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Objects in clutter are difficult to recognize, a
phenomenon known as crowding. There is little
consensus on the underlying mechanisms of crowding,
and a large number of models have been proposed.
There have also been attempts at unifying the
explanations of crowding under a single model, such as
the weighted feature model of Harrison and Bex (2015)
and the texture synthesis model of Rosenholtz and
colleagues (Balas, Nakano, & Rosenholtz, 2009; Keshvari
& Rosenholtz, 2016). The goal of this work was to test
various models of crowding and to assess whether a
unifying account can be developed. Adopting Harrison
and Bex’s (2015) experimental paradigm, we asked
observers to report the orientation of two concentric C-
stimuli. Contrary to the predictions of their model,
observers’ recognition accuracy was worse for the inner
C-stimulus. In addition, we demonstrated that the
stimulus paradigm used by Harrison and Bex has a
crucial confounding factor, eccentricity, which limits its
usage to a very narrow range of stimulus parameters.
Nevertheless, reporting the orientations of both C-
stimuli in this paradigm proved very useful in pitting
different crowding models against each other.
Specifically, we tested deterministic and probabilistic
versions of averaging, substitution, and attentional
resolution models as well as the texture synthesis
model. None of the models alone was able to explain the
entire set of data. Based on these findings, we discuss
whether the explanations of crowding can (should) be
unified.

Introduction

Compared with foveal vision, peripheral vision is
limited because of the reduced number of photorecep-
tors in the retina and the smaller population of cortical
and subcortical neurons that are devoted to peripheral
information processing. This is evident in, for instance,
contrast sensitivity and letter acuity changes as a

function of eccentricity (Herse & Bedell, 1989; Jacobs,
1979; Virsu & Rovamo, 1979; Weymouth, 1958).
Recognition/identification of a target object is further
impaired when it is presented in visual clutter, known
as crowding (Bouma, 1970; Toet & Levi, 1992).
Crowding can be observed in the fovea; however, it is
stronger in the periphery and persists even when the
letter size is scaled to compensate for changes in acuity
(Chung, Levi, & Legge, 2001; Levi, Hariharan, &
Klein, 2002; Levi, Klein, & Hariharan, 2002). Because
objects in the environment are almost never in
isolation, crowding is a ubiquitous phenomenon, and
therefore, it sets a bottleneck for object recognition,
visual search, and motor actions (eye, hand, and body
movements), tasks crucial for survival (Levi, 2008; Pelli
& Tillman, 2008; Whitney & Levi, 2011).

When asked to identify a crowded object, observers
make various types of response errors. For instance,
when the orientation of a target bar (or a letter) is to be
reported in the presence of other flanking bars,
observers may report the average orientation of the
ensemble (averaging) or the orientation of one of the
flankers (substitution), or they may simply guess (Ester,
Klee, & Awh, 2014; Ester, Zilber, & Serences, 2015;
Freeman, Chakravarthi, & Pelli, 2012; Greenwood,
Bex, & Dakin, 2009; Hanus & Vul, 2013; He,
Cavanagh, & Intriligator, 1996; Parkes, Lund, Ange-
lucci, Solomon, & Morgan, 2001). Different types of
errors made under crowding conditions can be con-
sidered as indicators of multiple (and potentially
overlapping) processes. Indeed, there is still an ongoing
debate as to whether or not crowding results from a
single mechanism or multiple processes (Levi, 2008;
Pelli, 2008; Pelli & Tillman, 2008; Whitney & Levi,
2011). Recent work implicated pooling based on
receptive field sizes (Balas, Nakano, & Rosenholtz,
2009; Freeman & Simoncelli, 2011; Freeman, Ziemba,
Heeger, Simoncelli, & Movshon, 2013; Keshvari &
Rosenholtz, 2016), cortical distance (Mareschal, Mor-
gan, & Solomon, 2010; Pelli, 2008), and attentional
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resolution (He et al., 1996; Intriligator & Cavanagh,
2001) as the causal factors for crowding. However, the
diverse set of response errors made by observers cannot
be fully explained by any of these proposed mecha-
nisms alone.

Several attempts have been made to fully capture the
statistics of the response errors and offer a ‘‘unifying’’
account for crowded object recognition (e.g., Balas et
al., 2009; Cox & Riesenhuber, 2015; Harrison & Bex,
2015; Keshvari & Rosenholtz, 2016; Nandy & Tjan,
2012). Harrison and Bex (2015) proposed a probabi-
listic averaging model based on the population activity
in the early visual areas and claimed that their model
(hereafter referred to as the HB model) alone can
reproduce the entire spectrum of response errors
without resorting to multiple mechanisms. In short,
their model consists of three stages: (a) a filtering stage,
(b) a weighted-averaging stage, and (c) a decision-
making stage. The essential property of the HB model,
as the authors emphasized more recently (Harrison &
Bex, 2016; Pachai, Doerig, & Herzog, 2016), is the
weighting field centered on the target object. The
contrast energy obtained from the first stage is
weighted such that the contribution of a feature
(regardless of its ownership) to the final percept
decreases with its distance from the center of the target
object. Note that there is no explicit feature extraction
in this model. Harrison and Bex (2015) used concentric
circles with a small gap, which defined their orienta-

tions (we hereafter refer to these as C-stimuli), with the
flanker always surrounding the target, to test this
model. As predicted, crowding of the target became
weaker (indicated by smaller response errors) as the size
of the flanker (hence, its distance from the target)
increased. In addition, according to the HB model, the
flanker in this paradigm should suffer from more
crowding compared with the target, because the target,
being closer to the center of the weighting field, always
enjoys a higher weight. One way to test this is to ask
observers to report the orientation of both the target
and the flanker. In fact, Harrison and Bex (2015) asked
observers to report both objects in their Experiment 2;
however, the authors did not separately compare the
response errors made for the target and the flanker.

Crowding literature is very rich in terms of the types of
stimuli and configurations used to investigate certain
aspects of crowded vision. Some studies used simple
stimuli such as oriented bars, Gabor patches, or letters,
whereas some others opted for more complex stimuli
such as objects, tools, faces, or natural scenes. Using
primitive stimuli allows one to remove or minimize the
effects of irrelevant neural processes on the task at hand
and to disentangle the contribution of several relevant
processes on percepts. Using complex stimuli provides
measurements more relevant to natural viewing condi-
tions; however, it comes with the risk of involving
contributions from multiple (potentially relevant or
irrelevant) processes on the outcome measure. Harrison
and Bex (2015) introduced a stimulus paradigm in which
with only two concentric C-stimuli, one can potentially
obtain all signature properties of crowding such as
radial-tangential anisotropy, inner-outer asymmetry, and
critical distance. Having only two objects also makes it
convenient to simultaneously investigate the crowded
representations of both the target and the flanker and
provides a new means to pit different crowding models
against each other. Although it seems promising, this
stimulus paradigm has a crucial confounding factor. The
eccentricity of the small gap, which defines the orienta-
tion of the Cs, varies strongly with orientation (Figure 1).

Inspired by an earlier texture synthesis model (Portilla
& Simoncelli, 2000), Rosenholtz and colleagues recently
introduced a texture synthesis model to account for
crowding and several other visual phenomena (Balas et
al., 2009; Keshvari & Rosenholtz, 2016; Rosenholtz,
Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj, Balas,
& Ilie, 2012). According to their texture tiling model
(hereafter referred to as the TT model), local as well as
global image statistics (pixel statistics, correlation coef-
ficients, magnitude correlations, and phase statistics) are
extracted from any arbitrary stimuli by means of a set of
oriented V1-like wavelets with various orientations,
scales, and neighboring positions. The main proposition
of the TT model is that peripheral information is jumbled
up because of this textural representation. Recently,

Figure 1. Eccentricity confound in the present study (left) and in

Harrison and Bex’s (2015) study (right). The eccentricity of the

small gap in the C-stimuli as a function of their orientation is

plotted. Gray lines represent the target object in both studies,

whereas red curves represent the flankers. Different shades of

red represent different sizes; the darker the smaller. Note that

the smaller a flanker, the larger its weight on the final percept

as based on the weighting field approach of the HB model. Note

also that the flanker was always larger than the target in

Harrison and Bex’s study.
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Keshvari and Rosenholtz (2016) presented a convincing
case in which the TT model could reproduce the response
errors (to a certain extent) in three different crowding
studies with a wide range of stimuli (letters: Freeman et
al., 2012; letter-like cross stimuli: Greenwood, Bex, &
Dakin, 2012; Gabors with different spatial frequency,
color, and orientation: Põder & Wagemans, 2007). Here,
we tested the TT model with the novel stimulus paradigm
introduced by Harrison and Bex (2015).

We had two aims in the present study. First, we tested
two recently proposed models that have been claimed to
be unifying accounts of crowding, as well as more
conventional models such as averaging, substitution, and
attentional resolution. More specifically, we tested the
predictions of the HB model (particularly weighting field
approaches used generally in pooling models of crowd-
ing) by adopting their concentric Cs paradigm (see the
Methods section) but using flankers inner as well as outer
with respect to the target C. Next, we generated
thousands of ‘‘mongrels’’ (physically different but
perceptually the same set of textures) and investigated the
TT model with the help of a neural-network classifier.
Second, we determined whether or not the eccentricity
confounded in the concentric Cs paradigm significantly
affects response errors. Finally, we discuss whether
explanations of crowding can or should be unified.

Methods

Participants

Nine observers (including the first author) with
normal or corrected-to-normal vision (20/20 or better
in each eye) participated in the study. Except for the
first author, all observers were naı̈ve as to the purpose
and the experimental details of the study. All observers
gave written informed consent before the experiment
started. The experimental protocols were approved by
the Institutional Review Board at the University of
California, Berkeley. All procedures were in accordance
with the Declaration of Helsinki.

Apparatus

Visual stimuli were presented on a 32-in. Displayþþ
display (Cambridge Research Systems, Rochester, UK)
at a resolution of 1,9203 1,080 and a frame rate of 120
Hz. The viewing distance was 76 cm, and each
dimension of a single pixel at this viewing distance was
1.63 arcmin. Head movements of observers were
minimized via a chin/head rest. Eye movements were
monitored at 1000 Hz with an Eyelink 1000 (SR
Research, Ottawa, Ontario, Canada) video-based eye

tracker to ensure observers did not make any saccadic
eye movements toward the C-stimuli. Each block of
trials started with a standard nine-point calibration
procedure. All visual stimuli were generated in MAT-
LAB (R2012b; MathWorks, Natick, MA) with the
Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997)
and its Eyelink extensions (Cornelissen, Peters, &
Palmer, 2002). For some of the computations described
below, we used the CircStat toolbox (Berens, 2009).
Luminance measurements were performed via a Kon-
ica Minolta LS-110 photometer. Observers’ responses
were obtained via a keyboard.

Stimuli and procedures

Observers sat in a dimly lit room and were presented
with two white (;143 cd/m2) concentric C-stimuli on a
gray (;80 cd/m2) background at 108 eccentricity to the
right of the center of the display. The stimulus
parameters were similar to those used in Harrison and
Bex’s study. The diameter of the target C was always
fixed at 3.08, whereas the diameter of the flanker was
either 2.28 or 3.88. These two sizes for the flanker
correspond to identical target-flanker distances. Note,
however, that the reference to the ‘‘target’’ and
‘‘flanker’’ was solely for labeling purpose, because in all
trials, observers were asked to report the orientation of
both C-stimuli, referred to as the ‘‘inner’’ and ‘‘outer’’
C. Thus, observers did not know which one was the
target and which one was the flanker. The stroke-
thickness of each C-stimulus was 0.48. The small gap
that determined the orientation of a C-stimulus was
inserted by means of an invisible (with the same color
as the background) radial line centered on the C with a
thickness of 0.278 (10 pixels). The orientation of the
target ranged from 08 to 3608 polar angles (in steps of
18). The flanker’s orientation ranged from 6458 from
the orientation of the target, so that we would obtain
more data where observers have been reported to make
more errors (Harrison & Bex, 2015). Note that
observers were not told about any of these specifics.

Figure 2A illustrates the stimuli and procedures.
Each trial began with a white fixation cross at the
center of the display. After a random delay (uniformly
sampled from 1 to 1.5 s), the stimuli were shown for 500
ms. Roughly 300 ms after the stimuli disappeared, a
probe, also in the shape of a C, was presented at the
center of the display, and observers reported the
orientation of each C-stimuli by adjusting the orienta-
tion of this central C-probe. If two C-stimuli (target
and flanker) were presented, the order of responses was
randomized across trials: In some of the trials,
observers reported the orientation of the target first,
and in the remaining trials, they reported the flanker
first. Which C to report first was instructed to the
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observers with a text message (e.g., ‘‘Report the inner
circle first’’) presented 5.48 above fixation, after the C-
stimuli disappeared from the display. Moreover, the
size of the central C-probe matched the size of the

stimulus to be reported (target or flanker) to facilitate
this process. Initial orientations of the central C-probe
were randomly chosen from 08 to 3608. Note that both
Cs were targets from the perspective of observers

Figure 2. (A) The stimuli and procedures. Each trial started with a fixation point at the center of the display (note that each schematic

shows mostly the right half of the display for clarity). A single C-stimulus (baseline condition) or two concentric C-stimuli (flanked

condition) were shown for 500 ms at 108 eccentricity, right of the fixation point. Observers were asked to report the orientation of

the Cs. The order of report (when there were two Cs) was randomized, and text instructions to observers appeared above fixation at

each trial, after the stimuli disappeared from the display. (B) The weighting field proposed by Harrison and Bex (2015). Each gray

circle represents an isoline with identical weights. (C) Stimulus conditions in the present study. In the baseline condition, only one C-

stimulus was shown. In the crowded conditions, the flanker could be either inside or outside the target. Note that because observers

were asked to report both objects, both objects were in fact ‘‘targets’’ for observers. Here the flanker-target distinction is used to

simplify presentation of results. To be consistent, the target C always had the same size (gray circles), whereas the flanker could be

smaller or larger than the target (red circles). Also note that the tone of red indicates the amount of weight enjoyed by the flanker in

each condition. (D) Spatial binning of trials based on the orientation of the Cs.
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because observers had to report the orientations of
both C-stimuli. Target-flanker distinction is used to
organize the data and to facilitate the presentation of
the results. This distinction does not affect (or is not
affected by) the predictions of the HB model.

There were three stimulus configurations with equal
probability within a block of trials: (a) target alone
(baseline), (b) flanker inside, and (c) flanker outside. In
a single block, observers completed 150 trials (50 trials
for each condition). Observers could take a break
anytime they wished, and if they did, the experiment
continued after recalibrating the eye tracker. In total,
each observer completed at least 900 trials (seven
observers 900, one naı̈ve observer 928, and another
naı̈ve observer 1,130 trials). Each observer completed
practice trials (more than 50, less than 100) to become
familiar with the task and the apparatus. Data from
practice trials were excluded from all analyses.

Data analysis

The trials during which gaze position deviated more
than 28 from the center of the display were discarded
from further analyses. In total, only 5% of the trials
were rejected according to this criterion, and on
average 881 (648) trials per observer were used in the
following analyses.

Modeling response errors

We computed the response errors by subtracting the
reported orientations from the actual stimulus orien-
tations. We then used maximum-likelihood estimation
to fit a single von Mises distribution (referred to as the
vM model), as in the study of Harrison and Bex (2015).
However, as we will show later, the vM model fit to our
empirical data does not fully capture the observers’
performance characteristics. Specifically, we observed
more errors toward the tails of the distribution than the
vM model would predict. Also, in some cases, we
observed a sizeable number of 1808 response errors that
could not be fitted by the vM model. Consequently, we
also tried two other models to fit our data: a von Mises
plus a uniform distribution (referred to as the vMþU
model) and two von Mises distributions (referred to as
the vMþ180vM model), one centered on the target’s
orientation and another one centered at 1808 opposite
orientation. We could have potentially tried other
statistical models representing different crowding hy-
potheses such as averaging and substitution; however,
our aim here was not to determine sources of errors.
Our aim was to capture the shape of the distribution of
response errors so that we can estimate the change in
observers’ performance by the presence of a flanker.

The vM model is defined as follows.

pvMð�Þ ¼
ekcosð��lÞ

2pI0ðkÞ
; ð1Þ

where p(�) is the probability of response error �, l is
the mean error, k is the concentration constant, and I0
is a Bessel function of order zero. Note that � and l are
in radians. The vMþU model is defined as follows.

pvMþUð�Þ ¼ wUð�180; 180Þ þ ð1� wÞ e
kcosð��lÞ

2pI0ðkÞ
;

ð2Þ
where w represents the weight of the uniform compo-
nent (i.e., guess rate) and U represents the uniform
probability density within a range of (�180, 180).
Finally, the vMþ180vM model is defined as follows.

pvMþUð�Þ ¼ w
ekcosð��lÞ

2pI0ðkÞ
þ ð1� wÞ e

kcosð��lþpÞ

2pI0ðkÞ
;

ð3Þ
where w represents the weight of the primary von Mises
distribution centered on the target’s orientation. Note
that the concentration coefficients of both von Mises
distributions are identical for convenience. Therefore,
the vM model has only one free parameter, whereas the
vMþU and the vMþ180vM models have two free
parameters. The uniform component in the vMþU
model captures the random guessing behavior of
observers. This is an important point, especially for
naı̈ve observers who may not pay full attention to the
task at all times and occasionally randomly guess the
orientation of the target and flanker. These random
guesses cannot be fully captured by a single von Mises
distribution, and even if a single von Mises is forced to
capture the variability in responses due to guessing, this
results in artificially low concentration constants, k
(i.e., very large standard deviations), for von Mises
distribution. In fact, several studies reported that
models containing a random guessing component
perform better than those without it (Ester et al., 2014;
Ester et al., 2015; Hanus & Vul, 2013; also see Põder &
Wagemans, 2007).

We used Bayesian model comparison (BMC) tech-
nique (MacKay, 2003; Wasserman, 2000) to select the
best statistical model to capture the data (for a step-by-
step derivation of this technique, see Agaoglu, Agao-
glu, Breitmeyer, & Ogmen, 2015, or Ester et al., 2015).
In short, this technique computes the likelihood of data
given a certain model, penalizes models with more free
parameters, and assigns proportionately more weight
to the penalizing factor for larger data sets in
estimating the model performance. Assuming equal
priors for all parameters (k for vM model, and k and w
for vMþU model), the final form of the BMC metric is
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as follows:

lnLðmjÞ ¼ lnLmaxðmjÞ �
Xk
i

lnðRiÞ

þ ln
R

exp
�

lnLðmjjhÞ � lnLmaxðmjÞ
�
dh

h i
;

ð4Þ
where mj represents the jth model, Ri represents the size
of the range for ith free parameter, Lmax(mj) represents
the maximum likelihood for the jth model, and finally
ln L(mj) represents the BMC metric for the jth model.
Parameters that correspond to Lmax(mj) can be
regarded as the maximum likelihood estimation of the
model parameters and are treated as the best param-
eters in the current study. We approximated the
integral given in Equation 4 by a Riemann sum with
2,400 bins for k (from 0.025 to 60 in 0.025 steps) and
101 bins for w (from 0 to 1 in 0.01 steps). We set l to
zero for both models. In other words, the von Mises
distribution was always centered on the actual orien-
tation of the stimulus. To compare models, we first
combined the BMCs in each condition by summing
them (i.e., multiplying model likelihoods) and then
computed the difference between the combined BMC
values for each model. A better performing model will
have a larger BMC based on Equation 4. A BMC
difference of x between Model A and Model B
corresponds to ex-to-1 odds favoring Model A.

Perceptual error comparisons

We converted concentration coefficients of the best-
fitting von Mises distributions to degrees via r ¼
(
ffiffiffiffiffiffiffiffi
1=k

p
)(180/p), where k is the concentration coefficient

and r is defined as the perceptual error. In addition, the
weight of the uniform component in the vMþU model
and the weight of the second von Mises distribution in
the vMþ180vM model were also defined as metrics of
perceptual error. We tested the predictions of the HB
model by preplanned paired t tests.

Probability density estimation

We computed the reported difference between the
flanker and target orientations and estimated the
probability density of reported difference as a function
of the actual physical difference between them. We used
a fast and accurate state-of-the-art bivariate kernel
density estimator (Botev, Grotowski, & Kroese, 2010),
which does not assume any parametric model for the
underlying data. Each density map was normalized so
that the volume under the surface sums to unity. This
enabled us to directly compare the density maps from

different conditions against each other by simply
subtracting one from another.

Simulations of alternative crowding models

We sought to determine whether or not our data can
be explained by several alternative crowding models.
Namely, we simulated the averaging, substitution, and
attentional resolution accounts of crowding. For all of
the following simulations, we took the actual orienta-
tions used in our experiments (.5,000 combinations of
target and flanker orientations across all observers) and
added a zero mean Gaussian noise with a standard
deviation set to the standard deviation of the vM
distribution in the winning statistical model (averaged
across observers) for the baseline condition. This
resulted in a distribution of orientations for each C-
stimulus (target and flanker, or inner and outer C). For
the averaging account, we randomly sampled an
orientation from each distribution and took a weighted
average of the two samples. Pure averaging occurs
when samples have equal weights (i.e., 0.5). We also
implemented a probabilistic averaging account in
which both the weights and the probability of
averaging were varied systematically. For the substi-
tution account, we took a random sample from each
distribution and randomly assigned it to the target or
the flanker regardless of the actual origin of the sample.
Previous studies showed that for certain tasks and
stimuli, probabilistic substitution captures best the
response errors (Ester et al., 2014; Ester et al., 2015;
Hanus & Vul, 2013; Põder & Wagemans, 2007).
Therefore, we have also independently varied the
probability of substitution. For instance, for a substi-
tution probability of one, observers always report the
orientation of the flanker for the target and vice versa.
On the other hand, for a substitution probability of
zero, observers never substitute. The attentional reso-
lution account posits that individual features are
extracted by the visual system, and hence they are not
lost; however, observers have difficulty at correctly
attributing features to correct objects. We simulated
this model by getting two samples either from the target
distribution or from the flanker distribution or getting
one sample from each distribution. We also imple-
mented a probabilistic attentional resolution account.

The texture tiling model

Accumulating evidence suggests that crowding could
arise due to textural (or summary statistics) represen-
tation of the peripheral information (Balas et al., 2009;
Freeman et al., 2013; Freeman & Simoncelli, 2011;
Keshvari & Rosenholtz, 2016; but also see Wallis,
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Bethge, & Wichmann, 2016). To determine whether a
texture synthesis model inspired by the information
processing in the early visual cortices can account for
our data, we used the Portilla and Simoncelli (2000)
texture synthesis model. This model is based on a series
of band-limited filters with various scales and orienta-
tions. One can extract hundreds of local as well as
global image statistics within a hierarchy of pooling
regions from any arbitrary stimulus/image. A unique
set of texture representations that are physically
different but supposed to be perceptually similar (i.e.,
‘‘mongrels,’’ Balas et al., 2009; or ‘‘metamers,’’ Free-
man & Simoncelli, 2011) can be synthesized by feeding
a random noise pattern and iteratively forcing the
image statistics of the input image to match those of the
target image. As commonly used in the literature, we
used four scales, four orientations, and spatial neigh-
borhood of nine pixels (Balas et al., 2009; Freeman &
Simoncelli, 2011; Keshvari & Rosenholtz, 2016; Wallis
et al., 2016). Because this model produces space-
invariant textures, it may not preserve the general
structure of a stimulus in its original form. To avoid
deformations to the general structure of the stimuli, we
used a noisy and very blurry version of the target image
as the input to the texture synthesis process (Balas et
al., 2009; Keshvari & Rosenholtz, 2016). Blurring was
done by filtering the original images (128 3 128 pixels)
with a Gaussian kernel with standard deviation of 0.5
pixel. The inner and outer diameters of the target ring
were 73 and 87 pixels, respectively. This corresponds to
a stroke width of seven pixels. We also added a
Gaussian noise with zero mean and 0.1 variance. This
preserved the general structure of the stimulus and
introduced local textural changes only. We generated
1,600 synthetic images for the baseline condition and
8,000 images for the flanker outside condition. We did
not attempt to compare the flanker inside and flanker
outside conditions because it is not a ‘‘foveated’’ model
(i.e., it does not account for eccentricity dependent
tiling of receptive fields), and because the pooling
regions do not overlap, it is not intended to account for
peripheral vision or specific properties of crowding.
Our aim in simulating this model was to investigate the
types and frequencies of errors predicted by a texture
synthesis model with our stimuli. Ideally, one would
need to verify these two aspects by actually having
human observers to foveally view these synthetic
images and report the orientations. However, Balas et
al. (2009) showed that a machine-learning algorithm
trained with several principal components obtained
from the hundreds of image statistics extracted by the
texture model performed equally well compared with
human observers. Here, neither the exact choice of the
pattern classification algorithm nor its performance in
classifying orientations is crucial. The important point
is that the algorithm should be able to perform on par

with human observers. We first computed the first 10
principle components from all extracted image statistics
and then used a feed-forward neural network with three
layers (10 units in the hidden layer, 360 sigmoidal units
in the output layer, each of which represents orienta-
tions from 18 to 3608). We trained the network using the
scaled conjugate gradient backpropagation algorithm
(‘‘trainscg’’ training function in MATLAB) with the
blurry versions of the original images and made sure
that the network achieved 100% classification perfor-
mance for identifying the orientation of the target
images, analogous to a human observer viewing the
stimuli foveally with unlimited time. We trained
separate networks for identifying the orientation of the
target and flanker (i.e., inner and outer C) for the target
images that contained both objects. Next, we obtained
the predicted responses of the networks by feeding the
synthesized textures as inputs. From predicted orien-
tations, we computed the response errors for each C-
stimulus independently.

Results

Modeling perceptual errors

To estimate how well observers did in reporting
orientations, we fitted a set of mixture models to the
distribution of response errors. We examined the
distribution of response errors by using the BMC
technique for each observer separately (see the Meth-
ods section). Figure 3 shows BMC differences with
respect to the vM model for all observers. Figure 4A
shows the best fits of each model in different conditions
for a representative observer. For seven of the nine
observers, the vMþU (a von Mises plus a Uniform
distribution) model performed better. For one observer
(S1), the vM performed slightly better than other
models. Interestingly, for another observer (S9), the
vMþ180vM (a von Mises distribution centered on the
actual orientation and another von Mises distribution
centered on 1808 opposite orientation) model per-
formed the best, indicating that this observer reported
completely opposite orientations in a considerable
amount of trials (Figure 4B). On average, the DBMC is
;100, which corresponds to e100-to-1 odds favoring the
vMþU model over the vM model. According to
Jeffrey’s scale of interpretation (Jeffreys, 1998), this
difference corresponds to a ‘‘decisive evidence’’ against
the vM model. Therefore, the following results are
based on the vMþU model. Note that the vM model
overestimates the spread of response errors, as evident
in Figure 4 (compare solid lines with dashed or dotted
lines).
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Testing the weighting-field model

Figure 5A illustrates the predictions of the HB
model, and Figure 5B shows the empirical results. As
expected, when the target was accompanied by another
C-stimulus, observers always made more (i.e., larger)
errors in reporting either one compared with the case
when the target was presented alone (baseline, Figure
5B horizontal line), the well-known crowding effect.
Because of the shape of the weighting field, the HB
model predicts weaker crowding when reporting the
orientation of the inner (smaller) C (because its weight
will be larger, Figure 2B, C). More specifically, the HB
model predicts larger perceptual errors for the target
than the flanker when the flanker is inside the target.
Likewise, the HB model also predicts larger errors for
the flanker when it is outside the target. However, as
can be seen from Figure 5B, the perceptual errors of
nine observers in the present study follow completely
opposite trends. Although the model predicts stronger
crowding (larger perceptual errors) for the target when
the flanker is inside it, empirical data show a larger
crowding effect when the flanker is outside the target (t8
¼�2.271; p ¼ 0.026). Moreover, the model predicts
weaker crowding for the flanker when it is inside the

target (because it has a higher weight), but our data
show the completely opposite trend (t8 ¼ 5.540; p ,

0.001). Perceptual errors, or changes in performance
due to crowding, can alternatively be measured by the
guess rate (i.e., the weight of the uniform component in
the vMþU model). We found a significant increase in
random guessing in all crowded conditions (p , 0.05).
However, we did not find any significant difference
between the two flanker conditions for either the target
or the flanker (p . 0.64; Figure 5C).

To examine how the presence of a flanker affected
the distribution of response errors for the target, we
computed the probability density of the reported
difference between the target and flanker orientations
as a function of the actual physical difference between
them. Figure 6A shows the probability densities
computed for the data pooled across observers. The
leftmost panel shows the probability density for the
entire data set, whereas the second and the third panels
show the probability density for the flanker inside and
flanker outside conditions separately. Several observa-
tions can be made about the origins of observers’
behavior. First, the reported difference between the
target and flanker is mostly close-to-veridical values,
indicated by a strong probability along the 1:1 line in
all panels. Second, there is a strong ‘‘cross’’ pattern
formed by the identity line and the negative identity
line (�1:1 line) in all panels. In other words, for a
substantial amount of trials, the reported difference
was –x when it was actually x. This pattern is a
signature of the substitution errors and was evident in
the probability density of reported differences in each
and every observer. Interestingly, this pattern was not
apparent in Harrison and Bex’s (2015) study. Third,
because of our experimental design (see the Methods
section), although the actual difference ranged from
�458 to 458, there are quite a few cases in which the
reported difference fell outside the (�45, 45) window.
This can be a result of random guessing the orientation
of one or both of the Cs.

To determine whether or not the probability density
of reported differences was different across different
flanker conditions, we subtracted the density in the
flanker inside condition from that of the flanker outside
condition. The resultant difference density is shown in
Figure 6B with a different color map to facilitate
comparisons. Here, red color represents a higher
probability density for the flanker outside condition,
whereas blue color represents a higher probability for
the flanker inside condition. Moreover, greenish colors
represent equal probability density. One clear pattern
emerging from this figure is that the probability density
along the identity line is larger in the flanker outside
condition (indicated by the dark red region along the
1:1 diagonal in Figure 6B).

Figure 3. BMC differences from the vM model of all

participants. Gray bars represent the BMC difference between

the vMþU and vM models, whereas red bars represent the BMC

difference between the vMþ180vM and vM models. Positive

values represent better model performance than the vM model.
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Figure 4. Distribution of response errors made when reporting the target (gray) and the flanker (red) and model fits for observer (A)

S4 and (B) S9. Panels in the top row represent the flanker inside condition, whereas the bottom row represents the flanker outside

condition. Note that the vM model (solid lines) overestimates the standard deviation of the error distributions. Error bars represent

95% confidence intervals obtained from bootstrapping (1,000 iterations, randomly sampling data with replacement).
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Testing the texture tiling model

Recent evidence suggests that crowding might be a
result of textural representation or ensemble averaging of
peripheral information in the visual system. Balas et al.
(2009) and Keshvari and Rosenholtz (2016) presented a
strong case supporting this view. More specifically,
Keshvari and Rosenholtz (2016) recently used a slightly
modified version of a texture model (Portilla & Simon-
celli, 2000) and generated hundreds of mongrels that are
physically different but perceptually similar to the original
stimuli, for the stimuli used in three different studies
(Freeman et al., 2012; Greenwood et al., 2012; Põder &
Wagemans, 2007). The authors showed that the errors
made when observers foveally viewed the mongrels and
the errors made when observers peripherally viewed the
original stimuli were similar. Remarkably, this similarity
holds true for letter recognition, for orientation or
position judgments of a letter-like stimuli, and for
differentiating objects defined by conjunction of multiple
features. We sought to determine whether the pattern of

errors reported here can be predicted by the aforemen-
tioned texture model. To this end, we used 10 principle
components1 of the image statistics extracted by the
texture model from our stimuli to classify the orientation
of each C-stimulus by an artificial neural network (see the
Methods section). Our results suggest that although the
texture model can predict close to veridical reports, 1808

errors, and random guesses, it cannot fully capture the
frequency of different types of errors (Figure 7, rightmost
panel; Figure 8, top-right panel). More specifically, it
significantly overestimates the occurrence of 1808 errors
and very rarely produces substitution errors.

Testing conventional models of crowding

Harrison and Bex (2015) claimed that neither averag-
ing of target and flanker features, nor reporting the
flanker for the target and vice versa, nor limited
attentional resolution can account for the average
reported target-flanker differences in their study, although

Figure 5. Perceptual errors in all experimental conditions. (A) Predicted pattern of results from the HB model simply based on the

weighting field. Because of the shape of the weighting field, the HB model predicts weaker crowding when reporting the orientation

of the inner (smaller) C. More specifically, the HB model predicts larger perceptual errors for the target than the flanker when the

flanker is inside the target. Likewise, the HB model also predicts larger errors for the flanker when it is outside the target. (B, C) The

results of the present study averaged across nine observers. (B) The standard deviation of vM in the best-fitting vMþU model. The

horizontal gray line represents the perceptual error for the baseline (uncrowded) condition. (C) The weight of uniform in the best-

fitting vMþU model (i.e., guess rate). The gray line at 0 represents the guess rate for the baseline condition; observers never guessed

in this condition. Error bars and shaded region represent 6SEM (*p , 0.05, ***p , 0.001).
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they noted that each of these accounts predicts different

distribution of reported target-flanker differences (see

supplementary figure S4 in Harrison & Bex, 2015). We

think that asking observers to report the orientation of

both objects in a crowded display and analyzing the

reported differences against the actual differences is a very

elegant and powerful way to test alternative models of

crowding in a more decisive way. However, we also think

Figure 7. Predictions of alternative models for the mean reported target-flanker difference as a function of actual differences. Markers

and the gray solid line represent empirical data and the best-fitting line with a slope of 0.334 (R2¼ 0.977, p , 0.0001). Error bars

represent 95% confidence intervals obtained from bootstrapping across observers. All models (except the texture synthesis model)

were simulated with a series of parameters to demonstrate the degree of freedom of each model. As can be seen, our results suggest

that averaging and substitution models can account for the mean reported differences. However, the averaging model fails to account

for the distribution of reported differences (see Figure 8).

Figure 6. (A) Probability density maps for reported target-flanker difference as a function of actual differences. The leftmost panel

shows all data combined, whereas the middle and the rightmost panel in A show data from the flanker inside and flanker outside

conditions, respectively. (B) The difference between density maps in the flanker outside and flanker inside condition.
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that comparing the average reported differences between
the data and the predictions of straw man proposals on
crowding is not very informative. More elaborate
simulations should be performed to fully refute a
hypothesis. To demonstrate that at least two of these
alternatives, namely, averaging and substitution, can in
fact account for the average reported target-flanker
differences, we simulated these alternative models using
the actual target-flanker orientation pairs used in our
experiments (see the Methods section). Previous research
showed that probabilistic substitution performed equally
well or better than any variation of the averaging account
(Ester et al., 2014; Ester et al., 2015; Hanus & Vul, 2013;
Strasburger & Malania, 2013). Moreover, at least a
handful of studies showed that weighted averaging, rather
than pure averaging with equal weights, can account for
errors made in crowding (Dakin, Bex, Cass, & Watt,
2009; Freeman et al., 2012; Greenwood et al., 2009, 2012).
Probabilistic reports need not be limited to the substitu-

tion account and can take place in other accounts as well.
Here, we investigated the degree of freedom of these
models in explaining the reported target-flanker differ-
ences as a function of the actual differences. Figure 7
illustrates the behavior of each model along with the
averaged reported target-flanker difference data obtained
in the present study. Our simulations suggest that
probabilistic weighted averaging and probabilistic sub-
stitution can separately account for the average reported
target-flanker difference, although only the latter can
partially account for the distribution of reported target-
flanker difference (see Figure 8). The attentional resolu-
tion model always predicts zero mean for reported
difference even with a probabilistic implementation.
Figure 8 shows probability maps rather than just average
values for all simulated lines in Figure 7. Note that none
of the models discussed so far (averaging, substitution,
and attentional resolution) can predict occasional guesses
or 1808 errors. In short, our results suggest that (a) testing

Figure 8. Empirical and simulated probability density maps for reported target-flanker difference as a function of actual differences.

The empirical density map is shown in the bottom-right panel (gray outline). Each row represents a different probability (0 and 1 for

the first and last rows, respectively) of a given mechanism. For instance, for the third row, the probability of averaging (or

substitution, or attentional resolution) to occur is 0.5. For the averaging account, different columns represent different weights given

to the flanker (0 and 1 in the leftmost and rightmost columns, respectively). The texture synthesis model predicts frequent occurrence

for 1808 errors, and because we focus on the (�45, 45) intervals in this figure, these errors are not shown here.
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Figure 9. The effect of eccentricity confounding on the general pattern of results. Trials were categorized based on (A) the target’s and

(B) the flanker’s orientation. The leftmost column represents the foveal trials, the middle panels represent the peripheral trials, and

the rightmost column represents the tangential trials. See text for definition of each bin. All color/marker conventions are identical to

those used in Figure 5. *p , 0.05, **p , 0.01, ***p , 0.001.
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only the pure averaging or pure substitution is not
informative and might be misleading and (b) using the
mean responses rather than the distribution of responses
may lead to incorrect conclusions regarding the underly-
ing mechanism of crowding.

Testing the stimulus paradigm

The stimuli used by Harrison and Bex (2015) is
powerful in identifying the types and the sources of
response errors made by observers; however, it has a
crucial confounding factor that limits its usage to a very
limited set of eccentricities and stimulus sizes. Figure 1
plots the eccentricity from fixation of the small gap in
each C-stimulus, which determines its orientation, as a
function of orientation in both the present study and in
Harrison and Bex (2015). As can be seen, the
eccentricity of the one and only feature in the stimuli
changes drastically with orientation of the gap as well
as with the size of the flanker C-stimulus. For instance,
for the largest flanker size used in Harrison and Bex
(2015), the eccentricity of the small gap in the flanker
ranged from roughly 48 to as large as 178. Because
recognition in both isolation and crowded displays
depends strongly on eccentricity, it is obvious that one

cannot pool the data obtained with different orienta-
tions of a flanker at this size.

To determine whether or not and how this con-
founding factor affected our results, we separated the
trials into three spatial bins based on the orientation of
the target (see Figure 2D). We defined these three
spatial bins as follows. A trial was categorized as a
‘‘foveal’’ trial when the target was oriented between
1358 and 2258. The trials in which the target was
oriented between �458 and 458 were categorized as
‘‘peripheral’’ trials. Finally, all other trials were
categorized as ‘‘tangential’’ trials. Because the orienta-
tion of the flanker was restricted to be within (�458,
458) around the orientation of the target, a foveal trial
for the target may not necessarily be a foveal trial for
the flanker. Therefore, we repeated the categorization
of trials based on the flanker’s orientation. We
performed the same analyses as we reported for the
combined data, and Figure 9 summarizes the percep-
tual errors for all conditions and spatial bins.

A two-way repeated-measures analysis of variance
(ANOVA) for the target with spatial bins (foveal,
peripheral, and tangential) and stimulus conditions
(flanker inside and flanker outside) as factors revealed
no significant main effect: spatial bins, F(2, 16)¼ 1.765,
p¼ 0.203; stimulus conditions, F(1, 8) ¼ 2.238, p ¼
0.173). There was no significant interaction between the
main factors, F(2, 16)¼ 3.471, p¼ 0.056. A separate 2-

Figure 10. The effect of eccentricity on perceptual errors made when reporting each item on the display in all conditions. The leftmost

panel shows data from the baseline condition, and the middle (rightmost) panel shows perceptual errors made when reporting the

target (flanker) in the crowded conditions. Error bars indicate 6SEM (n ¼ 9).
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way repeated-measures ANOVA for the flanker re-
vealed a significant effect of main factor stimulus
conditions, F(1, 8) ¼ 29.333, p , 0.001. However,
neither spatial bins, F(2, 16)¼ 3.404, p ¼ 0.059, nor
their interaction with stimulus conditions, F(2, 16)¼
2.306, p ¼ 0.132, had a significant effect.

Next, we performed a series of preplanned paired t
tests to determine whether or not the same relationship
we found in Figure 5B is present for all spatial bins. In
all cases, the crowding of flanker by the target was
significantly stronger when the flanker was inside (red
markers and lines in Figure 9). However, the crowding
of target by the flanker was significantly influenced by
the orientation of the Cs. When categorized based on
the orientation of the target, perceptual errors in the
flanker inside and flanker outside conditions did not
differ from each other (p . 0.05) in the foveal and
peripheral trials (Figure 9A, the leftmost and middle
panels). Perceptual errors made while reporting the
target were significantly larger in the flanker outside
condition only in the tangential trials (Figure 9A,
rightmost panel). Categorizing trials based on the
orientation of the flanker produced similar results
(Figure 9B).

Figure 9 allows us to see how the general pattern of
results changes based on the eccentricity of the small
gap in the Cs. Next, we performed preplanned paired t
tests across different spatial bins for the target and

flanker separately in all three stimulus configurations
(baseline, flanker inside, and flanker outside) to
determine whether or not perceptual errors for each
item on the display was significantly affected by
eccentricity. Figure 10 replots the results from Figure 9
in a way that is easier to visually make pairwise
comparisons. The presence of at least one pairwise
statistical difference would suggest that the concentric
C paradigm cannot be used to investigate crowding
with the stimulus parameters used in the present study.
As indicated by stars in Figure 10, we found several
pairwise differences in perceptual errors across differ-
ent spatial bins.

We also computed the probability density functions
for reported differences as a function of actual
differences in all three spatial bins separately. We were
specifically interested in the difference of probability
densities of the foveal and peripheral trials, because
the effect of eccentricity would be manifested more in
the difference between these two bins. Figure 11 shows
the probability density difference between the foveal
and peripheral trials (Figure 11A based on the target,
Figure 11B based on the flanker). Had there been no
confounding factor in the stimulus paradigm, one
would expect to see a uniform green difference map in
Figure 11. However, there is a distinct and interesting
pattern in the density difference maps. When the
actual orientation difference between the target and
flanker was within (�15, 15) and (30, 45), observers’
responses were more veridical in the foveal trials
(indicated by dark red regions in Figure 11). Inter-
estingly, the reported differences were more spread out
beyond the identity line (i.e., veridical perception) in
the peripheral trials, as indicated by the blue regions in
Figure 11. This also suggests that observers made
more substitution errors in the peripheral trials
compared with the foveal trials. Finally, the red
regions in the upper and lower boundaries in the
difference maps suggest that observers tend to report
completely opposite (;1808) orientations for the
target and flankers more often in the foveal trials than
in the peripheral trials.

Discussion

Summary

Our aims in this study were (a) to evaluate the two
prominent models as well as more conventional
hypotheses of crowding by using the same stimulus
paradigm and (b) to determine how crucial the
eccentricity confound in the stimulus paradigm in
Harrison and Bex (2015) was in affecting the data. We
found that (a) the HB model, and hence the weighting

Figure 11. The difference between probability density maps

(foveal-peripheral) of reported versus actual target-flanker

difference in the foveal and peripheral conditions when binning

was done based on the (A) target and (B) flanker.
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field approach, and the TT model fail to account for
perceptual errors for peripherally viewed concentric Cs,
(b) the eccentricity confound significantly affects both
the average and the distribution of response errors and
therefore limits the usefulness of this stimulus paradigm
to very small size/eccentricity ratios, and (c) although
probabilistic weighted averaging and probabilistic
substitution models can separately account for the
average reported target-flanker differences, only the
latter can partially account for the distribution of
reported differences. In the following, we discuss our
findings.

Failure of the weighting-field approach

According to the weighting field centered on a target
stimulus, the inner C should always have a larger
weight, and therefore, it should be a stronger ‘‘crow-
der’’ and should be less prone to crowding compared
with the outer C. To test these predictions, we fixed the
size of one C and varied the size of the other one. Here,
to facilitate comparison of data and predictions, we
termed the one with the fixed size across all conditions
as the target and the other as the flanker, although
observers were asked to report the orientation of both
objects. Our results show patterns completely opposite
from the predictions of the HB model.

Previously, it has been shown that crowding can be
reduced or completely eliminated when flankers are
grouped or when they form a good ‘‘Gestalt’’ (Manassi,
Sayim, & Herzog, 2012, 2013). In a recent critique,
Pachai et al. (2016) demonstrated that crowding is
reduced when the target C is surrounded by multiple
flankers with the same orientation rather than just one,
and the HB model fails to account for this reduction in
crowding. In their reply, Harrison and Bex (2016)
claimed that Pachai et al. (2016) overlooked the critical
aspect of their model, the weighting field. Moreover,
the authors proposed that the apparent reduction of
crowding with multiple surrounding flankers (having
the same orientation) can be accounted for by a simple
change in the front end of their model. Instead of using
a bank of orientation-tuned filters in the first stage,
Harrison and Bex (2016) used a filter-rectify-filter
model of early visual texture processing (Bergen &
Landy, 1991) and claimed that this updated version of
their model can account for the data put forth by
Pachai and colleagues (2016). Although Harrison and
Bex (2016) did not perform any quantitative compar-
isons, here our aim was not to determine what type of
front end would be best in a crowding model. Instead,
we focused on the backbone of the HB model, the
weighting field, and showed that regardless of the type
of front end used, the weighting field approach fails to
predict perceptual errors made for inner and outer Cs.

The proposed model also fails to explain radial-
tangential anisotropy and inner-outer (with respect to
fovea) asymmetry (Bouma, 1970; Toet & Levi, 1992),
which are considered as litmus tests for crowding (Levi,
2008; Whitney & Levi, 2011). Although the former
property can be explained by a change of distance
metric (e.g., cortical distance), the latter cannot be
accounted for by a weighting-field approach, a key
component of their model, because which object’s small
gap is closer to the fovea also varies with their
orientation, but the model assigns identical weights to
all orientations.

The following point made by Harrison and Bex
(2015) is a valid one, however. The same population of
neurons might be responsible for partial representa-
tions of multiple objects, leading to contamination of
encoded features of one from another. This is
essentially a pooling model based on a spatially
limited integration region. However, rather than using
receptive field– or attentional spotlight–based pooling
regions, the authors opted for an arbitrary pooling
region. Is it possible to account for the data presented
here by using a different spatial profile for the
weighting field? How about a nonmonotonic weight-
ing field? For instance, the weights might be largest on
and around the contours of the target and fall off with
distance from its contours. Alternatively, the weight-
ing field could have both suppressive and facilitative
regions, analogous to the ‘‘doughnut’’ model de-
scribed by Strasburger and Malania (2013). Even if
one can come up with an arbitrary weighting field
profile to account for the data presented here, the
biological underpinnings or implications of such a
field will be questionable. In fact, although the bank of
filters in the front end of the HB model is biologically
inspired, the weighting field in the second stage
remains at most an abstract concept, no different than
other probabilistic models of crowding such as
averaging or substitution.

New constraint for crowding models?

There is no shortage of models for crowding (see
reviews: Levi, 2008; Whitney & Levi, 2011). These
models can be categorized by the level of prior
information needed for the model to operate. Some
models require the statistics of features or stimulus
dimensions to come up with estimates on the statistics
of crowded percepts (Dakin et al., 2009; Ester et al.,
2014; Ester et al., 2015; Freeman et al., 2012;
Greenwood et al., 2009, 2012; Hanus & Vul, 2013; He et
al., 1996; Parkes et al., 2001; Põder & Wagemans, 2007;
van den Berg, Johnson, Anton, Schepers, & Cornelis-
sen, 2012). Averaging (i.e., pooling), substitution, and
attentional resolution models belong to this category.
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Other models operate on image statistics and can be
used with any arbitrary stimuli (Balas et al., 2009;
Freeman & Simoncelli, 2011; Keshvari & Rosenholtz,
2016; see a recent critique: Wallis et al., 2016). Here, we
sought to determine whether averaging, substitution,
attentional resolution, and a variant of the Portilla and
Simoncelli (2000) texture synthesis model (or the texture
tiling model, Balas et al., 2009; Keshvari & Rosenholtz,
2016; Rosenholtz, Huang, & Ehinger, 2012; Rose-
nholtz, Huang, Raj, et al., 2012) can account for the
probability density maps for reported target-flanker
differences. Our results suggest that only a probabilistic
substitution model can partially explain our findings.

Some studies on crowding favored pooling or
averaging accounts, whereas some others reported
predominantly substitution errors. Although one ac-
count can explain a set of data, it fails to generalize to
another set. We suggest that because the exact stimulus
characteristics and experimental procedures in different
studies differ from each other extensively, any model of
crowding based on a single mechanism is doomed to
fail because it is expected to get predominantly
averaging errors in one study and perhaps more
substitution errors in another because of these differ-
ences. The success of the probabilistic substitution
model in this study is no different. Although the target
and flanker could have any orientation from 18 to 3608,
the substitution account was the most promising one
among all others. However, this might be simply due to
the presence of only two objects (or features) and the
requirement of the task that both objects should be
reported. Observers might be making mistakes in report
order, even though which item to be reported first was
clearly instructed by several means (with a text and size-
matched C on the display during the response phase).
Support for this view comes from very few substitution
errors reported by Harrison and Bex (2015). In their
study, observers always reported the orientation of the
inner C first, which was always the target. The apparent
discrepancy between the two studies, therefore, might
be explained by the differences in the experimental
procedures. Additional experiments in which observers
are asked to report only one or more than two items
can be performed to fully resolve this issue.

Consistent with a recent report on texture models,
our results cannot be explained by texture synthesis.
We generated thousands of mongrels (i.e., perceptually
similar but physically different set of textures) and
computed predicted response errors by means of
machine classification (see the Methods section). The
texture model failed to account for our data. First, it
almost never produced mongrels with substituted
features. Second, it overestimated the frequency of 1808
errors in both the baseline and flanked conditions.
Figure 12 shows several example mongrels generated
from the same original image (top row, baseline;

bottom row, flanker outside). Note that in some cases,
the Cs in the mongrels are completely opposite from
their actual orientations, and in some others, a single C
has multiple gaps.

Concentric Cs paradigm

One powerful feature of the simple stimulus para-
digm used by Harrison and Bex (2015) is that very
strong crowding can be induced by only one flanker
with only one feature. This simplicity allows us to
examine the several potential ways crowding may occur.
For instance, the orientation of the flanker might be
reported for the target (or vice versa) or the orientation
of both Cs might be averaged. Moreover, this paradigm
makes reporting both the target and flanker more
feasible and allows one to investigate the representa-
tions of both objects when crowding occurs. As we
show here (Figures 11 and 12), the reported orientation
difference between the target and flanker provides a
very strong test for crowding models. In fact, none of
the candidate models considered here alone could
account for the distribution of reported differences.

Although it proved to be very useful, the experi-
mental paradigm used by Harrison and Bex (2015) has
a confounding factor that limits its usefulness beyond
certain stimulus sizes; the eccentricity of the small gap
in the Cs covaries with their orientation (Figure 1). We
found that eccentricity confound affects perceptual
errors significantly even at 108 eccentricity with a 2.28
flanker. Therefore, we do not recommend this stimulus
paradigm for investigating crowding or other eccen-
tricity-dependent phenomena.

Response bias, substitution errors, and random
guesses

Our data differ from Harrison and Bex’s in several
other ways. Harrison and Bex (2015) reported an

Figure 12. A set of mongrels generated by the texture synthesis

model of Portilla and Simoncelli (2000) as implemented in Balas

et al. (2009).
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interesting response bias in which observers were biased
to report dissimilar orientations for the target and
flanker even when the physical orientations of the
target and flanker were very close (see their figure 3).
This finding, in fact, led them to add another stage to
their model, a decision stage, to fully account for their
results. However, in the present study, none of the
observers showed any response bias. Second, observers
made more substitution errors in the present study,
which was manifested as a cross pattern in probability
density maps for reported versus actual target-flanker
difference (see Figures 6 and 12). Third, observers
randomly guessed in ;12% of the trials in the present
study, whereas no guessing behavior was reported in
Harrison and Bex’s (2015) study. We hypothesize that
this discrepancy might be due to the difference in the
subject pools—eight naı̈ve observers and one of the
authors took part in our study, whereas the two
authors and a naı̈ve observer participated in Harrison
and Bex’s study. Additional support for random
guesses comes from several studies that showed that
stronger crowding results in higher guess rates and that
mixture models with a random guess component
perform equally well or better than those without it
(Ester et al., 2014; Ester et al., 2015; Hanus & Vul,
2013; Põder & Wagemans, 2007).

Can (should) crowding be unified with a
univariate model?

Admittedly, we did not exhaust all possible crowding
models in the literature. Our aim was to specifically
look at the recent models, which claim to unify the
crowding phenomenon. One of these models, which we
did not investigate in depth because a quantitative
formulation for arbitrary stimuli is currently not
available, was presented by Nandy and Tjan (2012).
These authors’ rather unique and elegant proposal was
aimed at the roots of crowding (i.e., why peripheral
vision is limited beyond its limited resolution, rather
than the consequences of crowding, i.e., the exact
statistics of response errors). Nandy and Tjan (2012)
proposed that crowding results from learning of
saccade-confounded image statistics during early de-
velopment of the visual cortex. They claimed that the
two characteristic properties of crowding, namely, the
extent of the crowding zone and the inner-outer
asymmetry, can be accounted for by a single assump-
tion of constant-sized (;6 mm) lateral interaction
zones in V1, which leads to the eccentricity scaling of
0.5, the so-called ‘‘Bouma’s law’’ (also see Pelli, 2008).
They further showed that a brief temporal overlap
between saccade execution and the deployment of
spatial attention may lead to more erroneous repre-
sentations of the peripheral stimuli along the radial

axes from the fovea than the tangential axes and
therefore can explain the third signature property of
crowding, the radial-tangential anisotropy.

Because the Nandy-Tjan (NT) model can account
for all fundamental characteristics of crowding, it is
expected to be able to explain the main findings in the
present study. However, note that our results are not
fully compatible with all characteristics of crowding.
For instance, when both the target and flanker were
oriented toward the 3-o’clock direction (i.e., the
peripheral condition; see Figure 9), the small gap of the
target is more inward (i.e., closer to the fovea) than that
of the flanker when the flanker is bigger than the target
(the flanker outside condition). In this case, because of
the inner-outer asymmetry of crowding, one would
predict a stronger crowding (larger perceptual errors)
for the target than the flanker. Moreover, when the
flanker is smaller than the target (the flanker inside
condition), one would expect completely opposite
results (i.e., more crowding for the flanker). Our results
(Figure 9, middle panels) indeed confirm these predic-
tions. However, when we look at the case in which both
the target and flanker were oriented toward the 9-
o’clock direction (i.e., the foveal condition), our results
cannot be explained by the inner-outer asymmetry of
crowding. For instance, when the flanker is inside the
target, its small gap will be more outer with respect to
the fovea and should be less crowded. However, we
found the crowding of the flanker’s gap to be much
stronger (Figure 9, leftmost column, the flanker inside
condition). Clearly, the NT model and any model of
crowding that can explain the inner-outer asymmetry
of crowding cannot account for these results. However,
it is also not clear whether these results should be
considered under the umbrella of the crowding
literature or should be considered as telltale signs of
unsuitability of this stimulus paradigm to investigate
crowding.

The crowding literature shows huge variations in the
scaling of crowding zones with different stimulus
conditions. The size of the crowding zone is obviously
affected by the threshold or performance criterion used.
However, it has also been shown that even with similar
criteria, the size of crowding zones can range from 0.1
times up to ;0.7 times the eccentricity (Chung et al.,
2001; Kooi, Toet, Tripathy, & Levi, 1994; Toet & Levi,
1992; Tripathy, Cavanagh, & Bedell, 2014; Wolford &
Chambers, 1984), which corresponds to roughly 1.6
mm to 8.5 mm cortical distances (Pelli, 2008),
respectively. Thus, because the rationale of the NT
model comes from the neurophysiological finding that
the extent of lateral interactions in V1 is roughly 6 mm
(Stettler, Das, Bennett, & Gilbert, 2002), it is difficult to
reconcile the vastly different crowding zones reported
in the literature with the NT model. Additional steps in
the visual processing hierarchy might possibly lead to

Journal of Vision (2016) 16(15):10, 1–22 Agaoglu & Chung 18



this complicated picture about crowding zones (Whit-
ney & Levi, 2011). However, this would mean that a
model with a single mechanism cannot explain the
crowding phenomenon.

Our empirical data and modeling results also suggest
that crowded percepts cannot be fully accounted for by
a single mechanism (or model). A combination of
multiple mechanisms can possibly capture the statistics
of the crowded percepts. However, the question arises
as to whether or not the attempts to unify an
apparently ‘‘multivariate’’ and highly complex phe-
nomenon such as crowding with a ‘‘univariate’’
mechanism or model are worth the effort. In other
words, should we really unify crowding? The common
sense answer would be positive because parsimony of
hypotheses/models is always sought after in science.
The part of the problem is that many seemingly similar
but mechanistically different phenomena tend to be
categorized under the same umbrella in an effort to
organize the knowledge in the field. Therefore, con-
straints for theoretical models become inflated. For
instance, both masking by light and metacontrast
masking are considered as masking, but they stem from
distinct neurophysiological processes. Similarly, for a
long time, crowding was thought to be similar to
masking (Mansfield, Legge, & Ortiz, 1998; Nazir, 1992;
Polat & Sagi, 1993; Townsend, Taylor, & Brown, 1971;
Wolford & Chambers, 1984) until subsequent efforts to
dissociate the two (Chung et al., 2001; Levi, Hariharan,
et al., 2002; Levi, Klein et al., 2002; Levi, 2008; Pelli,
Palomares, & Majaj, 2004). However, even in recent
studies in which reduction in performance or larger
response errors can be due to not only crowding but
also other factors (such as surround suppression or
lateral masking), performance impairments were attri-
buted solely to crowding. For instance, in their
Experiment 1, Harrison and Bex (2015) also used a
flanker without a small gap (i.e., a ring) and claimed
that the increase in perceptual errors due to the
presence of this flanker is due to crowding. The authors
discredited the substitution, averaging, or attentional
resolution accounts because none of them can account
for the crowding effect in this condition. However, one
can claim that the increase in perceptual errors in this
condition is more due to lateral masking. Moreover, in
studies on metacontrast masking, a surrounding ring or
square is generally used as a good metacontrast mask.

All in all, although we applaud the attempts at
unifying various types of response errors in crowding
studies, we think that without a better taxonomy of
crowding—instead of calling everything crowding,
perhaps introducing types of crowding (as in the
masking literature)—unifying attempts will remain
unsuccessful.

Keywords: crowding, texture synthesis, weighted
averaging, peripheral vision, probabilistic substitution
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Footnote

1 The exact choice of the number of principle
components is not crucial here. The only limitation and
concern here is to obtain close-to-perfect reports for the
original stimuli, which is analogous to a human
observer performing the task while foveally viewing the
stimuli. Our preliminary simulations showed that any
number of principle components larger than 5 five
suffices to obtain 100% classification performance with
the original stimuli, and does not affect the distribution
of errors predicted by the texture model.
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