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ABSTRACT

For B-DNA, the strong linear correlation observed
by nuclear magnetic resonance (NMR) between
the 31P chemical shifts (dP) and three recurrent
internucleotide distances demonstrates the tight
coupling between phosphate motions and helicoidal
parameters. It allows to translate dP into distance
restraints directly exploitable in structural refine-
ment. It even provides a new method for refining
DNA oligomers with restraints exclusively inferred
from dP. Combined with molecular dynamics in
explicit solvent, these restraints lead to a structural
and dynamical view of the DNA as detailed as that
obtained with conventional and more extensive
restraints. Tests with the Jun-Fos oligomer
show that this dP-based strategy can provide a
simple and straightforward method to capture
DNA properties in solution, from routine NMR
experiments on unlabeled samples.

INTRODUCTION

Nuclear magnetic resonance (NMR) is potentially the
most powerful experimental method to investigate the
structure and dynamics of macromolecules in solution.
Traditionally, interproton distances extracted from
nuclear Overhauser effect (NOE) measurements and
scalar couplings are used as distance and torsion angle
restraints in refinement. These conventional short-range
restraints are now often supplemented by long-range
information inferred from residual dipolar coupling
(RDC) measurements that require oriented labeled
molecules (1–5).

New methods using directly the chemical shifts have
recently emerged, in particular, in the protein refinement
context. These approaches were undertaken to model
proteins that cannot be studied by conventional NMR
but also to circumvent the long and tedious task to
collect and analyze the NOE data. Indeed, the chemical

shifts are particularly sensitive to the electronic environ-
ment and very accurately measured. However the diffi-
culty is to interpret and translate these experimental
observables into properties that can guide structural
refinement protocols.
Thus, 13Ca chemical shifts, sensitive to protein second-

ary structure, have been proposed to improve protein
models (6,7). Chemical shifts of Ca, Cb, Ha, Hb, HN

and C0 are collectively used to define torsion angles
(8,9). Reliable three-dimensional structures were
obtained with NOE-derived distances supplemented by
using 13Ca chemical shifts, measured and computed with
a density functional approach, as a function of all
backbone and side-chain torsional angles (10–13).
However, the quantum calculations can be quite time
consuming when applied to large molecules and simplify-
ing the level of theory could degrade the accuracy of the
resulting structures. Another approach, free of NOE
restraints and minimizing the dependence on ab initio
calculations, was recently proposed by Vendruscolo and
co-authors (14,15). In their CHESHIRE protocol, the
experimental chemical shifts are compared to an extensive
structural database for determining analogs of short
protein fragments, and predicting the most compatible
dihedral restraints; the assembly of selected fragments
from the database results in models then refined by molec-
ular mechanics in conjunction with back-calculations of
chemical shifts. Two approaches emanate from this
strategy, either employing a Monte–Carlo algorithm for
the reconstitution of the entire protein (9,16,17) or, for the
CS-ROSSETTA method, an additional Monte–Carlo
sampling coupled with an all-atom force field for the
refinement (9,17). Chemical-shift-generated structures
can be now generated via a web server (18). These
strategies applied to high-resolution refinements are still
limited to a few cases of relatively small proteins.
Nevertheless, they appear very promising and open to
further development.
With nucleic acids, the 13C chemical shifts, earlier used

to assess e angles in the deoxyribonucleotide d(TpA) (19),
enabled to determine sugar puckers and a/g exocyclic
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angles in ribo and deoxy-nucleotide units (20) and in RNA
(21). In addition, they allowed to qualitatively detect
perturbations in base-pairing and base-stacking (22)
in RNA. 1H chemical shifts associated to ab initio
calculations were proposed for helping in the sequential
assignment of resonances (23). 31P chemical shifts (dP) and
3J scalar dipolar couplings have been shown to improve
the precision in refinement of large RNA molecules, by
constraining dihedral angles (24). The dP anisotropy col-
lected on labeled nucleic acids oriented in liquid crystals
were also used to constrain the orientation of the
phosphodiester groups relative to the molecular alignment
tensor (25,26). However, it is not sure that constraining
the B-DNA phosphodiester linkages in one orientation is
pertinent, given that they are submitted to conformational
transitions, as explained below. To our knowledge, no
exploitation of chemical shifts for overall structure deter-
mination was reported for nucleic acids.
In this context, we propose a new and convenient

strategy to refine nonlabeled B-DNA oligomers exclu-
sively on the basis of their dP. In B-DNA in solution,
some phosphate groups oscillate between two confor-
mations, BI and BII (27–32). The BI$BII transition
corresponds to a crankshaft motion of the strongly
correlated torsions e and z, used to describe the
two conformations, i.e. BI (e=trans, z=g–, with
e� z=�90�) and BII (e=g�, z=trans, with
e� z=+90�) (Figure 1). These two states, initially
identified from crystallographic studies (33), were then
detected in NMR by measurements of 3JH30-P spin–spin
coupling constants and/or dP (28,34–36). Because the
e/z crankshaft motions in solution are fast (35), the dP is
a continuous function of the fraction of the BI and BII
states. Theoretical studies (37,38), statistical analysis of
X-ray structures (39,40) and recent NMR studies (41)
showed separated energy minima for BI and BII, with
transition barriers depending on the local dinucleotidic
sequence.
The BI/BII ratio, inferred from dP, is primarily con-

trolled at the dinucleotide level (29), confirming that the
propensity to undergo the BI/BII transition is sequence
dependent. Crucially, these phosphate states, the twist,
the roll and the base displacement are intimately coupled
(39,42–46). These relationships reflect the B-DNA intrin-
sic mechanics and can be captured in NMR by a marked
linear correlation between dP and three internucleotide
distances, H20i-H6/8i+1 [ds(H20)], H200i-H6/8i+1 [ds(H200)]
and H6/8i-H6/8i+1 [ds(H6/8)] (29,47) (Figure 1). These
correlations were used to translate the dP in terms of
BI/BII ratios (29). Most importantly, they also allow to
interpret dP in terms easily integrated in a structural
refinement.
This approach was incipient in our recent refinement

of the Jun-Fos DNA model system in solution, where
dP-based restraints supplemented the set of conventional
internucleotide restraints (48). This study first established
that sugar conformations and orientations of bases
compared to sugars (w angles) are correctly treated in
unrestrained molecular dynamics (MD). Therefore, they
do not necessitate to be controlled by experimental data.
The issue is to reliably manage the inter base-pair

parameters, in particular the twist and the roll, and the
BI$BII motions, which cannot yet be predicted from
unrestrained MD. However, due to the intrinsic B-DNA
mechanics, these features can be together correctly driven
by the experimental internucleotide distances (48).
Overlaps in NMR spectra yet result in conventional
restraints unevenly distributed along the sequence, with
weakly restrained dinucleotide steps that are then
predominantly under the influence of the force field.
Therefore, distance restraints inferred from dP were
added to traditional measured NOE distances, to
compose a more extensive set of ‘enhanced conventional’
restraints. Combined with MD simulations, this ‘enhanced
conventional’ approach increased the overall accuracy of
the DNA structure. The representation of the backbone
motions, poorly treated in unrestrained simulations, was
especially improved (48).

These results inspired the new dP-based method pre-
sented here. This approach uses only the dP converted
to distance restraints for the refinement of the Jun-Fos
oligomer, well characterized in terms of structure and
dynamics (29,47,48). We show that this new dP-based
strategy is as reliable as the ‘enhanced conventional’
approach described above. This opens the prospect to
probe conformational properties of nonlabeled B-DNA
from routine NMR experiments, with substantial time
savings regarding measurement time and spectral
analysis compared to the classical approach using
coupling constants and distances inferred from NOE
measurements.

MATERIALS AND METHODS

DNA sequence

The Jun-Fos oligomer double-stranded DNA has the
14-bp sequence 50-d(G1 C2 A3 T4 T5 C6 T7 G8 A9 G10

T11 C12 A13 G14)-3
0�50-d(C15 T16 G17 A18 C19 T20 C21

A22 G23 A24 A25 T26 G27 C28)-3
0. This system was

previously characterized experimentally and structurally
in details in solution (29,47,48). Thus, it was selected to
test a new method for the structural refinement of DNA
structures, which exploits NMR phosphate chemical shifts
combined with MD simulations.

Phosphate chemical shifts interpreted in terms
of distance restraints

In previous studies (29,47), the dP (Supplementary
Table S1) were found linearly correlated to the three
internucleotide distances H20i-H6/8i+1 [ds(H20)],
H200i-H6/8i+1 [ds(H200)] and H6/8i-H6/8i+1 [ds(H6/8)],
extracted from NOESY cross-peaks with particular care
regarding to spin diffusion. This relation was also
retrieved on X-ray structures (29), where the three
internucleotide distances [ds(H20)], [ds(H200)] and
[ds(H6/8)] correlated with (e� z) which represents the BI
and BII states. This ensures that no systematic NMR
biases occur in our calibration of the relation between
dP and the internucleotide distances of interest. These
distances were extrapolated from dP (referenced to phos-
phoric acid) measured for the 22 phosphate groups of the
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Jun-Fos oligomer (29), following the equations established
from the correlations:

dsðH20Þ ¼ dP=0:34þ 4:70

dsðH200Þ ¼ dP=0:47þ 3:94

dsðH6=8Þ ¼ dP=0:29þ 5:86

NMR distance restraints

MD simulations were carried out under two sets of NMR
internucleotide distance restraints termed Res_total
and Res_�P. The 50- and 30-terminal dinucleotides were
unrestrained. The 106 intranucleotide distances collected
from NOESY cross-peaks were not restrained since they
were spontaneously respected in all the MDs.

The Res_total set contained 100 internucleotide
distances (Supplementary Table S2). These distances
were used as restraints in a previous structural refinement
work (48). Among them, 82 were directly derived from
well-resolved NOESY cross-peaks (29): 48 H20i-H6/8i+1,
H200i-H6/8i+1 and H6/8i-H6/8i+1, and 34 various
distances (H10i -H6/80i+1, H10i-H40i+1, H2i-H10i+1

and H20/200i -H5i+1). This pool was supplemented
by 18 H20i -H6/8i+1, H200i -H6/8i+1 and H6/8i -H6/8i+1

distances, not directly measured but inferred from
measured distances or from the corresponding dP.
The experimental error was estimated to ±10% of the
considered distance.

The second, new, set of restraints Res_�P consisted
of 66 ds(H20), ds(H200) and ds(H6/8) internucleotide
distances (three distances per dinucleotide step, defined
earlier), all extrapolated from the corresponding dP.

To estimate the agreement between experimental
NMR (d_exp) and theoretical MD (d_theor) distances,
we calculated two descriptors of the fit between d_exp
and d_theor. First, the overall similarity, comparing the
profiles of d_exp and d_theor along the sequence, was
assessed with the correlation coefficient R (calculated by
linear regression) between d_exp and the averaged d_theor
values, for different sets of relevant distances. Second,
the average difference between d_exp and d_theor (�_d)
was calculated. In addition, we consider that an individual
distance violation occurs when the intervals d_exp±10%
(±experimental error) and d_theor±standard deviation
(±SD) do not overlap.

MD simulations

Simulations were performed using the AMBER 8 program
(49), with the Parm98 (50) force field. We previously
found (48) that restrained simulations carried out with
Parm98 led to a more realistic representation of the Jun-
Fos oligomer than Parmbsc0 (51). The Jun-Fos oligomer
in an initial AMBER standard B-DNA conformation was
neutralized with 26 Na+ ions and hydrated with 6770
TIP3P water molecules (52,53) in a truncated octahedron.
Simulations were performed with periodic boundary
conditions at constant temperature (300K) and pressure
(1 bar) using the Berendsen algorithm (54). The integra-
tion time-step was 2 fs and covalent bonds involving

hydrogens were restrained using SHAKE (55). Long-
range electrostatic interactions were treated using the
particle mesh Ewald (PME) approach (56) with a 9-Å
direct space cut-off. The Lennard-Jones interactions
were cut off at a distance of 9 Å. The non-bonded pair-
list was updated heuristically and the center-of-mass
motion removed every 10 ps.
The water molecules and counterions were energy-

minimized and equilibrated at 100K around the fixed
DNA for 100 ps in the NVT (at constant volume and
temperature) ensemble; the entire system was then
heated from 100 to 300K in 10 ps by 5-K increments
with harmonic positional restraints on the solute atoms
(force-constant of 5.0 kcal/mol/Å2). The simulation was
continued in NPT (at constant pressure and temperature).
The positional restraints were gradually removed over
250 ps and followed by 1 ns of unrestrained simulations
for further equilibration.
The free MD of 1 ns yielded the starting point for the

other, restrained, MD protocols. These restrained MDs
were run in presence of NMR distance restraints described
above, i.e. either Res_total (MD_ref) or Res_�P (MD_dP),
for 15 ns (MD_ref) or 35 ns (MD_dP). These restraints
were applied either instantaneously (MD_dP) or in
time-averaged manner (MD_ref), via a mixed parabolic
(for d_exp - 10%) and hyperbolic (for d_exp+10%)
potential around a central flat-bottomed well covering
the experimental range of the distances, including
experimental errors (d_exp±10%). The time-averaged
restraints on property R were applied with the following
equation:

R¼ ð1=CÞf

Z
exp½ðt� tÞ=��rðt0Þ�idt0g�1=i

where t is the current time, r(t0) the internal coordinate at
time t0 and C a normalization factor. The damping
constant � was set to 10 ps and, following previous tests
(48), the best results were for i=1 used here. For the
flat-bottomed harmonic potential, force constants of
5 (MD_ref and MD_dP) and 10 kcal/mol/Å2 (MD_dP),
were tested.
Convergence of the MDs with respect to the DNA

structure was achieved. The root mean square deviation
(RMSD) between snapshots and either the starting or
the average structures were very stable after 1 ns of
the restrained simulations. Statistics for the DNA
descriptors (sugar and backbone conformations and
inter-base pair parameters) give virtually identical results
when they are extracted from different 10-ns blocks of
the trajectories. Such analysis on MD_dP trajectory
extended to 35 ns confirms that 15 ns are sufficient to
reach convergence.

Crystallographic data

The crystal structures used in section ‘Test 3: coupling
between backbone states and helical parameters’ and
Figure 3 were comprised of 19 B-DNA oligomers with a
resolution �2Å (PDB codes: 431D, 436D, 460D, 461D,
463D, 476D, 1D8G, 1DPN, 1EN3, 1EN8, 1EN9, 1ENE,
1ENN, 1EI4, 1FQ2, 5DNB, 1D23, 1D49 and 355D).
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Structural descriptors

DNA structures and helicoidal parameters were analyzed
with the Curves 6.1 algorithm (57,58), following
the Cambridge convention (59). To avoid end effects,
only the 12 central base-pairs (11 dinucleotides) were
analyzed. The first nanosecond of each MD with NMR
restraints was discarded.

RESULTS

Overview of the restraint sets and simulations

To present the different restraint sets pertaining to the
present work, we summarize the experimental data
obtained from our previous NMR study of the Jun-Fos
oligomer (29). For the 11 central dinucleotides, the NMR
spectra enabled to extract 106 intranucleotide distances,
82 internucleotide distances from NOE cross-peaks,
97 torsion angles from 3JH10-H20,

3JH30-P,
3JH50-P,

3JH50 0-P

and 3JH40-P scalar dipolar couplings, and all the BI/BII
ratio from dP. 18 additional internucleotide distances
were extrapolated from dP. The intranucleotide distances
are sensitive to the w torsions and to the sugar confor-
mations, and the 3JH10-H2’0,

3JH50-P,
3JH50 0-P and 3JH40-P

scalar dipolar couplings, reflect the sugar conformations
and the backbone angles b and g. These intranucleotide
distances do not vary significantly within a B-DNA devoid
of disrupting features such as mismatches. Indeed, all of
these observables were spontaneously respected in all the
MDs carried out on the Jun-Fos oligomer (29,47,48),
comprising unrestrained MDs (48). In contrast, neither
the experimental internucleotide distances [mainly sensi-
tive to the twist-and-roll parameters (60)], nor the exper-
imental BI/BII ratios could be reproduced in unrestrained
MD (48). Thus, they must be restrained during any refine-
ment. 3JH30-P values could be expressed in terms of e angle
restraints; however, it would not allow for the dynamics
nature of the BI$BII equilibrium. Still, due to the tight
relationship between backbone motions and inter-base-
pair parameters, the internucleotide distance restraints
enable to indirectly control the BI/BII ratios, twist, roll
and base displacement (48). In other words, the restraints

crucial for B-oligomer refinement in general are the
internucleotide distances.

Here, two set of restraints were used, Res_total and
Res_�P. Res_total included a total of 100 internucleotide
distance restraints (Supplementary Table S2), mainly of a
conventional type, i.e. directly derived from NOESY
cross-peaks (‘NOE distances’ hereafter). These experimen-
tal data correspond to 4.6 distances per dinucleotide step
on average and represent �67% of all theoretically
possible internucleotide distances that could be routinely
observed in the Jun-Fos oligomer. Restraints set Res_�P
contained three types of internucleotide distances
(Figure 1), ds(H20), ds(H200) and ds(H6/8), all inferred
(‘Materials and Methods’ section) from the 22 dP
previously measured (29); so the set Res_�P contains 66
(3� 22) restraints. In Res_total, 48 of these distances
were obtained from NOEs, and were compared to their
counterpart in Res_�P inferred from dP. The distances
derived from NOEs and dP differ by only 0.3 Å on
average, present similar profiles along the sequence
(Supplementary Figure S1), and are closely correlated
(correlation coefficient of 0.92, slope of regression line of
0.9). Thus, Res_�P is congruent with Res_total.

The reference refinement (MD_ref) relied on a protocol
that has already been shown to yield a detailed dynamical
structure of the Jun-Fos oligomer in solution (48).
MD_ref used Res_total time-averaged restraints because
such restraints were slightly more realistic than when
applied instantaneously (48). The dP-based protocol
using Res_�P was tested with four variant simulations,
presented in Supplementary Table S3. The best fit
between experimental and simulated data was obtained
with Res_�P distances applied instantaneously with a
force constant of 10 kcal/mol/Å2 for the parabolic poten-
tial (Supplementary Tables S4 and S5). This refinement,
called MD_dP, is thus compared to MD_ref, the main
objective being to assess if the new dP-based method
(MD_dP) performs as well as the ‘enhanced conventional’
approach (MD_ref).

In each MD, the average RMSD between the snapshots
and canonical B and A-DNA were <2.9 Å and >5.3 Å,
respectively. These RMSD values show that the overall

Figure 1. Illustration of the internucleotide distances ds(H20), ds(H20 0) and ds(H6/8) inferred from dP values. These distances depend on the phos-
phate linkage conformations, BI (left) or BII (right), as shown with a CpA dinucleotide. The black lines depict the internucleotide distances between
H8 of the adenine (red) and H20/H20 0 (green) or H6 (red) of the cytosine.
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simulated structures were stable in the B form, consistent
with the NMR data.

Test 1: backbone conformation and directly coupled
distances

This section compares the distances modeled in
simulations MD_dP to their NOE counterparts, used in
MD_ref. MD_ref is thus also used for comparison to
MD_dP. It is then natural to extend this comparison to
the related BI/BII populations, between MD_dP, MD_ref
and their experimental references.
The 48 NOE distances ds(H20), ds(H200) and ds(H6/8)

are well reproduced in MD_dP (Table 1). This satisfying
correspondence is illustrated in Figure 2 that compares the
experimental and simulated ds(H20), ds(H200) and ds(H6/
8) for MD_ref and MD_dP. Introducing the distances
ds(H20), ds(H200) and ds(H6/8) as restraints acts on
the backbone behavior, i.e. the BI$BII equilibrium
(Figure 1) (48). The dP, collected for all the Jun-Fos
oligomer phosphate groups, reflect the diversity of local
flexibilities along this B-DNA sequence, from 0 (dP of –
0.70) to 85% (dP of 0.00) of BII conformers
(Supplementary Table S1 and Figure S2). These NMR

Figure 2. Plots of simulated versus measured distances and BII populations. Measured internucleotide distances (Å) and BII populations (in percent)
in the Jun-Fos oligomer were extracted from NOESY cross-peaks and from dP, respectively. These observables are compared to their simulated
counterpart, whether obtained with a conventional refinement protocol (MD_ref) or with the new dP-based method (MD_dP). The NOE distances
are divided into a group restrained in all MDs [ds(H20), ds(H20 0) and ds(H6/8)] (leftmost panels) and the ‘Other’ distances restrained in MD_ref but
not in MD_dP (middle panels). In ‘Other’ distances, H2i-H10i+1 and H20/20 0i-H5i+1 correspond to symbols �, and H10i-H6/8i+1 and H10i-H40 i+1 to
symbols«.

Table 1. NMR experimental observables compared to their simulated

counterpart

MD_ref MD_dP

ds(H20) ds(H20 0) ds(H6/8) R 0.90 0.93
�_d 0.3 0.3

‘Other’ distances R 0.75 0.56
�_d 0.35 0.5

BII percentage R 0.70 0.93
RMSD 21 15

Experimental NMR observables for the Jun-Fos oligomer include
internucleotide distances measured from NOE spectra and the percent-
age of BII conformation for every phosphate. These observables
are compared to their simulated counterpart, whether obtained with a
conventional refinement protocol (MD_ref) or with the dP-based
method (MD_dP). The NOE distances are divided into a group of
distances restrained in the two MDs [ds(H20), ds(H20 0) and ds(H6/8)]
and the distances (‘Other’ distances) restrained in MD_ref but not in
MD_dP. The correlation coefficients (R) and the average differences
(�_d in Å) between NMR and simulated distances are given for each
distance category, across MDs. The RMSD between the experimental
and simulated BII percentages was calculated as: RMSD=
[�(%BIItheo – %BIIexp)

2 /N]½, with N=22, number of phosphate.
The best and worst values of the RMSD would be 0 and 100,
respectively.
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data show that the steps conductive to BII are TpG
(26–52% of BII), their complementary CpA (69–85%
BII) and GpA (32–52% BII), all located in the TGA
stretches of the Jun-Fos oligomer (29,47). The other phos-
phate groups of the oligomer remain essentially trapped in
BI. Besides, unusual a/g conformations are observed
neither in NMR (29) nor in the present simulations,
suggesting that the corresponding force-field artifact
(29,51,61,62) may be circumvented under restraints.
The experimental BI/BII percentages are especially
well retrieved in MD_dP (Table 1, Figure 2 and
Supplementary Figure S2). This proper representation of
the backbone motions is clearly the result of the well-
respected restraints Res_�P having a desirable impact, as
unrestrained MDs performed poorly in the same compar-
ison with experiment (48).

Test 2: distances not explicitly restrained in MD_dP

We now compare to experiment (when available) the
distances unrestrained in the MD_dP refinement, which
is crucial to validate the dP-based approach. Indeed, it is
of great interest to see if Res_ �P is enough to maintain all
aspects of the DNA structure within the experimental
regime.
The global characteristics of the B-DNA form (w angle

and predominance of south sugar conformations) are well
respected in unrestrained MD (48). Moreover, the
simulated intranucleotide distances, sensitive to these
parameters, are highly correlated to the corresponding
106 distances extracted from NOESY cross-peaks (corre-
lation coefficients 	 0.9) in MD_ref and MD_dP.
Therefore, the intranucleotide distances are properly
treated by the force field alone in absence of restraints.
We now turn to the 34 internucleotide NOE distances

restrained in MD_ref but not in MD_dP. Most of them
were not spontaneously respected in the unrestrained MD
(48). In Table 1 and Figure 2 these distances are in the
category ‘Other’ distances.
In MD_dP, these unrestrained distances are reasonably

close to experiment (Table 2, Figure 2). Some of these
distances are characteristic of adenines (H2i-H10i+1) and
cytosines (H20/200i-H5i+1). The analysis of very-high-
resolution X-ray DNA structures reveals that these
distances are in fact coupled with ds(H20), ds(H200) and
ds(H6/8) (correlation coefficients of 0.8–0.9) and thus
respond indirectly to the restraints in MD_dP. The
distances H10i-H6/8i+1 and H10i-H40i+1 are sensitive to
the conformations of two successive sugars (60). In all
the simulations the unrestrained sugars were mainly in
south, with south percentages higher for purines (>90%)
than pyrimidines (>70%), in agreement with NMR
(25,29,63,64). This concordance is sufficient to avoid
severe violations on H10i-H6/8i+1 and H10i-H40i+1 in
MD_dP. However, the correlation between experimental
and simulated distances is better in MD_ref than in
MD_dP (Table 1). Yet, this does not degrade the repre-
sentation of the helicoidal parameters in MD_dP, as
examined in the next section.

Test 3: coupling between backbone states and helical
parameters

A common method to check the reliability of simulated
DNA structures is to compare their average inter-base
helical parameters values with those extracted from
X-ray structures. A more detailed approach is to analyze
whether the simulations satisfactorily reproduced the well-
documented couplings between the helical parameters,
twist, roll and base displacement (X-disp), and the
backbone BI/BII states (29,39,42,45,46,48,65).

The average values of the roll and twist were extracted
for the three possible combinations BI�BI, BI�BII and
BII�BII encountered on complementary dinucleotides,
from the MD snapshots and from a set of high-resolution
X-ray structures of free B-DNA. We focus on CpA�TpG
steps because they populate the three different facing
phosphate combinations. Overall, the MD models reflect
the general trend observed in X-ray structures: in both
MD_ref and MD_dP, the greater the BII character of
facing phosphates in a complementary dinucleotide, the
higher the twist and the more negative the roll (Figure 3).

In addition, several proximal phosphates in BII are typ-
ically accompanied by a displacement of bases towards the
major groove (more positive X-disp) that propagates to
neighboring bases to maintain sufficient stacking (37,46).
Therefore, the global X-disp values are sensitive to the
density of BII steps, i.e. the fraction of phosphates
observed simultaneously in BII. In high-resolution X-ray
structures the global X-disp of a purely BI oligomer is
�1.4 Å, but it is null or positive with more than 25% of
BII steps. These trends are equally well represented in
MD_ref and MD_dP, with X-disp of �1.7 Å for a pure
BI configuration and X-disp of �0.6 with 32% of BII
phosphates (7 BII and 15 BI), for both MD_ref and
MD_dP.

In sum, the MD_dP protocol represents correctly the
intrinsic mechanical couplings of B-DNA, providing a
sound basis to address the conformational dynamics
of the Jun-Fos oligomer.

Test 4: the dynamical structure of the Jun-Fos oligomer

Arguably, the most stringent test of the dP-based method
is whether it yields the overall correct structural dynamics
of DNA in solution. Having a precise representation of

Table 2. Conformational families for the Jun-Fos oligomer

Conformational
family

BI/BII
configurations

NMR MD_ref MD_dP

1 TpGpA ApCpT �15 33 2
2 TpGpA ApCpT 28 3
3 TpGpA ApCpT �15 16 16
4 TpGpA ApCpT 33–48 14 56
5 TpGpA ApCpT 37 5 20

The five conformational families of the Jun-Fos oligomer and their
populations (percentage) were previously deduced from NMR (48).
The phosphate configurations (BII in bold italic) observed on the
TpGpA regions are a distinctive feature of each family (48). For
MD_ref and MD_dP, the population of each family is compared
with the experimental populations.
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backbone behavior makes it possible to identify distinct
conformational families. Indeed, some simple guiding
rules have emerged about the DNA backbone dynamics,
from theoretical (42,66), X-ray (39,42) and NMR (48,63)
studies. Thus, two phosphates adjacent on a strand do not
stay in BII simultaneously. Instead, phosphates facing
each other on opposing strands tend to populate BII
simultaneously. In the Jun-Fos oligomer, these rules
applied to the central BII-rich stretch TpGpA�TpCpA
enabled to identify five families (48). These families and
their individual populations assessed from the NMR data
are reported in Table 2.

MD_ref could retrieve these five families but not
their experimental populations (48) (Table 2). MD_dP
also identified the five main conformational families
(Table 2). In addition, their populations compared well
to the NMR estimates (Table 2), consistent with the
very good agreement between measured and simulated
BII percentages (Figure 2, Table 1). However, this appar-
ently better representation of the populations by MD_dP
may be fortuitous, and more tests with other systems will
be needed to address this question more robustly.

Sorting the snapshots into families on the basis of
their BI/BII combinations enables to calculate average
structures for each family without generating ‘virtual
conformers’ with distorted torsions. These average
structures can thus be used to characterize each structural
family, that, taken together, illustrate the conformational
space explored by the oligomer.

The five families generated by MD_dP are very close to
those from MD_ref. The mean RMSD between the
average family structures from MD_dP and MD_ref is
0.7±0.3 Å. Indeed, the previously described structural
characteristics of the Jun-Fos oligomer in solution (48)
are all retrieved by MD_dP. Thus, the twist-and-
roll profiles along the Jun-Fos sequence for each
conformational family show that the BI$ BII exchanges
impart a highly variable structure to the T5-A9 region, in
both MD_dP and MD_ref (Figure 4). Family 5 is

especially distinctive, with undulating roll and twist
profiles. In addition, the five structural categories
present significant differences in groove dimensions, via
the BI/BII effect on X-disp (see above and
Supplementary Figure S3). For example, in family 5 the
two BII phosphates in TGA impart to the DNA a deep
and rather narrow minor groove and a shallow and wide
major groove, compared to family 2 (no BII in TGA).
That MD_dP captures the helicoidal features in each

family as well as MD_ref is an important point, as there
is evidence that the structural characteristics of family
5 parallel those of the DNA bound to the Jun-Fos tran-
scription factor (48).

DISCUSSION

The main objective of this work is to propose a new
method for refining DNA structure in solution with
NMR dP as the sole experimental input, combined with
MD simulation techniques. The Jun-Fos oligomer is an
appropriate system to test the new method, as much infor-
mation has accumulated about its structure and dynamics
in solution (29,47,48). The Jun-Fos structure in solution
cannot be obtained directly from unrestrained MD
simulations with current force-field limitations (48), and
appropriate experimental input is required.
At its core, this new dP-based method simply relies

on the strong linear correlations in B-DNA between dP
and the internucleotide distances ds(H20), ds(H200) and
ds(H6/8) (29,47). These correlations allow to translate
any dP in terms of three distance restraints, following
simple equations previously established (29) (reiterated
in ‘Materials and Methods’ section).
Having constituted a set of restraints exclusively

inferred from dP, we showed that all the distances
extracted from the corresponding MD_dP refinement
reproduced well the experimental data. Cross-correlations
between restrained and unrestrained distances, together
with the adequate treatment of the generic B-DNA
features by the force field, largely explain why the
dP-based method yields a good agreement between
measured and simulated DNA distances. In addition,
MD_dP correctly represents the BI/BII backbone states,
accounts for the DNA intrinsic mechanics, i.e. the
relationships between BI/BII ratio and the helicoidal
parameters (twist, roll, base displacement) and allows
the characterization of the Jun-Fos conformational
families in solution. In sum, compared to the reference
conventional refinement, the dP-based refinement can
generate credible representations of DNA structure and
dynamics in solution.
The dP-based method does not require labeled DNA

or NOE measurements. Furthermore, it circumvents
imprecisions in distances restraints inferred from NOEs,
which can be introduced via spin diffusion and require
very careful treatment of data. One limitation concerns
the problem of repeated or large (>20 bp) sequences
generating considerable overlaps and/or anisotropic
overall motions that prevent the assignment of all the
31P and 1H resonances. This restriction is not particular

Figure 3. Impact of the conformation of facing phosphate groups on
key helical descriptors. The average values of twist (�) and roll (�) of
the Jun-Fos oligomer TpG�CpA steps are plotted as a function of the
three possible conformational combinations of facing phosphates,
BI�BI, BI�BII and BII�BII. The data were extracted from a set of
high-resolution X-ray structures (green), from MD_ref (blue) and
MD_dP (black).
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Figure 4. Structure and dynamics of the Jun-Fos oligomer in terms of conformational families. Conformational families 1–5 (from top to bottom,
defined in Table 2) are characterized in terms of twist and roll profiles along the oligomer sequence. Twist (�) and roll (�) average values were
extracted from MD_ref (blue) and MD_dP (black). The standard deviations of twists and rolls are 5�. The DNA sequence is represented by its first
strand in the X-axis, but both strands were included in the calculations.
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to the dP-based method, and these DNAs require specific
labeling and RDC measurements in oriented medium to
be reliably refined (3).

To our knowledge, the dP-based method demonstrates
for the first time how to exploit chemical shifts as the main
experimental basis to refine B-DNA structures. This is an
alternative to the classical method based on numerous
NOE measurements. The chemical shifts are generally
available at the early stage of an NMR structure determi-
nation, before the collection and analysis of NOE cross-
peaks. It would be desirable to further probe if the data
extracted from well-resolved spectra on nonlabeled
oligomers can describe the subtle features of B-oligomers
by comparing our results to additional RDC data using
labeled samples. In particular, the DNA curvature, very
difficult to evaluate even with RDC, should be carefully
checked. Nevertheless, at the present stage, the dP-based
method is simpler than a conventional approach, and
offers substantial time savings in terms of experimental
measurements and data treatments. This could signi-
ficantly increase the throughput of the structural charac-
terization of DNA sequences for systematic structural
biology analyses, for instance the study of protein target
sites and their mutants that are typically B-DNA of
10–15 bp. This is indeed a pressing need, considering the
vast amount of sequences now available for biological
interpretation.
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