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Increasing evidence indicates that immunoglobulins are important for the regulation of various cancers including prostate
cancer (PCa). However, the underlying mechanisms of IgG regulated PCa development remain to be further explored. Here, we
demonstrated that IgG1 heavy chain (IGHG1) was increased in tissues fromPCa patients. Inhibition of IGHG1 by antibody blocking
or genetic knockdown suppressed cell growth and induced cell cycle arrest and ultimate apoptosis. Expression levels of c-Myc were
positively correlated with the levels of IGHG1. Furthermore, MEK/ERK/c-Myc pathway lied downstream of IGHG1 in cultured
prostate cancer cells. Inhibition of IGHG1 restrained the tumor growth in nude mice and inactivated MEK/ERK/c-Myc pathway
both in vitro and in vivo. These findings suggest that IGHG1 play a crucial role during the development of prostate cancer and
inhibition of IGHG1 may be a potential therapy in the treatment of PCa.

1. Introduction

Prostate cancer (PCa), the second leading cause of cancer-
related death of man, is one of the most common cancers
of urinary system [1]. Same as other cancers, metastasis
induces the morbidity and mortality of PCa patients [2,
3]. Hormone therapy is one the most common treatments
of PCa. Restricted androgen level shrinks cancer volume
and delays the development of tumors. However, hormone
therapy only results in a medium survival time of around
12 months in patients with metastatic PCa [4]. Thus, further
elucidation of PCa development of molecular mechanisms
and exploration of new therapeutic targets and reliable
biomarkers for detection ofmetastatic potential are of specific
importance.

It is commonly known that immunoglobulins (IgG) are
produced only by B lymphocytes and plasma cells; how-
ever, many nonlymphoid cells are reported to produce IgG,
especially in cancer cells, such as breast cancer cells [5–7],

colorectal cancer cells [8, 9], papillary thyroid cancer cells
[10], and prostate cancer cells [11, 12]. IgG secreted by human
cancers is reported to promote cancer cell proliferation in
vitro [5]. IgG expressed in a variety of neoplasms shows
correlation with proliferation markers and tumor grades [5].
Moreover, genetic knockdown of IgG by siRNA approaches
inhibits cancer cell proliferation in vitro and in vivo [13].
The role of IgG in prostate cancer remains obscure. Our
previous reports showed that IgG1 heavy chain (IGHG1) was
expressed in LNCaP and PC3 prostate cancer cell lines, and
inhibition of IGHG1 suppressed cell viability of PCa cells.
However, the regulatory mechanisms of IGHG1 regulated
PCa development remain to be further explored.

In this study, we further determined the effect of IGHG1
and investigated the cellular mechanism of IGHG1 in prostate
cancer. We found that IGHG1 was upregulated in clinical
prostate cancer tissue from PCa patients and downregulation
of IGHG1 reduced the growth and proliferation of PCa cells.
Further, the expressions of IGHG1 and c-Myc were positively
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correlated in PCa samples. Inhibition of IGHG1 suppressed
the activation of MEK/ERK/c-Myc pathway in vitro and in
vivo.

2. Methods and Materials

2.1. Ethics Statement. All human experiments were approved
by the Jinan University and in accordance with the Decla-
ration of Helsinki. Informed consent was received from all
participating subjects prior to the study. 164 cases of human
tissue samples of prostate cancer and 55 cases of benign
prostatic hyperplasia were obtained from patients in the First
Affiliated Hospital of Jinan University, from June 2010 to
June 2014. All animal procedures followed the humane care
guidelines of the Chinese National Institute of Health, and
the protocols were approved by the Committee on Animal
Research of Jinan University.

2.2. Cell Culture. Cell lines human prostate cancer DU145
and PC3 were from the First Affiliated Hospital of Jinan
University. Cells were maintained in medium RPMI 1640
(HyClone, Logan, UT, USA) supplemented with 10% fetal
bovine serum (FBS, Sigma-Aldrich-Chemie, Steinheim, Ger-
many), penicillin (Sigma, 100 U/ml), and streptomycin
(Sigma, 100𝜇g/ml) at 37∘C in a humidified atmosphere with
5% CO

2
, as previously reported [12].

2.3. siRNA and Transfection. siRNA experiments were per-
formed as previously reported [12]. Briefly, when cells reached
40% confluence, the siRNA fragments were transfected by
Lipofectamine RNAiMax (Invitrogen, Grand Island, NY,
USA) accordingly. The transfection efficiency was deter-
mined by western blot. Scrambled siRNA sequence was used
as control (si-Ctrl), comparing with experiment group (si-
IGHG1).

2.4. Western Blot. Cells were lysed in sample buffer and
subjected to SDS-polyacrylamide gel electrophoresis as de-
scribed previously [14]. Primary antibodies against IGHG1,
MEK, phosphorylated-MEK (p-MEK), ERK, phosphorylat-
ed-ERK (p-ERK), c-Myc, p21, and Cyclin D1 were obtained
from Santa Cruz Biotechnology, Santa Cruz, CA, USA.
GAPDH (Santa Cruz) was used as the loading control.
Polyvinylidene fluoride (PVDF) membranes (Millipore,
Boston, MA, USA) transferred with proteins were washed
and incubated with the appropriate horseradish peroxidase-
conjugated secondary antibodies (Amersham Biosciences,
Uppsala, Sweden) for 1 h, and bands were detected by
enhanced chemiluminescence (Amersham, Bucks, UK).
Densitometric values were normalized to GAPDH levels.
Values (protein/GAPDH) in control group were set to 100%.

2.5. MTS Assay. MTS assay was applied to reveal cell growth
as previously reported [15], by the CellTiter 96� AQueous
One Solution Cell Proliferation Assay Kit (Promega, Madi-
son,WI, USA) accordingly. In each group, cells were cultured
for 12, 24, and 48 h. At harvesting, 20 𝜇l of CellTiter 96
AQueous One Solution reagent was added to each well in
a total volume of 100𝜇l of medium for 3 h. Absorbance was

measured at 450 nm using an ELISA plate reader.The growth
rate was calculated from the absorbance, and the readings at
0 h time points in each group were set to 100%.

2.6. Flow Cytometry Assay. Annexin-V-FITC Apoptosis
Detection Kit (BIPEC,USA)was used to determine apoptotic
cells and PI staining was used to reveal cell cycle stage [15].
Briefly, cells were resuspended with 400 𝜇l binding buffer,
labeled with annexin-V-FITC for 15min and with PI for
another 5min; then cells were analyzed by flow cytometry by
a FACScan flow cytometer (BD Biosciences, Mountain View,
CA, USA).

2.7. Xenograft Mouse Model. Six- to eight-week-old male
nude mice were kept on a 12 h light-dark cycle with access
to food and water ad libitum. DU145 cells transfected with
siRNA fragments (si-IGHG1 or si-Ctrl) for two days were
collected and nude mice were subcutaneously injected with
these DU145 prostate cancer cell xenografts (1 × 106 DU145
cells). IGHG1 antibody was daily subcutaneously injected
at the right axillary region of nude mice for four weeks.
30 days later, the mice were sacrificed by ketamin injection
(50mg/kg) and the xenografts were dissected out. After the
measurement of tumor volume, xenografts were frozen in
liquid nitrogen and stored at −80∘C until further processing.

2.8. Immunohistochemistry. To analyze clinically collected
samples, immunohistochemistry was performed as previ-
ously reported [15]. Briefly, paraffin sectionswere treatedwith
hydrogen peroxide and later antigen retrieval was applied in
amicrowave in 10mM citrate buffer.Then sections were fixed
with paraformaldehyde and thenpermeabilized, blocked, and
incubatedwith anti-IGHG1 and c-Myc antibodies. Immunos-
taining was analyzed with Super Sensitive Non-Biotin Poly-
mer HRP Detection System according to the manufacturer’s
instructions (BioGenex, San Ramon, Canada).

2.9. Statistical Analysis. All experiments were repeated at
least three times, and the results are presented as the mean
± SEM. Analyses of significance were performed using Stu-
dent’s t-tests or one-way ANOVAs, followed by Bonferroni
corrections. P < 0.05 was considered statistically significant.

3. Results

3.1. Inhibition of IGHG1 Suppresses Cell Growth of Prostate
Cancer. In order to further determine the role of IGHG1, we
firstly searched the Oncomine database for gene expressions
in prostate cancer. As shown in Figure 1(a), the mRNA levels
of IGHG1 were found significantly upregulated in prostate
cancer samples compared to that in benign hyperplasia
samples. Furthermore, we also collected prostate cancer and
benign hyperplasia tissues clinically. And by immunohisto-
chemical approach, we found that the protein expression of
IGHG1 was also upregulated (Figures 1(b) and 1(c)).

We previously designed siRNA fragments against IGHG1
and determined that genetic knockdown of IGHG1 sup-
pressed prostate cancer cell growth [12]. Here, besides siRNA
approach, we also applied IGHG1 antibody blocking to
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Figure 1:The expression of IGHG1 in prostate cancer tissues. (a) Database of Oncomine reveals the upregulation of IGHG1 in prostate cancers.
(b) By immunohistochemistry detection, comparing to benign prostatic hyperplasia samples, IGHG1 is highly expressed in prostate cancer
tissues. Scale bar, 20𝜇m. (c)The statistical data of (b) were shown. ∗ donates p < 0.05.

further identify the effect of IGHG1 on prostate cancer
development. As shown in Figure 2(a), we determined the
siRNA efficiency by western blot and found the working
genetic knockdown affected the expression level of IGHG1
(si-IGHG1) in DU145 cells. By MTS assay, the cell growth
rate of DU145 (Figure 3(b)) and PC3 (Figure 3(c)) cells
was significantly inhibited by the transfection of siRNA
fragments and by the addition of IGHG1 antibody (anti-
IGHG1 group), comparing to control/normal culture groups.
Furthermore, by flow cytometry with PI and Annexin-V
staining, the cell cycle was arrested in si-IGHG1 and anti-
IGHG1 groups (Figure 2(d)). The percentage of G1 phase
was significantly upregulated under the inhibition of IGHG1
(Figures 2(e) and 2(f)). Inhibition of IGHG1 also induced cell
apoptosis of prostate cancer cells (Figures 2(g)-2(h)). These
data suggest that IGHG1 is important for the cell growth of
prostate cancer, which is consistent with our previous results
[12].

3.2.MEK/ERK/c-Myc Pathway Is Involved in IGHG1Regulated
PCa Cell Growth. Next, we explored the signaling pathway
underlying IGHG1 regulated prostate cancer cell growth. By
analyzing our immunohistochemical results from prostate
cancer samples, we found that the expression of IGHG1 was
positively correlated with c-Myc (Figure 3(a)). Among the
164 patients, 86 patients’ samples were positive for IGHG1,
whereas 78 patients’ samples were negative for IGHG1. 101
patients’ samples were positive for c-Myc, whereas 63 samples
were negative for c-Myc (Figure 3(b)). These data suggested
that IGHG1/c-Myc pathwaywas affected in patients with PCa.
Thus, we determined whether the cell cycle proteins were
involved in IGHG1 regulated PCa development. Levels of
c-Myc, Cyclin D1, and p21 were evaluated by western blot,
under the treatment of IGHG inhibition. The results showed
that once IGHG1was inhibited, the levels of c-Myc andCyclin
D1 were decreased, while the levels of p21 were upregulated
(Figures 3(c) and 3(d) in DU145 cells; Figures 3(e) and 3(f) in
PC3 cells).

MAPKs/c-Myc axis has been reported in sustaining
cancer development in many cancer types [16–18]. And the
MEK/ERK/c-Myc pathway is involved in regulation of PCa
cell growth [19].Therefore, we determined the levels and acti-
vation ofMEK/ERKunder IGHG1management. As shown in
Figures 3(g)–3(l), the total levels of MEK and ERK remained
unchanged upon the inhibition of IGHG1. However, the
phosphorylation levels of MEK and ERK were significantly
decreased when IGHG1 was inhibited, suggesting that the
activation of MEK/ERK was inhibited. Statistical data were
shown in Figures 3(h)–3(l) in both DU145 and PC3 cells. We
further confirmed the data by pharmacological approaches,
by using MEK/ERK inhibitors PD98059 and U0126. As
shown in Figures 4(a)–4(d), inhibition of IGHG1 reduced
the activation of MEK and ERK kinases and combination
administration of PD98059 andU0126 further suppressed the
levels of phosphorylated MEK and ERK levels. PAF(C-16)
is an activator of MEK/ERK pathway, and in PC3 cells, the
application of PAF(C-16) markedly reversed the inhibition
effect of IGHG1 knockdown (Figures 4(c) and 4(d)).The sta-
tistical data were shown in Figures 4(b) and 4(d). Meanwhile,
additional treatment with MEK/ERK inhibitors resulted in
further decreased expression of c-Myc and Cyclin D1 and
upregulated level of p21 (Figures 4(e)–4(h)). And activation
of MEK/ERK pathway restored the levels of c-Myc and
Cyclin D1 and suppressed p21 expressions (Figures 4(g) and
4(h)). Furthermore, inhibition of MER/ERK pathway was
significantly suppressed while activation of that rescued the
cell growth in both DU145 and PC3 cells upon IGHG1 genetic
knockdown (Figures 4(i) and 4(j)). These data indicate
that MEK/ERK/c-Myc pathway lies downstream of IGHG1
regulated prostate cancer cell growth.

3.3. Inhibition of IGHG1 Suppresses MEK/ERK/c-Myc Pathway
In Vivo. To confirm the effect of IGHG1 on prostate cancer
cell growth in vivo, we performed a xenograft assay of
DU145 cell in athymic nude mice. Human prostate cancer
DU145 cells were inoculated into nude mice subcutaneously,
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Figure 2: Continued.
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Figure 2: Inhibition of IGHG1 suppresses the growth of PCa cells. (a) Cultured DU145 cells were transfected with IGHG1 siRNA fragment, and
the siRNA efficiency was confirmed by western blot. Then the DU145 (b) and PC3 (c) cells were subjected to MTS assay to evaluate the cell
growth.The data of 0 h, 12 h, 24 h, and 48 h after transfection was shown as the growth rate. And the cells were stained with PI and Annexin-V
to reveal cell cycle (d) and apoptosis (g) by flow cytometry technique.The statistical data were shown in (e), (h) in DU145 cells and (f), (i) in
PC3 cells. All experiments were performed in triplicate, and results are expressed as the mean ± SD. ∗ denotes p < 0.05 versus si-Ctrl group;
# denotes p < 0.05 versus normal control group.

and IGHG1 antibody was simultaneously injected into the
mice. Afterwards, the same amount of antibody was also
injected every five days. DU145 cells with IGHG1 genetically
silenced were injected as another group. One month later,
mice bearing tumors were sacrificed and the tumors were
isolated for further analysis. As shown in Figure 5(a), tumors
in IGHG1 blocked group (anti-IGHG1 group) and IGHG1
silenced group (si-IGHG1) were much smaller than those in
control mice. The tumor weight was decreased as shown in

Figure 5(b). By western blot analysis, the expression levels
of total MEK and ERK remained unchanged. However, the
phosphorylated levels of MEK and ERK were significantly
reduced by IGHG1 inhibition (Figures 5(c) and 5(d)). The
expression levels of c-Myc and Cyclin D1 were decreased,
while that of p21 was increased (Figures 5(e) and 5(f)). These
data are consistent with the scenario in vitro, indicating that
inhibition of IGHG1 inhibits the tumor growth of PCa via the
MEK/ERK/c-Myc pathway in vivo.
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Figure 3: IGHG1 regulates PCa cell growth via MEK/ERK/c-Myc pathway. PCa tissue samples were subjected to immunohistochemistry; the
representative images of IGHG1 and c-Myc expression were shown in (a) and the expression levels between the two proteins were shown
in (b). DU145 cells (c, g) and PC3 cells (e, j) were transfected with IGHG1 siRNA fragment or si-Ctrl or with IGHG1 antibody and were
subjected to western blot with c-Myc, Cyclin D1, p21, phosphor-MEK, total MEK, phosphor-ERK, and total ERK antibodies. GAPDH was
used as loading control. The statistical data of expression of c-Myc, Cyclin D1, and p21 proteins (comparing to GAPDH) were shown in (d)
and (f). The statistical data of p-MEK (comparing to total MEK, (h) and (k)) and p-ERK (comparing to total ERK, (i) and (l)) were shown as
the mean ± SD. ∗ denotes p < 0.05 versus si-Ctrl group; # denotes p < 0.05 versus normal control group.
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Figure 4: Inhibition of MEK/ERK pathway by inhibitors confers the inhibition effect of IGHG1.Cells transfected with or without IGHG1 siRNA
fragments with added MEK/ERK inhibitors PD98059 and U0126 and MEK/ERK activator PAF(C-16). The cell lysates were subjected to
western blot. The representative images were shown in (a), (e) in DU145 cells and (c), (g) in PC3 cells of activation of MEK and ERK and the
statistical data were shown in (b), (f) in DU145 cells and (d), (h) in PC3 cells with the expression of c-Myc, Cyclin D1, and p21. The DU145
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Figure 5: IGHG1 functions via the MEK/ERK/c-Myc axis to regulate PCa tumor growth in vivo. (a) DU145 cells were injected to nude mice,
together with or without IGHG1 genetic silenced or IGHG1 antibody injection. One month later, mice were sacrificed, and the tumors were
isolated. (b) The tumor weight was evaluated, and the samples lysates were subjected to western blot to detect the activation of MEK/ERK
pathway ((c) and (d)) and the expression of c-Myc protein ((e) and (f)). Data are expressed as the mean ± SD. ∗ denotes p < 0.05.

4. Discussion

Prostate cancer is the third leading cause of cancer-related
deaths of men in China. Endocrine therapy is an advanced
treatment of prostate cancer; however, this approach would
result in hormonal resistance [20, 21]. Moreover, once
patients develop metastasis, the mortality rate of prostate
cancer is extremely high. Thus, revealing the underlying
mechanisms and identifying novel targets for treatment
of prostate cancer have important significance. Here, in
the current study, we found that IGHG1 was significantly
upregulated in prostate cancer tissues. Inhibition of IGHG1 by
genetic knockdown or antibody blocking markedly reduced
the growth of prostate cancer cells and induced cell cycle
arrest and cell apoptosis. Furthermore, MEK/ERK pathway
was inactivated when IGHG1 was suppressed. Cell cycle
related proteins, such as c-Myc, Cyclin D1, and p21, lied
downstream of MEK/ERK pathway to mediate IGHG1 reg-
ulated prostate cancer.

The relationship between IGHG1 and many cancers has
been identified during recent years. However, the role of
IGHG1 in prostate cancer and the regulatory mechanisms

remain largely unknown. We have revealed the presence of
cytoplasmic and membranous IGHG1 in prostate cancer cell
lines (LNCaP, PC3) previously and found that inhibition of
IGHG1 by siRNA approach suppressed cell proliferation and
induced apoptosis [12]. Here, we further supplemented our
previous work and we showed that IGHG1 was upregulated
in human prostate cancer tissues, comparing with benign
hyperplasia samples (Figure 1). Administration of anti-IgG
antibodies had been demonstrated to inhibit the growth of
tumor cells in vitro and in mouse [5, 22]. Similar results were
obtained by blocking of cancer-derived IgG to inhibit cancer
cell growth [23]. Thus, using antibodies to block IGHG1 is
an effective way besides siRNA approach, and we found that
both of these methods resulted in similar effect in vitro and
in vivo.

C-Myc plays critical role in PCa onset and progres-
sion; c-Myc overexpression induces neoplastic phenotype on
human prostate normal epithelial cells [24], promotes PCa
carcinogenesis during early stage [25, 26], confers androgen-
independent growth [27], and induces tumor relapse after
radiation therapy [28]. Furthermore,MAPK signaling, which
is frequently deregulated in PCa [29], has been shown to
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promote the c-Myc gene expression [30]. Thus, dysregulated
c-Myc oncoprotein expression is critical for PCa carcinogen-
esis [25, 31], leading to c-Myc being identified as a strategic
therapeutic target for PCa treatment [32]. Inhibition of c-Myc
transcription or reducing c-Myc stability and function has
consequently used to counteract c-Myc protein accumulation
in many cancers including PCa. Here, in our study, we
found that c-Myc was overexpressed in PCa tissue samples,
and c-Myc expression was positively correlated with IGHG1.
Inhibition of IGHG1 by siRNA approach or by antibody
blocking induced the downregulation of c-Myc, indicating
that c-Myc lies downstream of IGHG1.

A variety of signaling pathways have been reported in
the development of PCa and MAPKs have been reported
to be closely related with PCa [29]. Here, the role played
by MEK/ERK signaling in c-Myc protein was confirmed by
means of selective and specific MEK/ERK inhibitor U0126
and PD98059. Firstly, increased activation of MEK and ERK
was found with increased phosphorylation in cultured PCa
cell line, and inhibition of IGHG1 reduced this activation,
indicating that IGHG1 functioned via MEK/ERK/c-Myc
axis to regulate PCa cancer growth. Moreover, MEK/ERK
inhibitors significantly reduced phosphor-active MEK and
ERK and downregulated c-Myc protein in DU145 cells. The
inhibitors further enhanced the inhibition effect of IGHG1
suppression. Finally, by xenograft assay in nude mice, we
confirmed that the inhibition of IGHG1 induced the down-
regulation of phosphor-activated MEK/ERK and expression
of c-Myc, leading to the suppressed PCa growth in vivo.
MEK/ERK/c-Myc axis may play a role in mediating response
to radiation, in vitro and in vivo [19]. And radiation therapy
induces the selection of aggressive PCa cells in an ERK-
dependent manner [33]. We suspect that this may be due
to the upregulated c-Myc expression via MEK/ERK activa-
tion.

In conclusion, the data in the current study further
confirmed the role of IGHG1 in prostate cancer develop-
ment. Inhibition of IGHG1 suppresses cancer cell growth
in vitro and in vivo. Furthermore, IGHG1 functions via the
MEK/ERK/c-Myc pathway and regulates the downstream cell
cycle related proteins.These data elucidate themechanisms of
IGHG1 regulated prostate cancer cell proliferation, providing
theoretical foundation and potential target for the clinical
treatment of prostate cancer.
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