
systematic search and were analyzed using a consistent workflow,
from quality control and normalization to DEG determination.
A statistical meta-analysis was performed when more than
one study reported the same DEG. The DEGs that remained
statistically significant after P-value adjustment were collected to
perform a biological enrichment analysis and subgroup analysis,
and to construct a PPIN. The network information and AD seed
genes, which were obtained from the GWAS Catalog (Welter
et al., 2014), were collected for the DIseAse Module Detection
(DIAMoND) algorithm (Ghiassian et al., 2015) to examine
the significance of the connectivity patterns among network
components. This algorithm identified an AD-specific module
from the network, and the nodes within the module with a high
degree were treated as potential pathogenic factors. The overall
study design is illustrated in Figure 1.

MATERIALS AND METHODS

Database Search and Dataset Selection
The datasets were collected from GEO1 (Barrett et al., 2012)
and ArrayExpress2 (Kolesnikov et al., 2015) from their respective

1https://www.ncbi.nlm.nih.gov/geo
2https://www.ebi.ac.uk/arrayexpress/
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FIGURE 1 | The overall study design.

inception dates until January 6, 2019. The search strategy is
shown in Supplementary File S1.

Raw DNA microarray and RNA-Seq data reporting the
transcriptomes of brain regions from AD and healthy subjects
were included. The datasets were excluded if they were (1) not
case–control studies; (2) focused on other neurodegenerative
diseases; (3) demonstrated treatment effects on AD; or (4)
used cell-line or artificial AD models. Sample details were

collected if they were provided. If the datasets contained
several comparisons, DEGs were determined from each
comparison independently.

Data Processing
Each microarray dataset was processed consistently and
independently using R packages from Bioconductor. Each
dataset was processed through background correction, quantile
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normalization, and log2-transformation of the averaged
expression value of duplicate probes, using the affy (Gautier
et al., 2004), oligo (Carvalho and Irizarry, 2010), or limma
(Ritchie et al., 2015) package. For each dataset, the quality
of each array was assessed using the arrayQualityMetrics
(Kauffmann et al., 2009) package. The array was omitted
from the subsequent analysis if it was detected as an outliner
in any of the three metrics provided by the package. The
gene expression ratios between AD and healthy subjects were
determined for each dataset using the limma package. Genes
with an adjusted P-value (by FDR) of less than 0.05 were
considered to be statistically significant DEGs. The DEGs were
annotated using the gene annotation table provided by GEO
and ArrayExpress. The probes with missing gene symbols were
removed. When multiple probes were annotated with the same
gene symbol on the same array, the probe with the highest
expression value was kept.

The raw sequence data were converted to FASTQ format
using the SRA Toolkit (version 2.9.2) (Leinonen et al., 2011).
Quality control on FASTQ was conducted using FastQC (version
0.11.8) (Andrews, 2010): (1) sequences with less than 80% of
bases with at least quality of 25 were filtered; and (2) the bases
with quality less than 25 were trimmed. The cleaner FASTQ files
were aligned to the Homo.sapiens reference genome, GRCh38.94
(downloaded from Ensemble), using TopHat (version 2.1.1)
(Kim et al., 2013). The aligned sequences were sorted based on
the aligned position to the reference genome using SAMtools
(version 1.9) (Li H. et al., 2009). After sorting, the count-
based gene expression was obtained using HTSeq (version
0.8.0) (Anders et al., 2015), and the reads with alignment
scores less than 10 were omitted. Differential expression was
performed using the edgeR (Robinson et al., 2009) package
for R software. RNA-Seq datasets were processed on a Linux-
based HP ProLiant DL580 Gen8 workstation [Inter R© Xeon R©

E7-4820 CPU v2 @ 2.00 GHz; 4 processors with 32 total cores
enabled; 128 GB RAM].

Meta-Analysis, Biological Enrichment
Analysis, and Subgroup Analysis
The list of DEGs and their dysregulation states (i.e., upregulated
or downregulated) from each study were processed using the
meta for Chung et al. (2015) package for R software. The
meta-analysis was conducted under a random-effects model,
and their outcomes were logORs with P-values. For each gene
in the i-th study, the effect (θi) based on the numbers of
dysregulation events in both AD and control samples was first
calculated, then the overall effect was computed according to
formula

∑
Wiθi∑
Wi , where wi is the weight and is equal to 1/vi,

where vi is the sample variance. The genes with logORs above
or below 0 were considered upregulated or downregulated,
respectively. The P-values were adjusted by FDR, and DEGs with
adjusted P-values less than 0.05 were regarded as statistically
significant. After meta-analysis, the statistically significant DEGs
were used to perform a biological enrichment analysis. The
enrichment analysis was conducted by the hypergeometric test
using the clusterProfiler (Yu et al., 2012) package for R software,

based on the KEGG3 (Kanehisa et al., 2012). The statistically
significant DEGs after meta-analysis were collected as input for
the enrichment analysis to identify biological pathways among
them. The pathways with FDR-adjusted P-values less than 0.05
were considered statistically significant.

The DEGs were split into different subgroups based on which
brain regions they were from, to compare expression profiles
among brain regions. According to Roth et al. (2006), brain
regions can be hierarchically clustered into three major branches
based on cytological differences. The first branch includes the
cerebellum. The second branch is sub-categorized into three sub-
branches; the first sub-branch includes the putamen and nucleus
accumbens, the second sub-branch includes the amygdala and
hippocampus, and the third sub-branch includes the cerebral
neocortex. The third branch includes the thalamus, brain
stem, and spinal cord. Biological enrichment analysis was also
conducted in each subgroup.

Protein–Protein Interaction Network and
Potential Pathogenic Factors
After meta-analysis, statistically significant DEGs were used to
construct a PPIN based on the data from STRING (version
114; Szklarczyk et al., 2011). Only interactions with the highest
confidence (0.9) were kept. The PPIN was visualized using
Cytoscape (Shannon et al., 2003). Disease-associated genes
are not topologically interacted into a dense network module
because disease can be the consequence of perturbation in many
functional units. AD seed genes were retrieved from the GWAS
Catalog (Welter et al., 2014)5 using the key word “AD” and
the following selection criteria: a significance p-Value cutoff of
no more than 1∗10−8. Genes with official gene symbols were
kept as AD seed genes. The PPIN information (e.g., edge list in
the co-expression network) and AD seed genes were put into
the DIAMOnD algorithm (Ghiassian et al., 2015) to evaluate
the significance of the connections that each node had with
the seed genes in the biological network. In each iteration
until the stopping condition was satisfied, the node with the
lowest connectivity P-value was treated as the most significantly
connected node for output. The nodes within the module that
had a high degree (>95th percentile) were treated as potential
pathogenic factors.

Risk of Bias
All studies were collected according to the publication
information of datasets. If there was more than one publication
for one dataset, the publication with the earlier publication
year was selected. The risk of bias for the included studies
was evaluated according to MIAME (Minimum information
about a microarray experiment) (Brazma, 2009) and MINSEQE
(Minimum information about a high-throughput nucleotide
sequencing experiment6, proposed by FGED Society in 2012)
guidelines by two authors (SY and HZ), independently.

3http://www.genome.jp/kegg/
4https://string-db.org/
5https://www.ebi.ac.uk/gwas/
6http://fged.org/projects/minseqe/
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Disagreements between the authors were resolved by discussion
with the third author (SWL). The MIAME and MINSEQE
guidelines are designated to report the quality of DNA
microarray and RNA-Seq studies, respectively. And the
quality of transcriptomic parts of included studies was assessed,
including raw data collection, result presentation, sample
annotation, experimental design, array annotation, and
data processing pipeline. Items with low risk were counted
+1, suggesting high reproducibility; items with unclear
risk were counted 0, suggesting ambiguous reproducibility;
and items with high risk were counted –1, suggesting low
reproducibility.

RESULTS

Included Datasets
The selection process of the datasets is shown in Figure 2.
A total of 225 datasets were initially identified from GEO and
ArrayExpress. After removing duplicated datasets and datasets
that met the exclusion criteria, 25 datasets (21 for microarray
and 4 for RNA-Seq) met the eligibility criteria. The dataset
characteristics are shown in Table 2. Among the included
datasets, the hippocampus (n = 8) was the most extensively

studied brain region, followed by the entorhinal cortex and
prefrontal cortex (n = 3).

Preprocessing of Datasets and
Determination of Differentially Expressed
Genes
After the selection process of the datasets, all included
datasets contained complete transcriptomic raw data, and
were undergone a quality control as a prioritization procedure.
In the included microarray datasets, the quality of the normalized
dataset was assessed using the R package arrayQualityMetrics.
Different numbers of arrays were identified as outliers
and omitted in the subsequent analysis (Table 2). In the
included RNA-Seq datasets, the reads were mapped to the
Homo.sapiens reference genome (GRCh38.94) after sequence
quality assessment. The mapping rates were above 95% for the
RNA-Seq datasets. From the mapped reads, the genes were
counted to determine DEGs. After preprocessing steps, different
numbers of DEGs were determined from each comparison,
ranging from 0 to over 10,000 (Table 3). There were 21,064
DEGs in all comparisons that compared AD brain samples
with healthy brain samples, and 16,810 DEGs (79.76%) were
reported in at least two comparisons (Supplementary File S2).
In the meta-analysis of DEGs, 9,298 DEGs were found to be

FIGURE 2 | The flow diagram of datasets selection, including identification, screening, eligibility and inclusion stage.
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TABLE 2 | The characteristics of included datasets.

Types Dataset_ID Brain tissue Disease
stage

Platform Number
of
samples

Number of
samples
omitted

DNA
microarray

E-MEXP-
2280

Medial temporal lobe Braak
stage VI

Affymetrix Human Genome
U133 Plus 2.0 Array

12 0

GSE110226 Choroid plexus Braak
stage III to

VI

Rosetta/Merck Human RSTA
Custom Affymetrix 2.0
microarray

13 3

GSE12685 Frontal cortex MMSE 21
to 27

Affymetrix Human Genome
U133A Array

14 3

GSE1297 Hippocampus Braak
stage at III

to VI

Affymetrix Human Genome
U133A Array

31 3

GSE16759 Parietal lobe cortex Braak
stage at V

to VI

Affymetrix Human Genome
U133 Plus 2.0 Array

8 1

GSE26927 Entorhinal cortex – Illumina humanRef-8 v2.0
expression beadchip

18 4

GSE28146 Hippocampus Braak
stage at V

to VI

Affymetrix Human Genome
U133 Plus 2.0 Array

30 1

GSE29378 Hippocampus Braak
stage at V

to VI

Illumina HumanHT-12 V3.0
expression beadchip

63 2

GSE32645 Cortex Braak
stage VI

Agilent-014850 Whole Human
Genome Microarray 4 × 44K
G4112F

6 0

GSE33000 Prefrontal cortex – Rosetta/Merck Human 44k 1.1
microarray

467 30

GSE36980 Frontal cortex,
hippocampus, temporal
cortex

Braak
stage at V

to VI

Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]

79 8

GSE37263 Neocortex Braak
stage at III

to VI

Affymetrix Human Exon 1.0 ST
Array [transcript (gene) version]

16 1

GSE39420 Posterior cingulate Braak
stage at V

to VI

Affymetrix Human Gene 1.1 ST
Array [transcript (gene) version]

21 0

GSE44768 Cerebellum – Rosetta/Merck Human 44k 1.1
microarray

230 10

GSE44770 Prefrontal cortex – Rosetta/Merck Human 44k 1.1
microarray

230 28

GSE44771 Visual cortex – Rosetta/Merck Human 44k 1.1
microarray

230 22

GSE48350 Entorhinal cortex,
hippocampus,
post-central gyrus,
superior frontal gyrus

Braak
stage at II

to VI

Affymetrix Human Genome
U133 Plus 2.0 Array

253 16

GSE5281 Entorhinal cortex,
hippocampus, medial
temporal gyrus,
posterior cingulate,
primary visual cortex,
superior frontal gyrus

– Affymetrix Human Genome
U133 Plus 2.0 Array

161 11

GSE61196 Choroid plexus Braak
stage at III

and VI

Agilent-014850 Whole Human
Genome Microarray 4 × 44K
G4112F

21 1

(Continued)
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TABLE 2 | Continued

Types Dataset_ID Brain tissue Disease
stage

Platform Number
of
samples

Number of
samples
omitted

GSE84422 Amygdala, anterior
cingulate, caudate
nucleus, dorsolateral
prefrontal cortex, frontal
pole, hippocampus,
inferior frontal gyrus,
inferior temporal gyrus,
middle temporal gyrus,
nucleus accumbens,
occipital visual cortex,
parahippocampal
gyrus, posterior
cingulate cortex,
precentral gyrus,
prefrontal cortex,
putamen, temporal
polesuperior parietal
lobule, superior
temporal gyrus

Braak
stage at I to

VI

Affymetrix Human Genome
U133A ArrayAffymetrix Human
Genome U133B
ArrayAffymetrix Human
Genome U133 Plus 2.0 Array

1,146 64

GSE93885 Olfactory bulb – Affymetrix Human Gene 2.0 ST
Array [transcript (gene) version]

18 0

RNA-
Seq

GSE104704 Lateral temporal lobe Braak
stage at V

to VI

Illumina HiSeq 2500 (Homo
sapiens)

30 –

GSE95587 Fusiform gyrus Braak
stage at III

to VI

Illumina HiSeq 2500 (Homo
sapiens)

117 –

GSE53697 Dorsolateral prefrontal
cortex

Braak
stage at II

to VI

Illumina HiSeq 2500 (Homo
sapiens)

17 –

GSE67333 Hippocampus Braak
stage at V

to VI

Illumina HiSeq 2000 (Homo
sapiens)

8 –

statistically significant (Supplementary File S3); 4,960 genes
were downregulated and 4,338 genes were upregulated. The most
reported downregulated DEGs were DPP6 and FXYD7, which
were reported in 16 comparisons; RHOQ was the most reported
upregulated DEG among all 15 reported comparisons. A loss of
DPP6 or FXYD7 is reported to dysregulate neuronal excitation
(Hoos et al., 2013; Cacace et al., 2019), while RHOQ is reported to
enhance Aβ oligomerization (Aguilar et al., 2017). Multiple DEGs
involved in Aβ clearance were found statistically significant in
meta-analysis (Table 4). These DEGs could be categorized
into UPS, autophagy, and UPR, implying the downregulated
Aβ clearance. The statistically significant DEGs in UPS and
autophagy were mostly downregulated, while those in UPR were
mostly upregulated, proposing a dysfunctional homeostasis.
The impaired Aβ clearance resulting from dysfunctional
homeostasis is suggested to induce Aβ accumulation in sporadic
AD, in contrast with the overproduction of Aβ in familial AD
(Mawuenyega et al., 2010; Potter et al., 2013).

However, several genes involved in Aβ clearance were not
found statistically significant in meta-analysis, although they
were reported as DEGs in separated comparisons. The heat
shock proteins work coordinately with UPS for protein clearance,

remodeling the misfolded proteins before the degradation by
UPS. Both systems are upregulated to restore dysfunctional
homeostasis at the beginning (Kästle and Grune, 2012). However,
the genes for most heat shock proteins, such as ATXN1, ATXN3,
and ATXN7, were not statistically significant (Supplementary
File S3), suggesting that the early event of AD might not be
truly reflected. PICALM and SQSTM1 which are involved in
autophagosome formation (Moreau et al., 2014; Ntsapi and Loos,
2016), were not reported as DEGs in the meta-analysis. Several
autophagic marker genes, MAP1LC3B and ATG12, associated
with autophagosomal function (Ma et al., 2010), were also found
as a statistically insignificant in the meta-analysis. The expression
of TREM2 was upregulated, which was contradictory to the
role of TREM2 reported in autophagy (Lucin et al., 2013), but
consistent with that reported in Aβ plaque-activated microglia
(Yuan et al., 2016; Yin et al., 2017). Meanwhile, those genes
involved in Aβ plaque-activated microglia, MS4A4A, PLCG2, and
ABI3, were also found significantly upregulated in the meta-
analysis.

On the enrichment analysis, AD itself was identified as
significant (Figure 3A). In the AD pathway, components related
to the mitochondrial respiratory chain were downregulated,
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TABLE 3 | The number of DEGs determined from each comparison.

Comparison_ID No of No of No of
control disease DEGs

E-MEXP-2280 5 7 0

GSE32645 3 3 0

GSE110226 5 5 475

GSE61196_CvsBraak3 7 7 1,597

GSE61196_CvsBraak6 7 6 1,723

GSE33000 154 283 12,742

GSE12685 6 5 2

GSE1297_CvsIni 8 6 0

GSE1297_CvsMod 9 8 0

GSE1297_CvsSev 9 6 7

GSE93885_CvsIni 4 5 0

GSE93885_CvsMod 4 4 0

GSE93885_CvsSev 4 5 0

GSE29378_CA1 16 15 2

GSE29378_CA3 16 14 1

GSE26927 4 10 0

GSE16759 3 4 0

GSE37263 8 7 0

GSE48350_EC 36 14 7,185

GSE48350_HIP 43 18 3,958

GSE48350_PCG 39 22 1,540

GSE48350_SFG 46 19 6,148

GSE28146_CvsIni 8 7 0

GSE28146_CvsMod 8 8 0

GSE28146_CvsSev 8 6 0

GSE5281_EC 12 9 9,921

GSE5281_HIP 13 10 7,176

GSE5281_MTG 11 16 9,981

GSE5281_PC 12 8 8,978

GSE5281_PVC 12 16 38

GSE5281_SFG 22 9 5,054

GSE44768 98 122 1,447

GSE44770 81 121 1,778

GSE44771 89 119 4,732

GSE84422_Amygdala 14 16 1,253

GSE84422_Nucleus_accumbens 12 16 9

GSE84422_96_Anterior_cingulate 16 20 0

GSE84422_96_Caudate_nucleus 11 18 0

GSE84422_96_Dorsolateral_prefrontal_cortex 15 15 0

GSE84422_96_Frontal_pole 14 21 0

GSE84422_96_Hippocampus 10 18 0

GSE84422_96_Inferior_frontal_gyrus 11 17 0

GSE84422_96_Inferior_temporal_gyrus 13 18 0

GSE84422_96_Middle_temporal_gyrus 14 19 0

GSE84422_96_Occipital_visual_cortex 11 13 0

GSE84422_96_Parahippocampal_gyrus 14 21 0

GSE84422_96_Posterior_cingulate_cortex 12 23 0

GSE84422_96_Precentral_gyrus 5 18 0

GSE84422_96_Prefrontal_cortex 11 18 35

GSE84422_96_Putamen 9 17 0

GSE84422_96_Superior_parietal_lobule 13 12 0

GSE84422_96_Superior_temporal_gyrus 14 20 0

(Continued)

TABLE 3 | Continued

Comparison_ID No of No of No of
control disease DEGs

GSE84422_96_Temporal_pole 14 18 0

GSE84422_97_Anterior_cingulate 14 19 0

GSE84422_97_Caudate_nucleus 9 16 0

GSE84422_97_Dorsolateral_prefrontal_cortex 16 14 1

GSE84422_97_Frontal_pole 15 22 0

GSE84422_97_Hippocampus 10 18 0

GSE84422_97_Inferior_frontal_gyrus 11 17 0

GSE84422_97_Inferior_temporal_gyrus 13 18 30

GSE84422_97_Middle_temporal_gyrus 13 20 0

GSE84422_97_Occipital_visual_cortex 12 13 0

GSE84422_97_Parahippocampal_gyrus 14 22 0

GSE84422_97_Posterior_cingulate_cortex 12 22 0

GSE84422_97_Precentral_gyrus 5 17 0

GSE84422_97_Prefrontal_cortex 11 19 0

GSE84422_97_Putamen 9 18 0

GSE84422_97_Superior_parietal_lobule 13 13 0

GSE84422_97_Superior_temporal_gyrus 14 20 1

GSE84422_97_Temporal_pole 14 18 0

GSE36980_FC 17 13 0

GSE36980_HIP 10 5 587

GSE36980_TC 17 9 5

GSE104704_Old 10 12 1,070

GSE95587 33 84 6,611

GSE53697 8 9 1

GSE67333 4 4 10

while components related to Ca2+ channels that transport Ca2+

from the ER into the cytoplasm were upregulated (Figure 3B).
Several AD-related pathways, including proteasome, oxidative
phosphorylation, and retrograde endocannabinoid signaling
pathways, were also identified as statistically significant;
most components in these pathways were downregulated
(Figures 3C–E). Downregulation of the proteasome decreases
the clearance of Aβ (Hong et al., 2014), while downregulation
of oxidative phosphorylation decreases the efficacy of the
mitochondrial respiratory chain, suggesting hypometabolism
in the AD brain (Mosconi et al., 2008). The genes (e.g., MFN1,
OPA1, and DNM1L) involved in mitochondrial fusion and
fission were downregulated (Westermann, 2012), disturbing
mitochondrial biogenesis to adopt energetic demands. The
aberrant mitochondria were removed by the process, mitophagy.
However, the genes responsible for mitophagy, PINK1 and
PRKN (Narendra et al., 2008), were downregulated, which
further increased the burden of damaged protein clearance. The
regulation of genes involved in oxidative phosphorylation
in mitochondria was severely impaired in the present
study, including genes for NADH dehydrogenase, succinate
dehydrogenase, cytochrome c reductase, and cytochrome c
oxidase in the electron transport chain. eCBs are signaling
molecules used among nearby cells over short distances,
and they modulate neuronal transmission. There is a high
density of cannabinoid receptors in presynaptic terminals
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TABLE 4 | The dysregulated status of genes involved in ubiquitin-proteasome
system, autophagy, and unfolded-protein response for Aβ clearance.

Functional
category

Genes Adjusted P-value Dysregulated state

Ubiquitin PRKN 1.77E-06 Downregulated

-proteasome UCHL1 2.70E-02 Downregulated

system (UPS) UCHL3 1.47E-20 Downregulated

PSMC1 2.09E-24 Downregulated

UBE2D2 2.02E-24 Downregulated

STUB1 1.62E-18 Downregulated

NEDD8 1.88E-31 Downregulated

ATXN1 0.61 Downregulated

ATXN3 0.79 Upregulated

ATXN7 0.97 Upregulated

Autophagy BECN1 1.42E-20 Downregulated

MTOR 1.16E-15 Downregulated

TFEB 2.06E-36 Upregulated

ATG5 5.20E-19 Downregulated

ATG7 1.78E-32 Downregulated

TREM2 5.06E-32 Upregulated

MS4A4A 8.77E-22 Upregulated

PLCG2 6.91E-26 Upregulated

ABI3 1.83E-19 Upregulated

ATG12 0.94 Downregulated

PICALM 0.86 Upregulated

SQSTM1 0.20 Upregulated

Unfolded ERN1 1.05E-13 Upregulated

-protein EIF2AK3 2.00E-10 Upregulated

response (UPR) TMEM259 6.57E-11 Downregulated

XBP1 2.95E-14 Upregulated

in the hippocampus and limbic cortex, indicating a role
for cannabinoids in cognitive information processing (Zou
and Kumar, 2018). A disruption of eCB signaling has been
reported in AD, which influences neurotransmitter release
(Basavarajappa et al., 2017). In the current study, most members
of the retrograde endocannabinoid signaling pathway were
downregulated, interfering with the role of eCBs in the release of
glutamate and GABA in synapses.

Subgroup Analysis
Among 77 comparisons, 15 investigated the amygdala and
hippocampus of AD subjects, while 28 focused on the cerebral
cortex (Table 5). Statistically significant DEGs for each subgroup
analysis are shown in Supplementary File S4. There were 2,260
DEGs that were reported as significant in the amygdala and
hippocampus, while 6,636 DEGs were reported as significant
in the cerebral cortex. Among the 1,390 commonly found
DEGs, 359 upregulated and 1,020 downregulated DEGs were
consistently found in two subgroups. Eleven DEGs were
upregulated in one subgroup but downregulated in another
subgroup. The most highly upregulated and downregulated
DEGs were S100A6 and STMN4, respectively, in both subgroups.
The protein calcyclin (encoded by S100A6) is a calcium-binding
protein that is highly expressed in astrocytes surrounding Aβ

deposits, and is involved in neuronal death via zinc depletion
(Bartkowska et al., 2017). The protein stathmin (encoded
by STMN4) binds tubulin to mediate microtubule dynamics,
and dysregulation of stathmin-mediated microtubule stability
induces memory loss (Uchida et al., 2014).

In the subgroup enrichment analyses, the pathways for
proteasome and retrograde endocannabinoid signaling were
found in both subgroups (Figures 4, 5). For the subgroup of
the amygdala and hippocampus, the synaptic vesicle cycle was
identified as statistically significant, and most components in
this pathway were downregulated (Figure 4F). Downregulated
synaptic functions decrease the release of neurotransmitters
from neurons, inducing memory-related symptoms in AD. For
the subgroup of the cerebral cortex, several synaptic signaling
pathways were identified in AD, including the MAPK signaling
pathway, dopaminergic synapses, and the insulin signaling
pathway; the components in these pathways were mostly
downregulated (Figures 5D–F). The role of the MAPK effector,
JNK, is to dissociate Beclin 1 from Bcl-2 to mediate autophagy,
and downregulation of JNK reduces autophagy ability (Zhou
et al., 2015). The loss of dopaminergic synapses in the ventral
tegmental area reduces the release of dopamine toward the
cortex and hippocampus, and is reported to be associated with
memory loss in AD before the formation of amyloid plaques
(Nobili et al., 2017). Although all AD datasets collected in this
study did not report suffering from T2DM, the dysfunctional
insulin signaling was identified, suggesting an effect of Aβ in
insulin signaling pathway. Aβ shares a common sequence with
insulin, antagonizing the regulatory effects of insulin (Folch
et al., 2018). In the canonical insulin signaling pathway, insulin
binds receptors to activate Akt for mediating downstream
effects, e.g., translocating glucose receptors to cellular membrane,
activating mTOR for autophagy regulation, and inhibiting
GSK3β for tau protein phosphorylation. Losing the regulatory
effects of insulin may induce dysfunctional autophagy and tau
protein hyperphosphorylation, potentiating AD development.
The increased level of free insulin due to Aβ blockage reduces
Aβ clearance via IDE, because insulin has a higher affinity
to IDE than Aβ (Farris et al., 2003). On the other hand, the
AD progression reduces the transport of insulin across BBB,
decreasing insulin signaling in brain (Stanley et al., 2016).

In the present study, several datasets focused on the
hippocampus and entorhinal cortex because these two regions
suffer the most significant neuronal loss in the early stage of AD,
while no significant neuronal loss is observed in these regions
during normal aging. The transcriptome from these brain regions
therefore represents the chronic response to the causes and
consequences, or the treatment, of AD.

Quality Assessment of Studies
MIAME and MINSEQE guidelines were used to assess the
transcriptomic analysis of studies (Blalock et al., 2004, 2011;
Liang et al., 2007; Berchtold et al., 2008; Bronner et al., 2009;
Williams et al., 2009; Nunez-Iglesias et al., 2010; Tan et al.,
2010; Durrenberger et al., 2012; Antonell et al., 2013; Fischer
et al., 2013; Janssen et al., 2013; Miller et al., 2013; Zhang et al.,
2013; Hokama et al., 2014; Narayanan et al., 2014; Magistri
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FIGURE 3 | The AD-related biological pathways as impacted in health vs. AD subjects, (A) the top 10 statistically significant pathways from enrichment analysis
result; (B) Alzheimer’s disease; (C) Proteasome; (D) Oxidative phosphorylation; and (E) Retrograde endocannabinoid signaling. For figure 3B-E, the red and green
represent upregulation and downregulation, respectively.

et al., 2015; Scheckel et al., 2016; Wang et al., 2016; Lachen-
Montes et al., 2017; Friedman et al., 2018; Nativio et al., 2018;
Stopa et al., 2018) that published the datasets that were used
in the present study. The results of quality assessments are
shown in Figure 6. Among the 19 studies that published the
microarray datasets, 80% did not provide the brain sample size
or the weight used for RNA extraction for sample annotation and
experimental variables, and only two studies provided sufficient
information about experimental design, including quality control
of samples. Furthermore, the annotations of array designs,
including microarray quality indicators, were not fully reported
for most studies (95%). For 40% of the studies, experimental
and data processing details, including normalization methods
and cut-offs for DEGs, were not fully reported. Among the four

studies that published the RNA-Seq datasets, no study provided
the brain sample size or the weight used for RNA extraction,
or the details of experimental parameters used for RNA-Seq
procedures. Furthermore, half of the studies did not provide
sufficient information about experimental and data processing
protocols, including the cut-offs for DEGs.

The relatively low quality of the studies indicates the
insufficient information related to transcriptomic analysis
provided in the studies, raising the reproducibility issue. Also,
the transcriptomic results might be influenced, blurring some
pathological events in the postmortem AD brains. The genes
encoded heat shock proteins (e.g., ATXN1, ATXN3, and ATXN7)
were not found statistically significant in the meta-analysis, while
the multiple genes involved in neuroinflammation (e.g., CXCL3,
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TABLE 5 | The datasets used in the subgroup analysis.

Subgroups No of
control

No of
disease

No of
DEGs

No of
pathways

Comparison_ID

Cerebellum 98 122 – – GSE44768

Putamen and
nucleus
accumbens

30 51 – – GSE84422_96_Putamen, GSE84422_97_Putamen, GSE84422_Nucleus_accumbens

Amygdala and
hippocampus

175 159 2,260 18 GSE84422_Amygdala, GSE1297_CvsIni, GSE1297_CvsMod, GSE1297_CvsSev,
GSE28146_CvsIni, GSE28146_CvsMod, GSE28146_CvsSev, GSE29378_CA1,
GSE29378_CA3, GSE36980_HIP, GSE48350_HIP, GSE5281_HIP,
GSE84422_96_Hippocampus, GSE84422_97_Hippocampus, GSE67333

Cerebral
neocortices

632 849 6,636 25 E-MEXP-2280, GSE12685, GSE16759, GSE26927, GSE32645, GSE33000,
GSE36980_FC, GSE36980_TC, GSE37263, GSE44770, GSE44771, GSE48350_EC,
GSE5281_EC, GSE5281_PVC, GSE84422_96_Dorsolateral_prefrontal_cortex,
GSE84422_96_Frontal_pole, GSE84422_96_Occipital_visual_cortex,
GSE84422_96_Prefrontal_cortex, GSE84422_96_Superior_parietal_lobule,
GSE84422_96_Temporal_pole, GSE84422_97_Dorsolateral_prefrontal_cortex,
GSE84422_97_Frontal_pole, GSE84422_97_Occipital_visual_cortex,
GSE84422_97_Prefrontal_cortex, GSE84422_97_Superior_parietal_lobule,
GSE84422_97_Temporal_pole, GSE104704_Old, GSE53697

IFNG, IL6, IL13, and CXCL9) (Garwood et al., 2011) were only
reported as DEGs in one dataset, and therefore were not collected
for meta-analysis. Although both heat shock proteins recruitment
and neuroinflammation are associated with AD development,
their pathological roles in AD development might not fully
reflected in this study.

Construction of a Protein–Protein
Interaction Network to Identify Potential
Pathogenic Factors
The DEGs from the meta-analysis were used to retrieve the
corresponding proteins in interactions according to STRING.
The PPIN consisted of 4,781 nodes (2,083 upregulated nodes
and 2,698 downregulated nodes) and 51,076 edges (Figure 7A)
and there were 105 AD seed genes (Supplementary File S5)
retrieved from the GWAS Catalog. The PPIN exhibited scale
free topology with the degree distribution following a power
law distribution (y = 3779.2x−1.481) and the most proteins
were closely linked. In the PPIN, polyubiquitin-C (endcoded by
UBC) and E3 ubiquitin-protein ligase RBX1 (encoded by RBX1),
were the two proteins with the highest degree (372 and 222,
respectively). These proteins were downregulated and are parts
of UPS for protein degradation. The dysfunctional proteasome is
regarded as an early event of AD (Manavalan et al., 2013), e.g.,
the decreased proteasomal clearance enhances mitochondrial
dysfunction (Braun et al., 2015).

The PPIN for each protein pair was extracted for the
subsequent DIAMOnD algorithm with AD seed genes to obtain
a disease module. Not every seed gene was biologically linked to
AD; some were involved in AD comorbidity disease. Among the
disease modules (Figure 7B), the two nodes with a high degree
(>95th percentile) were selected as potential pathogenic factors,
and included EGFR and Fyn. The EGFR was the Aβ oligomer
receptor, in which Aβ oligomer is regarded as the causative toxic
species. The hydrophobic residues of Aβ oligomers are more
easily accessible and interacting with cellular proteins, compared

with Aβ fibrils (William et al., 2011). Fyn is involved in Aβ signal
transduction and tau protein phosphorylation, and is changed in
synaptic signaling pathways, including MAPK signaling pathway.
These two proteins are both Aβ-relevant receptors, mediating the
Aβ oligomers downstream neurotoxicity.

DISCUSSION

We used a meta-analysis approach based on DNA microarray
and RNA-Seq datasets from multiple brain regions to reveal
potential pathogenic factors of AD. Perturbations in the genes
involved in the proteasome, oxidative phosphorylation, and
retrograde endocannabinoid signaling pathways were identified.
The proteasome is required to degrade the damaged proteins to
maintain the cellular functionality. The decreased proteasome
activity results in an accumulation of ubiquitinated and damaged
proteins (Ciechanover, 2015). The ubiquitination degradation
of APP by the proteasome includes several key genes, such
as PRKN, NEDD8, PSMC1, UCHL1, and UCHL3 (Bedford
et al., 2008; Chen et al., 2012; Zhang et al., 2015; Nomura
et al., 2016). Tau-specific ubiquitin–proteasome related genes,
including UBE2D2 (Shimura et al., 2004) and STUB1 (Saidi
et al., 2015), were also downregulated. The downregulation of
these genes might result in impaired Aβ and phosphorylated tau
protein clearance (Table 4). The oligomeric Aβ itself disrupts the
catalytic activity of proteasome (Tseng et al., 2008), forming a
positive feedback loop to worsen the Aβ clearance by proteasome.
The disrupted catalytic activity of proteasome may also lose its
inhibition of presenilin complex, which is the catalytic complex
for γ-secretase, enhancing Aβ production (Chadwick et al., 2012).
The accumulated Aβ, located on the mitochondria, deleteriously
impairs oxidative phosphorylation, decreasing ATP production
in the mitochondria (Chen and Du Yan, 2007; Moreira et al.,
2010). The ATP-dependent proteins (i.e., the Ca2+ pumps located
on the endoplasmic reticulum (ER) and ATP-dependent ion
pumps) are unable to maintain their physiological functions,
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FIGURE 4 | The AD-related biological pathways from the subgroup amydala and hippocampus, (A) the top 10 statistically significant pathways from enrichment
analysis result; (B) Alzheimer’s disease; (C) Proteasome; (D) Oxidative phosphorylation; (E) Retrograde endocannabinoid signaling; and (F) Synaptic vesicle cycle.
The red and green represent upregulation and downregulation, respectively.

interfering neurotransmitter release and memory formation
(Sudhof, 2012). The ATP-dependent molecular chaperones are
also failed to work coordinately with UPS to remodel the
misfolded proteins (Mattoo and Goloubinoff, 2014).

The reduced activity of proteasome enhances the burden
of Aβ clearance on the autophagy and UPR. Autophagy is
the process of degrading redundant cellular components by
delivering them to lysosomes and forming autophagosomes.
Beclin 1 (encoded by BECN1) is an essential component of
autophagososomal structure (Jaeger and Wyss-Coray, 2010), but

its autophagy function is inhibited by interacting with Bcl-
2 (encoded by BCL2) leading to cellular death (Marquez and
Xu, 2012). The downregulation of BECN1 and upregulation of
BCL2 in the present study indicated autophagic flux failure.
Autophagy is inhibited by the upregulation of mTOR and
activated by the downregulation of TFEB (Caccamo et al.,
2010; Polito et al., 2014). The downregulation of mTOR and
upregulation of TFEB in the present study induced the formation
of immature autophagosomes, impairing Aβ clearance. In
addition, the downregulation of mTOR is associated with
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FIGURE 5 | The AD-related biological pathways from the subgroup cerebral cortex, (A) the top 10 statistically significant pathways from enrichment analysis result;
(B) Proteasome; (C) Retrograde endocannabinoid signaling; (D) MAPK signaling pathway; (E) Dopaminergic synapse; and (F) Insulin signaling pathways. The red
and green represent upregulation and downregulation, respectively.

AD development (François et al., 2014), memory impairment
(Slipczuk et al., 2009), and neuronal apoptosis (Yin et al.,
2011). The depletion of autophagy-related genes, including
Atg5 and Atg17, impairs the elongation of phagopores to form
autophagosomes, resulting in Aβ accumulation (Hara et al., 2006;
Nilsson et al., 2013). Accumulated Aβ on the ER membrane
induces ER stress, which is relieved by the activation of UPR.
The activation of UPR is induced by the accumulation of
misfolded proteins (Stutzbach et al., 2013), and has been reported
in AD subjects (Scheper and Hoozemans, 2015). Two main
UPR proteins, including PERK (encoded by EIF2AK3) and
IRE-1 (encoded by ERN1), were upregulated and activated

in AD due to misfolded Aβ oligomers (Joshi et al., 2016),
although a recent critical review suggested that the involvement
of ER stress in AD might be exaggerated by the misuse of
APP/PS1-overexpressing AD mouse models (Hashimoto and
Saido, 2018). The activation of UPR is a significant approach
to prevent the accumulation of misfolded proteins, but may
also increase Aβ production (Scheper and Hoozemans, 2015),
and result in synaptic loss (Gong et al., 2016). Taken together,
disturbed Aβ clearance could be the upstream event for AD
pathological development, to induce Aβ accumulation, altering
intracellular ionic gradients and resulting in insufficient oxidative
phosphorylation.
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FIGURE 6 | The overall quality assessment for (A) 19 studies for DNA microarray and (B) 4 studies for RNA-seq. Green color represents low risk of bias, which the
authors clearly provided the information with full detail. Yellow color represents unclear risk of bias, which the authors provided the information without full detail. Red
color represents high risk of bias, which the authors did not provide the correct information.

The two top pathogenic factors determined in the present
study, Fyn and EGFR, are key receptors in Aβ downstream
signaling. Fyn is a protein tyrosine kinase belonging to the
Src family, and it mediates synaptic plasticity in the central
nervous system (Kaufman et al., 2015). The soluble Aβ oligomer
binds to PrPC with high affinity (Laurén et al., 2009), and
interrupts the PrPC’s autoinhibitory mechanism (Wu et al., 2017),
overactivating Fyn to increase glutamate release (Trepanier et al.,
2012). Overactivation of Fyn, however, alters NMDA receptor
function and intracellular Ca2+ homeostasis, rendering neurons
vulnerable to Aβ-induced neurotoxicity. The Aβ-activated Fyn
can phosphorylate downstream tau proteins at Tyr18 (Lee, 2004),
and tau proteins participate in transporting Fyn to post-synaptic
densities around glutamate receptors (Ittner et al., 2010). Fyn is a
key protein that links between extracellular Aβ and intracellular
tau protein, and unites these two pathologies in AD. The
activity of Fyn is gene-dose-dependent (Um et al., 2012); that is,
downregulation of FYN reduces Aβ-induced neurotoxicity, while
upregulation of FYN exacerbates Aβ-induced neurotoxicity. In

previous studies, overexpression of FYN has also been reported
to accelerate synaptic loss, making Fyn inhibition a potential
therapeutic treatment for AD (Chin et al., 2004; Chin, 2005).
Saracatinib (AZD0530) is a Src kinase inhibitor that is being
tested clinically for the treatment of AD. Saracatinib blocks
Fyn activation to rescue memory deficits, and exhibits well-
tolerated effects in mild-to-moderate AD subjects (Nygaard et al.,
2015). A recently published clinical trial (VanDyck et al., 2019)
revealed that saracatinib does not slow the decline in the CMRgl,
and does not exhibit beneficial effects on several cognitive
assessments, compared with the placebo group. However, a
trend for slowing the reduction of volumetric measure in brain
is observed, and a post hoc exploratory analysis deduces a
statistically significant decline in CMRgl in the entorhinal cortex.
Although the frequent adverse event of saracatinib, e.g., diarrhea,
may limit the feasibility of increasing 125 mg daily to a higher
dosage, the authors proposed that a higher dosage of saracatinib
may be beneficial to slow decline of CMRgl in AD participants,
who have greater tolerability.

Frontiers in Neuroscience | www.frontiersin.org 16 March 2020 | Volume 14 | Article 209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00209 March 13, 2020 Time: 18:11 # 17

Yuen et al. A Systematic Bioinformatics Workflow

FIGURE 7 | (A) The PPIN constructed from DEGs and the PPIN topology parameters. The red and green represent upregulation and downregulation, respectively.
(B) A disease module, derived from the DIAMOnD algorithm, consisting of AD seed proteins (represented as squares) and their corresponding DIAMOnD proteins
(represented as circles). The colors of the nodes represent upregulation (red), and downregulation (green). The edges represent seed-seed interaction (dark green),
seed-DIAMOnD interaction (purple), and DIAMOnD-DIAMOnD interaction (pink).

EGFR is more commonly associated with cancer than with
AD. However, the expression of EGFR is statistically correlated
with the expression of γ-secretase, suggesting a significant role
of EGFR in AD (Zhang et al., 2007). EGFR is widely distributed
in the hippocampus and cerebral cortex (Fu et al., 2003),
and EGFR signaling exerts neurotrophic functions to regulate
synaptic architecture in the central nervous system (Oyagi et al.,
2011). The expression of EGFR is reported to be upregulated
in the brains of AD animals, and overactivation of EGFR by
Aβ oligomers induces memory loss (Wang et al., 2012). The
overactivation of EGFR can also be induced by the prolong
UPR (Papa and Germain, 2011). The levels of overactivated
EGFR can be suppressed by treatment with the EGFR inhibitor
gefitnib to rescue memory loss. Activation of EGFR also
induces downstream neuroinflammatory cascades in response
to Aβ-induced neurotoxicity. Afatinib, an orally available
EGFR tyrosine kinase inhibitor, inhibits EGFR activation to
alleviate neuroinflammation by reducing caspase 1 activation
and interleukin-1β levels in neurodegenerative diseases (Chen
et al., 2019). Antagonizing Aβ-induced activation of EGFR
may have beneficial effects to slow memory loss and alleviate
neuroinflammation. Figure 8 summarizes the mechanism of
action of Aβ-mediated Fyn and EGFR in AD, as described above.

Besides the genes involved in Aβ downstream neurotoxicity,
the genes related to amyloid clearance proteins (e.g., ECE1 and
NEU1) are reported as pathogenic factors of AD by other studies.
Endothelin 1 (encoded by ECE1) is implicated in Aβ degradation
and downregulation of ECE1 enhances Aβ deposition (Pacheco-
Quinto and Eckman, 2013). However, upregulation of ECE1 was

found in the present study, suggesting that the pathophysiological
role of ECE1 was not solely involved in Aβ metabolism, but
also associated with the increase Aβ-induced vasoconstriction
in AD (Palmer et al., 2013). Sialidase (encoded by NEU1) is a
lysosomal enzyme for Aβ clearance through lysosomal exocytosis
(Annunziata et al., 2013). Deficit of NEU1 causes Aβ-induced
proteasome inhibition, which was consistent with our results.
Disruption of Aβ clearance proteins may be the secondary events
of AD progression, rather than the primary cause. Increasing
evidences show a correlation between T2DM and higher risk of
developing AD, through increasing BBB permeability by chronic
peripheral inflammation (Holmes et al., 2009). The BBB leakage
was supported by the dysregulated genes in this study, including
OCLN, TJP1, CDH5, and CTNNB1, which encode the tight
junction proteins. The compromised BBB can be exacerbated
by chronic hypertension (Santos et al., 2017) and microbial
pathogens (Li H. et al., 2018), and alters peripheral immune
cell trafficking to the brain and induces neuroinflammation. The
neuroinflammation is mediated by p38 (encoded by MAPK14),
which is a protein found in MAPK pathway. p38 is also a
kinase to phosphorylate tau protein, making p38 as a potential
pathogenic factor of AD. However, upregulation of p38 was not
observed in this study, since p38 participates in numerous cellular
events not only neuroinflammation. This can be supported by
that although the inhibition of p38 alleviates neuroinflammation
in AD (Yasuda et al., 2012; Ashabi et al., 2013), most p38
inhibitors are failed in clinical trials due to off-target effects.
A gene converting glucose into lactate in glycolysis, LDHA, is
regarded as a relevant pathogenic factor in AD, although it may
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FIGURE 8 | The mechanism of action of Aβ-mediated Fyn and EGFR in AD.

not be specific to AD pathogenesis. Overexpression of LDHA is
reported to prevent neurons from Aβ neurotoxicity by shifting
mitochondrial glucose metabolism to lactate production, and
decreasing ROS production (Newington et al., 2012). However,
elevated lactate level may be detrimental to neurons (Harris
et al., 2016). Although the expression of LDHA was insignificantly
downregulated in this study, the opposing neuroprotective and
neurotoxic effects of LDHA suggested that neurons might have
its own defense mechanism against Aβ in the early onset of AD.

The strength of this study is the integration of transcriptomic
data from both DNA microarrays and RNA-Seq using a
systematic search and consistent workflow. However, there are
some limitations. First, the articles that published the datasets
did not provide full details of the experimental procedures,
making the transcriptomic results less reliable and more difficult
to repeat. In addition, the transcriptomic data retrieved from
postmortem brain tissue using different methods might be biased.
For example, laser-microdissection mainly targets neuronal
soma, but may miss transcripts transporting to the pre- or post-
synapses. Lacking of sufficient information about disposal of
transcriptomic analysis, resulting in relatively low quality of the
selected studies, might raise a reproducibility issue. Second, the
confounding factors of postmortem brain tissues include age,
sex, and postmortem interval, and may blur the results, e.g.,
neuroinflammation. Third, most included datasets in this study
focused on hippocampus and entorhinal cortex, in which the
brain region AD are believed to start. However, AD might start

differently from those two brain regions, e.g., the impaired UPS as
an early AD event was reported in brainstem (Irmler et al., 2012).
Transcriptomic analysis in different regions of postmortem AD
brains would provide more novel insights of AD development.

CONCLUSION

This meta-analytical study suggested that the reduced Aβ

clearance in AD pathogenesis was associated with the genes
encoding Fyn and EGFR, which were key receptors in Aβ

downstream signaling.
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