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Objectives: Elevated levels of interleukin-6 (IL-6), D-dimer, and C-reactive protein
(hsCRP) are associated with increased incidence of comorbid disease and mortality
among people living with HIV (PLWH). Prior studies suggest a genetic basis for these
biomarker elevations in the general population. The study objectives are to identify the
genetic basis for these biomarkers among PLWH.

Methods: Baseline levels of hsCRP, D-dimer, and IL-6, and single nucleotide poly-
morphisms (SNPs) were determined for 7768 participants in three HIV treatment trials.
Single variant analysis was performed for each biomarker on samples from each of three
ethnic groups [African (AFR), Admixed American (AMR), European (EUR)] within each
trial including covariates relevant to biomarker levels. For each ethnic group, the results
were pooled across trials, then further pooled across ethnicities.

Results: The transethnic analysis identified three, two, and one known loci associated
with hsCRP, D-dimer, and IL-6 levels, respectively, and two novel loci, FGB and
GCNT1, associated with D-dimer levels. Lead SNPs exhibited similar effects across
ethnicities. Additionally, three novel, ethnic-specific loci were identified: CATSPERG
associated with D-dimer in AFR and PROX1-AS1 and TRAPPC9 associated with IL-6 in
AFR and AMR, respectively.

Conclusion: Eleven loci associated with three biomarker levels were identified in
PLWH from the three studies including six loci known in the general population and
five novel loci associated with D-dimer and IL-6 levels. These findings support the
hypothesis that host genetics may partially contribute to chronic inflammation in
PLWH and help to identify potential targets for intervention of serious non-AIDS
complications. Copyright � 2020 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
The advent and widespread utilization of combination
antiretroviral therapy (cART) has dramatically reduced
the incidence of opportunistic infectious diseases and
AIDS-associated malignancies in PLWH, leading to a
subsequent rise in the prevalence of serious non-AIDS
complications as the primary driver of morbidity and
mortality in this population [1,2]. Among PLWH,
elevated levels of biomarkers associated with inflamma-
tion and coagulation including interleukin-6 (IL-6), D-
dimer, and high-sensitivity C-reactive protein (hsCRP)
have all been associated with an increased risk of
cardiovascular disease (CVD), cancer, and all-cause
mortality [3,4]. These biomarkers have also been
associated with a higher risk of similar diseases and
mortality in the general population [5–8]; an interesting
discovery that has stimulated a field of inquiry into
understanding the role of chronic inflammation as the
primary driver of serious non-AIDS-related complica-
tions in PLWH [9–11].

Although the underlying mechanisms by which these
biomarkers are involved in the pathogenesis of non-AIDS
complications remains an active area of research, studies
have shown that elevations in these biomarkers decline
with cART [12]. However, despite plasma HIV RNA
levels less than 50 copies/ml over long periods of time,
many patients continue to exhibit persistently elevated
levels relative to the general population, suggesting that
viral replication alone is not the sole contributor to
chronic inflammation in this population [13]. Prior
studies have shown that in certain ethnic populations,
elevations of these biomarkers may have a partial genetic
basis [14,15], although such genetic associations have not
been as clearly established or examined in the HIV-
infected population.

Genome-wide association studies (GWAS) have been
utilized in the HIV-infected population to assess host
determinants of a variety of phenotypes including host
susceptibility to infection, innate virologic control [16],
and cART pharmacogenomics [17,18]. However, to our
knowledge, no similar investigation has previously been
conducted to investigate the potential genetic basis for
inflammation in this population, although similar
genomic/GWAS analyses have been attempted for a
host of other diseases [19–21]. Furthermore, GWAS
analyses have been used to identify loci associated with
elevated levels of hsCRP, D-dimer, and IL-6 in the
general population [22–26]. The CRP, HNF1A, and
APOE loci have been commonly identified to be
associated with levels of hsCRP [22,23,26] and blood
CRP concentration is associated with colorectal cancer
[26]. HNF1A is a transcription factor, which can bind to
the CRP promoter [27] and APOE can attenuate
unsolvable inflammation by complexing with activated
C1q [28]. Interestingly, hsCRP has been used to diagnose
maturity-onset diabetes of the young (MODY) as a result
of HNF1A [29]. In another study, three loci, F3, F5, and
FGA, were identified to be associated with D-dimer
levels in healthy adults [24]. Consistently, F3, F5, and
FGA belong to the Complement and Coagulation
Cascades pathway. In this study, we aimed to both
qualitatively and quantitatively investigate host genetic
contributions to elevation of biomarkers noted to be
strongly associated with serious non-AIDS-related
complications using GWAS analyses of data combined
from three large international HIV studies: Evaluation of
Subcutaneous Proleukin in a Randomized International
Trial (ESPRIT) study [30], the Strategies for Manage-
ment of Antiretroviral Therapy (SMART) [31] study, and
Strategic Timing of Antiretroviral Therapy (START)
study [2].
Materials and methods

Participants
The participants enrolled in this GWAS were enrolled in
one of three international HIV treatment trials: ESPRIT
[30], SMART [31], and START [2]. Written informed
consent was obtained from every participant in each
study. All informed consents were reviewed and approved
by participant site ethics review committees.

Genotyping and quality control
The study and analytical design are illustrated in Fig. 1. A
total of 7768 participants were successfully genotyped
using a custom Affymetrix Axiom SNP array at Advanced
BioMedical Laboratories. The array consisted of 770 558
probe sets enriched with markers related to immune
functions.

Genotypes were called using Axiom Analysis Suite
(version 3.1.51.0, Thermo Fisher Scientific). Quality
controls were performed using PLINK (version 1.9) [32].
Individuals with any of the following were excluded: sex
mismatch, autosome SNP call rate less than 96%,
duplicates, estimated by pairwise identity-by-descent
(IBD) (pi-hat at least 0.90). These exclusions resulted in
7720 participants. For each study, individuals with any of
the following were further excluded: an autosome
heterozygosity rate outside three standard deviations of
the mean of individuals in each assigned ancestral group:
93 participants were excluded; cryptic relatedness
individuals (pi-hat >0.1875) with a lower quality: 435
participates were excluded (see Fig. 1).

ADMIXTURE (version 1.3.0) [33] was used to assign
ancestry for each individual and principal component
analysis (PCA) was applied to account for population
stratification. The details of SNP quality control, ancestry
assignment, and PCA analysis are described in detail
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Fig. 1. Analysis workflow. (a) Sample quality control by study. (b) Single variant analysis for samples in each ancestral group of
each study using multiple linear regression with an additive model. (c) Linear regression results across the three studies were
combined in a fixed-effects meta-analysis for each ancestry group. (d) Ethnicity-specific meta-analyses results were combined in a
transethnic fixed-effects meta-analysis.
within Supplemental Material and Methods, http://
links.lww.com/QAD/B883.

Genome-wide association studies
Single variant analysis was performed for participants in
each ancestral group of each study using multiple linear
regression with an additive model (1 df) in PLINK, with
the first 10 principal components, and the following other
covariates measured at study entry: age, sex, natural log
transformed CD4þ cell count, natural log transformed
viral load, BMI, smoker at baseline (missing in ESPRIT),
hepatitis B virus (HBV), hepatitis C virus (HCV),
diabetes, and history of CVD. Most covariates were used
in all biomarker association analyses except the following:
HCV was only used in IL-6 and D-dimer analyses, history
of CVD was only used in hsCRP and IL-6 analyses, and
history of diabetes was only used in D-dimer analysis.
These covariate selections were based on bidirectional
step-wise variable selection using AIC on potential
variables in R [34], previous literature [35–37] and
biological plausibility. Since not all the potential
covariates of interest were collected in each trial, models
were fit on each trial separately and covariates were
included if any of the three stepwise regression models
selected the potential covariate of interest. The variance
inflation factor was also investigated to determine
collinearity among the covariates chosen via stepwise
regression and collinearity did not appear to be a
significant problem. The levels of hsCRP, IL6, and D-
dimer were natural log transformed.

To increase statistical power, results from the linear
regression analyses across the three studies were combined
in a fixed-effects meta-analysis using METAL [38] with
inverse variance weighting for each ancestry group:
European (EUR), African (AFR), and Admixed Ameri-
can (AMR). The EUR, AFR, and AMR meta-analyses
results were further combined in a second transethnic
fixed-effects meta-analysis to identify the SNPs associated
with hsCRP, D-dimer, and IL-6 levels. Genomic control
adjustment was turned on in METAL to adjust for any
inflation. Lambda gc (lgc) [39] and quantile–quantile

http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
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(Q–Q) plots were used to assess the system bias in the
GWAS results. Manhattan plots were generated to
visualize GWAS results. Q–Q plots and Manhattan plots
were generated with the CMPlot R package [40] (version
3.3.4). A genome-wide significance (GWS) threshold
was set at P less than 5� 10�8. A locus was defined by
significant SNPs within 100 kb of each other and
annotated by AVIA [41] (v3.0, http://avia-abcc.ncifcrf.-
gov/) with the locus name based on the closest gene to
the SNP with the most significant P value (lead SNP).
Locus SNPs were subjected to stepwise conditional
analysis using GCTA-COJO to determine if there were
any secondary association signals (SAS) [42].
Results

Study participants and quality control
After exclusion of sex mismatches and duplicates, 7720
out of 7768 genotyped participants remained from
ESPRIT, SMART, and START (third row in Fig. 1).
Baseline demographic, clinical, and laboratory character-
istics including biomarkers of interest (D-dimer, hsCRP,
and IL-6) of the remaining 7720 participants were
acquired from previous studies [12,35,36] and were
summarized (Supplemental Table 1, http://links.lww.-
com/QAD/B883). As a limitation of the data, hsCRP,
D-dimer, and IL-6 measurements were not available for
all 7720 participants listed in this table. The distribution of
Fig. 2. Distribution of biomarker and HIV clinic treatment relev
sensitivity C-reactive protein (hsCRP) level, (d) viral load level, (e
the major biomarkers in these three datasets are shown in
Fig. 2. As the biomarker levels from the participants in the
START study were measured before ART was initiated,
median and IQR viral load values are higher than the
other two studies and the viral load and CD4þ cell count
distributions in START are different from those of the
SMART and ESPRIT studies. Viral load and CD4þ cell
count were used as covariates in the GWAS analysis to
account for these differences between the studies. The
meta-analysis process (see below) used in this study will
further minimize the effect of the different treatment
strategies between studies on biomarker levels. A total of
528 participants were excluded from further analysis after
performing quality control analysis for cryptic relatedness
and outlying heterozygosity (Fig. 1).

Quality control and imputation of SNPs was described in
Supplemental Materials and Methods and illustrated in
Supplemental Figure 1, http://links.lww.com/QAD/
B883).

Meta-analysis of three multiethnic studies
Participants were partitioned into the five ancestral
groups based on individual ancestry assignment. AFR,
AMR, and EUR groups remained for association analysis
whereas South and East Asian groups were excluded
because of low sample size: 140 participants (Fig. 1). The
GWAS analysis of each ethnic group from the three
studies were combined by meta-analysis to identify the
SNPs associated with hsCRP, D-dimer, and IL-6 levels.
ant measurements. (a) D-dimer level, (b) IL-6 level, (c) high-
) CD4þ cell count level, (f) BMI.

http://avia-abcc.ncifcrf.gov/
http://avia-abcc.ncifcrf.gov/
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
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Fig. 3. Quantile–quantile plot and genomic control inflation factor (lgc) for genome-wide association studies analysis of
transethnic and individual ethnic group. (a) Genome-wide association studies (GWAS) analysis for high-sensitivity C-reactive
protein (hsCRP), (b) GWAS analysis for D-dimer, (c) GWAS analysis for interleukin-6 (IL-6).
To assess any systematic biases that may be present in our
GWAS results, Q–Q plots were generated and lgc
calculated (Fig. 3). These plots show that the ethnic-
specific and transethnic analysis have normal distributions
of P values. All related lgc are close to 1.0, demonstrating
there was no genomic inflation in the GWAS
analysis results.

Single nucleotide polymorphisms associated with
levels of high-sensitivity C-reactive protein
Three gene loci associated with levels of hsCRP were
identified for the transethnic group: CRP, HNF1
Homeobox A (HNF1A), and apolipoprotein E (APOE)
(Fig. 4a, Supplemental Data 1, http://links.lww.com/
QAD/B884). There was no evidence of heterogeneity
across ethnicities as determined by the Cochran’s Q-test
for heterogeneity (HetPVal) for any of the lead SNPs at
these loci (Table 1). Due to the small sample size, not all
loci could be identified in all ethnic groups. However,
there were SNPs in the CRP and HNF1A loci, which
reached GWS in the EUR group only and exhibited
heterogeneity across ethnic groups (Supplemental Data 1,
http://links.lww.com/QAD/B884, Supplemental Figure
2, http://links.lww.com/QAD/B883).
The 77 identified SNPs in the CRP locus can be divided
into two subsets with different effect sizes and ancestral
frequencies (Supplemental Data 1, spreadsheet ‘CRP’,
http://links.lww.com/QAD/B884). The most signifi-
cant SNP in the first subset, rs6667499 (P value:
P¼ 2.38� 10�25, effect size: b¼ 0.569), is located
downstream of the CRP gene. Effect allele frequencies
(EAF) for rs6667499 in transethnic, AFR, AMR, and
EUR groups were 4.4, 16.9, 1.2, and 0.3%, respectively.
Results for this SNP from AMR and EUR groups were
not available because of low EAF (Table 1). The most
significant SNP in the second subset was rs2794520
(P¼ 5.43� 10�24, b¼�0.224), also located down-
stream of the CRP gene. EAF for rs2794520 in
transethnic, AFR, AMR, and EUR groups were 30.9,
20, 35.6, and 34.3%, respectively (Table 1). As a result of
the differences in effects and ethnic EAF, we treated the
first subset of 32 SNPs as the first SAS of the CRP locus
with rs6667499 as the lead SNP and the second subset of
45 SNPs as the second SAS with rs2794520 as the lead
SNP. Within the second SAS, the variants can be further
divided into two types: positive and negative b. The
relationship between these variants were assessed by
LDpair in LDlink [43] (Supplemental Figure 5A, http://

http://links.lww.com/QAD/B884
http://links.lww.com/QAD/B884
http://links.lww.com/QAD/B884
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B884
http://links.lww.com/QAD/B883
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Fig. 4. Manhattan plots of transethnic meta-analyses results for genetic associations with three biomarkers. (a) High-sensitivity
C-reactive protein (hsCRP) levels, (b) D-dimer levels, and (c) interleukin-6 (IL-6) levels. Loci are labelled by the closest gene. Each
point represents one SNP and is plotted by chromosomal location (x-axis) and �log10(P) (y-axis). The dashed red line represents
genome-wide significance (P¼5�10�8) and single nucleotide polymorphisms (SNPs) meeting this threshold are colored red.
links.lww.com/QAD/B883). In most cases (659 out of
664), the minor allele of rs3116635(G) (lead positive b
group) commigrates with the major allele of
rs2794520(C) (lead negative b group), explaining the
opposite effect size associated with the minor alleles of the
two variants (Supplemental Figure 5A, http://links.lww.-
com/QAD/B883). An additional variant, rs12093699,
was identified as a EUR group-specific variant associated
with hsCRP levels with P¼ 2.01� 10�08 and b¼ 0.148
(Supplemental Data 1, Spreadsheet ‘CRP’, http://

http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B883
http://links.lww.com/QAD/B884
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links.lww.com/QAD/B884). This variant is located
downstream of the CRP gene and showed evidence of
heterogeneity across ethnic groups (HetPval¼
2.52� 10�06) with AFR and AMR effect sizes equal
to �0.118 and 0.037, respectively.

HNF1A intron variant, rs2393776 (P¼ 9.90� 10�10,
b¼�0.129), is the lead variant of 34 SNPs at the HNF1A
locus (Supplemental Data 1 Spreadsheet ‘HNF1A’,
http://links.lww.com/QAD/B884). EAF for transeth-
nic, AFR, AMR, and EUR groups were 38.6, 29.6, 45.4,
and 40.9%, respectively (Table 1). Like the second SAS in
the CRP locus, the HNF1A locus is made up of two sets
of SNPs with opposite effects and in most cases (606 out
of 619), the minor allele of rs11065394(G) (lead positive
b) commigrates with the major allele of rs2393776(A)
(lead negative b), explaining the difference in effect size
associated with the minor alleles of the two variants
(Supplemental Figure 5B, http://links.lww.com/QAD/
B883). Six additional variants with a positive effect were
identified within the HNF1A locus, reaching GWS in the
EUR but not the transethnic analysis. The lead variant for
this group, rs2264779 (P¼ 1.10� 10�09, b¼�0.155),
exhibited heterogeneity between the ethnicities
(HetPval¼ 1.41� 10�3) with AFR and AMR effect
sizes equal to �0.014 and �0.010, respectively (Supple-
mental Data 1 Spreadsheet ‘HNF1A’, http://links.lww.-
com/QAD/B884).

An APOE missense variant, rs429358 (P¼ 1.57� 10�22,
b¼�0.282), was the lead variant in the APOE locus of
11 identified SNPs (Supplemental Data 1, Spreadsheet
‘APOE’, http://links.lww.com/QAD/B884). No evi-
dence of heterogeneity was found across ethnicities. EAF
for transethnic, AFR, AMR, and EUR datasets were
15.4, 22.9, 12.1, and 13.1%, respectively (Table 1).

Single nucleotide polymorphisms associated with
levels of D-dimer
Twenty-one variants associated with D-dimer levels were
identified at four loci for the transethnic group:
Coagulation Factor III (F3), Coagulation factor V (F5),
Fibrinogen Beta Chain (FGB), and Glucosaminyl (N-
Acetyl) Transferase 1 (GCNT1) (Fig. 4b, Supplemental
Data 2, http://links.lww.com/QAD/B885). There was
no evidence of heterogeneity across ethnicities for any of
the lead SNPs at these loci (Table 1). Due to the small
sample size, not all loci could be identified in all ethnic
groups (Supplemental Data 2, http://links.lww.com/
QAD/B885, Supplemental Figure 3, http://links.lww.-
com/QAD/B883).

The variant, rs2022309 (P¼ 1.86� 10�13, b¼ 0.092),
upstream of the F3 gene, was the lead variant for the F3
locus of 17 SNPs. EAF for transethnic, AFR, AMR, and
EUR groups were 23.3, 8.9, 26.8, and 28.1%,
respectively (Table 1).
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The only variant within the F5 loci, rs6025
(P¼ 3.57� 10�11, b¼ 0.257), is a nonsynonymous
SNP in the F5 gene (Supplemental Data 2, http://
links.lww.com/QAD/B885). EAF for the transethnic
and EUR groups were 1.8 and 2.5%, respectively (Table
1). EAF for the AFR and AMR datasets were less than
1%. Therefore, they were not analyzed further.

A synonymous variant within the FGB gene, rs6056
(P¼ 5.61� 10�09, b¼�0.082), is the lead of two SNPs
for the FGB locus (Supplemental Data 2, http://
links.lww.com/QAD/B885). EAF of this variant in the
transethnic AFR, AMR, and EUR groups were 16.3,
8.9, 15.4, and 19.2%, respectively (Table 1).

The variant, rs4745559 (P¼ 1.89� 10�08, b¼ 0.085),
downstream of the GCNT1 gene was the only variant in
the GCNT1 locus to reach GWS with an EAF in the
transethnic, AFR, AMR, and EUR datasets of 14.6, 17.3,
20.4 and 12.8%, respectively (Supplemental Data 2,
http://links.lww.com/QAD/B885, Table 1, http://
links.lww.com/QAD/B883)

In addition to these variants identified in the transethnic
analysis, rs78474816, intronic to the Cation Channel
Sperm Associated Auxiliary Subunit Gamma (CAT-
SPERG) gene reached GWS in the AFR group
(P¼ 4.22� 10�12, b¼ 1.379) and exhibited a high level
of heterogeneity (HetPVal¼ 2.12� 10�11) across ethnic-
ities with AMR and EUR effect sizes equal to 0.185 and
�0.021, respectively (Supplemental Data 2, http://
links.lww.com/QAD/B885, Supplemental Figure 3A,
http://links.lww.com/QAD/B883).

Single nucleotide polymorphisms associated with
interleukin-6 levels
Forty variants associated with IL-6 levels were identified
within the IL6 Receptor (IL6R) locus (Fig. 4c,
Supplemental Data 3, http://links.lww.com/QAD/
B886). The lead SNP, rs4133213 (P¼ 5.84� 10�17,
b¼ 0.100), is an intronic variant in IL6R. EAF for
transethnic, AFR, AMR, and EUR groups were 39.4,
21, 58.2, and 43.6, respectively (Table 1). Additionally, a
subset of the variants (14 out of the 40), in strong linkage
disequilibrium (LD) with each other, exhibited an
opposite effect for their respective effect alleles and were
in lower LD across ethnicities as compared with the lead
and other variants within the locus. However, conditional
analysis placed all 40 variants in the same group. LDpair
revealed that in most cases (884 out of 1012), the minor
allele of rs4133213(A) (top positive b) commigrates with
the major allele of rs6427658(C) (top negative b),
explaining the opposite effect of the minor alleles for the
two variants (Supplemental Figure 5C, http://links.lww.-
com/QAD/B883). Due to the small sample size, IL6R
could not be identified in AFR and AMR groups
(Supplemental Data 3, http://links.lww.com/QAD/
B886, Supplemental Figure 4, http://links.lww.com/
QAD/B883).

In addition, rs76497186, downstream of noncoding
RNA (ncRNA), PROX1-AS1 at chr1 : 213816733,
reached GWS in the AFR group (P¼ 1.19� 10�08,
b¼ 0.823) and exhibited a high level of heterogeneity
(HetPVal¼ 1.46� 10�07) across ethnicities with AMR
and EUR effect sizes equal to 0.0311 and �0.0086,
respectively. An intronic variant in TRAPPC9,
rs28368302, reached GWS in the AMR group
(P¼ 3.43� 10�08, b¼�0.232) and also exhibited a
high level of heterogeneity (HetPVal¼ 4.32� 10�07)
across ethnicities with AFR and EUR effect sizes equal to
0.025 and 0.004, respectively (Supplemental Data 3,
http://links.lww.com/QAD/B886, Supplemental Figure
4A and B, http://links.lww.com/QAD/B883).
Discussion

In this study, multiple loci associated with hsCRP, D-
dimer and IL-6 levels have been identified in PLWH.
Data from three ethnically diverse HIV studies were
combined to increase statistical power (Fig. 1). To
mitigate the effect of confounding factors, we included
age, sex, natural log transformed CD4þ cell count, natural
log transformed viral load, BMI, smoker at baseline
(missing in ESPRIT), hepatitis B virus (HBV), hepatitis C
virus (HCV), diabetes and history of CVD as covariates in
the GWAS analyses and many of these covariates have
statistically significant effects on the biomarker levels of
interest (Supplemental Figure 6, http://links.lww.com/
QAD/B883).

A total of 183 variants within 8 loci associated with
hsCRP, D-dimer, and IL-6 levels were identified. Not
surprisingly, some lead variants in the transethnic group
also reached GWS in EUR and/or AFR groups as EUR
and AFR participants make up 66 and 25% of the total,
respectively. These variants are more significant in the
transethnic group than EUR/AFR groups in most cases
except for the first SAS in the CRP locus associated with
hsCRP level (Table 1). In addition, seven EUR group-
specific variants associated with levels of hsCRP (six
within HNF1A and one at the CRP locus), one AFR
group-specific SNP (rs78474816) associated with D-
dimer levels, as well as one AFR group-specific SNP
(rs76497186) and one AMR-specific SNP (rs28368302)
associated with IL-6 levels have been identified. All of
these identified loci and the pathways and mechanism
relevant to the regulation of biomarker levels were
summarized in Supplemental Table 2, http://links.lww.-
com/QAD/B883.

Three loci (CRP, HNF1A, and APOE) associated with
hsCRP levels in PLWH were identified. Previously, five
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loci (LEPR, IL6R, CRP, HNF1A, and APOE-CI-CII
cluster) were identified from 17 967 participants [22] and
18 loci (metabolic related: APOC1, HNF1A, LEPR,
GCKR, HNF4A, and PTPN2; immune system: CRP,
IL6R, NLRP3, IL1F10, and IRF1; chronic inflamma-
tion: PPP1R3B, SALL1, PABPC4, ASCL1, RORA, and
BCL7B) were identified from more than 80 000
participants [23] in the general population. Less loci
have been identified in this HIV study, which could be
the result of small sample size, leading to lower statistical
power. HNF1A is a transcription factor, which can bind
to the CRP promoter and the common coding variants of
the HNF1A gene have been proven to be associated with
multiple cardiovascular risk phenotypes [27,44,45].
APOE regulates CRP levels by complexing with
activated C1q [28] and APOE gene variants have been
shown to be related to coronary heart disease [46]
(Supplemental Table 2, http://links.lww.com/QAD/
B883).

In the current study, four loci (F3, F5, FGB, and
GCNT1) associated with D-dimer levels were identified
in PLWH. Previously, Smith et al. [24] reported that three
genes (F3, F5, and FGA) were associated with D-dimer
levels in healthy adults. Lange et al. [15] reported the
FGG-10034C/T variant, was associated with higher
plasma D-dimer levels in European-American adults.
Our findings are consistent with these reports and extend
them with the identification of FGB and GCNT1. FGB
belongs to the same family as FGA and FGG and they are
next to each other around 4q31.3. F3, F5, and FGB
(FGA, FGG) belong to the complement and coagulation
cascades pathway and regulate D-dimer and fibrinogen
levels [24,47–50]. Another novel locus, GCNT1, is a
member of the b-1,6-N-acetylglucosaminyltransferase
gene family and GCNT1 knockout mice have been
shown to have increased susceptibility to Mycobacterium
tuberculosis infection and the complete deficiency of
GCNT1 was associated with increased lung expression of
the neutrophil chemoattractant CXCL2 [51]. Moreover,
Notch signaling regulates Gcnt1-mediated core-2 O-
glycosylation in activated T cells and the core-2 O-
glycoform of CD43 could be a sensitive indicator of
Notch signaling [52]. Furthermore, GCNT1 expression
in prostate cancer positively correlates with cancer
progression and prostate-specific antigen recurrence
[53] (Supplemental Table 2, http://links.lww.com/
QAD/B883). In addition, rs78474816 within CAT-
SPERG was associated with D-dimer levels in the AFR
but not the transethnic group. Although this variant was
detected in a limited number of participants, it still
reached GWS because of its strong effect. Although
CATSPERG is associated with CATSPER1 channel
protein, only expressed in testis [54], seems irrelevant to
D-dimer levels, rs78474816 is also located upstream of
PSMD8 (Proteasome 26S Subunit, non-ATPase 8),
which encodes a non-ATPase subunit of the 19S
regulator. As the proteasome participates in the protein
degradation process [55] and HIV can interact with
proteasome via Tat [56–58], vif [59–62] and integrase
[63], this variant might play an important role in
regulation of D-dimer in PLWH.

Forty variants, led by rs4133213, within the IL6R locus
were associated with IL-6 levels in the transethnic group.
The variant rs4133213 has previously been identified
associated with plasma sIL-6R levels with rs2228145 as
the lead variant [64]. Interestingly, we found that variant
rs2228145 was in high LD with the lead SNP, rs4133213
(Supplemental Figure 7, http://links.lww.com/QAD/
B883) and also highly significant in our study. SNP
rs2228145 is a missense variant (p.ASP358Ala) within
IL6R. It has been reported to modulate IL-6 levels using a
total of 1979 older Chinese individuals aged 50–92 years
[25], associated with IL-6 levels and sIL-6R in both
African Americans and European Americans [65] and in a
study of 1273 participants from the InCHIANTI Italian
cohort [66]. The increased level of IL-6 could be the
result of increased levels of sIL-6R as the binding of IL-6
by sIL-6R could protect IL-6 from degradation. When
IL-6 binds to sIL-6R, it can trigger the trans-signaling
pathway, which is responsible for the pro-inflammatory
action of IL-6 [67]. Blockade of the IL6R signaling seems
to have a causal role in the development of coronary heart
disease in the general population and inhibition of IL6R is
proposed as a target for prevention of CHD [68,69]. In
addition to the IL6R locus identified in the transethnic
group, two novel ethnic-specific loci associated with IL-6
levels have been identified: one variant (rs76497186)
downstream of a ncRNA, PROX1-AS1, in the AFR
group and one intronic variant (rs28368302) within
TRAPPC9 in the AMR group. PROX1_AS1 is located
upstream of PROX1, which is a homeodomain
transcription factor expressed in various tissues during
mouse development including young neurons of the
subventricular region of the CNS, developing eye lens,
pancreas, liver, heart, and transiently in the skeletal
muscles [70]. Prox1 and vascular endothelial growth
factor receptor-3 (VEGFR-3) are two primary mediators
of lymphangiogenesis. Prox1 can be activated by NF-kB
pathway, which is induced by inflammatory stimuli.
Prox1 can then increase the expression of the VEGFR-3
in lymphatic endothelial cells, leading to the enhanced
responsiveness of preexisting lymphatic endothelium to
VEGFR-3-specific VEGF (VEGF-C and VEGF-D) [71].
TRAPPC9 has been shown to enhance the NF-kB
signaling pathway [72–74] and IL-6 gene expression can
be activated through the NF-kB transcription factor [75].
IL-6 was previously found to be correlated with blood
pressure in male individuals with essential hypertension
[76] and hypomethylation of IL-6 promoter was
associated with prehypertension in young adults [77].
Consistently, two intronic SNPs within TRAPPC9
(rs10088725 and rs6578061) were identified to be
associated with blood pressure within 750 000 trans-
ethnic subjects [78]. It is possible that TRAPPC9
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regulates blood pressure via regulation of IL-6 expression.
In addition, the variant rs11166927 in the TRAPPC9
region has also been identified to be associated with
nonalcoholic fatty liver disease in Hispanic boys [79]. This
could be caused by the effect of TRAPPC9 on IL-6 via
NF-kB.

In conclusion, multiple SNPs were associated with levels
of hsCRP, D-dimer, and IL-6 in PLWH from three
ethnically diverse studies. Most loci have been identified
in the general population. However, five novel loci have
also been found to be associated with D-dimer levels
(FGB and GCNT1 in the transethnic group, and
CATSPERG in the AFR group) and IL-6 levels
(PROX1-AS1 in the AFR group and TRAPPC9 in
the AMR group). These findings support the hypothesis
that host genetics may partially contribute to chronic
inflammation in HIVþ individuals. Given the link
between these biomarkers and serious non-AIDS
complications, further exploration of the relationship
between these 11 loci and the events may help to identify
potential targets for intervention.
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