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Focus-Induced Photoresponse: a 
novel way to measure distances 
with photodetectors
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We present the Focus-Induced Photoresponse (FIP) technique, a novel approach to optical distance 
measurement. It takes advantage of a universally-observed phenomenon in photodetector devices, an 
irradiance-dependent responsivity. This means that the output from a sensor is not only dependent on 
the total flux of incident photons, but also on the size of the area in which they fall. If probe light from 
an object is cast on the detector through a lens, the sensor response depends on how far in or out of 
focus the object is. We call this the FIP effect. Here we demonstrate how to use the FIP effect to measure 
the distance to that object. We show that the FIP technique works with different sensor types and 
materials, as well as visible and near infrared light. The FIP technique operates on a working principle, 
which is fundamentally different from all established distance measurement methods and hence offers 
a way to overcome some of their limitations. FIP enables fast optical distance measurements with a 
simple single-pixel detector layout and minimal computational power. It allows for measurements that 
are robust to ambient light even outside the wavelength range accessible with silicon.

Optical distance measurement is already key to diverse applications throughout a wide range of industries. In the 
coming years, it is expected to gain even more importance due to the emergence of disruptive technologies such 
as machine vision and autonomous driving. These technologies have the power to revolutionize the world around 
us. However, in order to do so, further advances in optical depth sensing are required1,2.

Here we introduce Focus-Induced Photoresponse (FIP), a novel method to measure distances. In a FIP-based 
system, distance is determined directly from the analog photoresponse of a single pixel photodetector. The 
requirement for photodetectors to be used in the FIP technique is that their responsivity is dependent on irradi-
ance, the incident radiant power per illuminated area. Consequently, if light is focused by a lens on a small part of 
the detector, its photoresponse can be distinguished from a situation when the same amount of light is spread over 
a larger part of the detector area. We call this the FIP effect and use it to measure distance (Fig. 1).

This working principle is fundamentally different from any established technique such as time-of-flight (ToF), 
triangulation or image-based depth sensing methods. FIP constitutes a disruptive innovation in distance meas-
urement. It hence offers a variety of new ways to overcome intrinsic limitations of state-of-the-art techniques, 
thereby addressing critical challenges in the field of distance measurement.

FIP is a monocular technique, hence distance determination is possible from a single point of view. This makes 
the baseline calibration needed for triangulation methods unnecessary. The positions of the light source and the 
sensor become independent of each other. It also avoids the computationally costly solution of the correspond-
ence problem, which is essential for stereo vision.

The FIP technique does not require taking images. Avoiding the time-consuming readout and processing of 
image data, FIP enables fast distance measurements. Its resolution is not limited by pixel size. The analog nature 
of the signal allows modulation of the light source, increasing the robustness of FIP to ambient light and direct 
sunlight (see Supplementary Information S1).

Methods like time-of-flight (ToF) and image-based depth sensing rely on advanced manufacturing techniques 
such as highly developed lithography processes and CMOS technologies3. FIP detectors, on the other hand, are 
always single-pixel devices. This makes the adaptation of other materials than silicon to the manufacturing 
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processes technically and economically attractive. Absorber with improved sensitivity in the IR regime offer sig-
nificant advantages in terms of eye safety4, night vision, and visibility in foggy conditions or through smoke5.

Irradiance-Dependent Responsivity of Photodetectors
Irradiance-dependence is a universal phenomenon among photodetector technologies operating from the UV 
to the IR regime, making them suitable for the FIP technique6–8. The responsivity can change at low or high 
irradiance levels, depending on the detector. Such phenomena are observed as nonlinear relations between meas-
ured photocurrent and incident radiant power. A nonlinear photoresponse at low irradiance levels has been 
reported for many thin-film solar cell technologies. Trapping of charge carriers as well as photoconductivity 
have been identified to decrease the responsivity at low light levels9,10. One such example is dye-sensitized solar 
cells (DSSC)11–13. In this paper, we measure the FIP effect in solid-state DSSC and demonstrate how to use it for 
distance determination. Time-resolved photocurrent experiments reveal the difference in performance when the 
same amount of light is in or out-of-focus on the solar cell.

On the other hand, high light intensities exceeding 1 sun can reduce the current collection in solar cells, 
decreasing the conversion efficiency of these devices at high irradiances6,14. The reduced photovoltaic perfor-
mance has been attributed to a change in recombination mechanisms and a change in series resistance with irra-
diance14. In organic solar cells, recombination has been found to depend on the charge carrier concentration15–17.

In addition to photodiodes, also photoconductors show an irradiance-dependent responsivity. Using an 
experimental setup similar to that of the FIP technique, a reduced photoresponse in PbS and HgCdTe photocon-
ductors has been reported when only a small area of the device receives high-intensity illumination7,8,18. In this 
publication, we show that photoconductors can be used as FIP detectors. We demonstrate the FIP effect on PbS 
photoconductors using 1,550 nm illumination, making use of their ability to absorb wavelengths deeper in the 
IR than the absorption spectrum of silicon. The responsivity of PbS is demonstrated to reduce when the same 
amount of light is focused on a smaller part of the detector area. We model the partially illuminated photocon-
ductors as a network of light-dependent resistors. We show that even when the photoresponse of a photoconduc-
tor depends linearly on irradiance, a FIP effect is observed when the active area is only partly illuminated.

Results
The FIP effect in dye-sensitized solar cells (DSSC).  In DSSC, the dependence of photovoltaic perfor-
mance on light intensity is published in detail11–13. A reduced conversion efficiency is reported for low intensities 
of modulated light. DSSC contain a mesoporous (mp) TiO2 layer sensitized with dye molecules. mp-TiO2 acts as 
the electron transporting material, and its pores are filled with a hole transporter. In the experiments presented 
below, the hole transporting layer is made of a solid film of the organic material spiro-MeOTAD19; the device is 
hence referred to as a solid-state DSSC (sDSSC). Charge transport in the mp-TiO2 structure is strongly impeded 
by localized states in the band gap. These traps are occupied by photogenerated electrons which can be ther-
mally de-trapped to the conduction band, where they are mobile. The trapping/de-trapping model20 explains the 
experimental finding that the electron diffusion coefficient in the mp-TiO2 increases with the electron concentra-
tion11,12,21,22. A higher density of absorbed photons increases the Fermi level and more electrons are de-trapped 
leading to faster electron transport.

Figure 1.  A typical setup for measuring distances with the FIP technique. For a given distance of the light 
source to the lens, the size of the light spot on the detector and therefore its irradiance depends on the position 
of the sensor behind the lens. The photocurrent of the sensor depends on the irradiance, yielding its maximum 
when the LED light is in focus on its active area.
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The effect can be seen in the photocurrent transients shown in Fig. 2a. The sDSSC sample was illuminated 
through a lens by a square wave modulated 530 nm LED. While the distance between the LED and the lens 
was kept constant, the spot area was varied between 0.01 mm2 and 19 mm2 by moving the solar cell along the 
optical axis around the focused image plane. Assuming a uniform light distribution, this corresponds to irra-
diances between 25–6,000 W/m2 (for details about the spot size and irradiance calculations, see Supplementary 
Informations S2 and S3). We observe that increasing the irradiance strongly shortens the rise time of the photo-
current. At the two highest irradiance levels shown in Fig. 2a, the identical equilibrium photocurrent is reached 

Figure 2.  Irradiance-dependent responsivity of sDSSC. (a) Transient photocurrent response of a sDSSC to 
pulsed illumination through a lens. The position of the device on the optical axis is varied, hence the same 
incident radiant power is distributed over different surface areas. The relative variation of the light spot sizes is 
illustrated by the circles. (b) Responsivity of a sDSSC as a function of the irradiance for different modulation 
frequencies. The scatter points assume uniform illumination of the light spot. The solid lines are based on a ray-
tracing model.

Figure 3.  Distance measurement with sDSSC. (a,b) Responsivity of the first (a) and second (b) sDSSC sensor 
for a range of positions behind the lens at various LED distances. The second sensor is illuminated through the 
first one. (c) The absolute photocurrent of both sensors and the radiant power on the first sensor as a function of 
LED distance. (d) The quotient of the photocurrents as a function of LED distance.
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within the pulse period and both currents reduce to zero within the dark period. All measured transients at lower 
irradiance levels are already too slow to reach equilibrium or decay to zero within the pulse duration. We inter-
pret this behavior as a direct consequence of the reported increase of the diffusion coefficient of the electrons in 
mp-TiO2 with irradiance.

Figure 2b shows the responsivity of the sDSSC as a function of the irradiance at modulation frequencies 
between 75 Hz and 975 Hz. Irradiances between 10 and 10,000 W/m2 were covered by moving the sDSSC behind 
the lens in 0.1 mm steps and thereby changing the size of the image on the sensor. The scatter points represent 
the photocurrent densities measured at each position. As in Fig. 2a, the areas of the light spots were calculated 
with paraxial optics and assumed to be uniformly illuminated (see Supplementary Information S2). To test the 
validity of this assumption, we also obtained beam profiles by ray-tracing and used a segmentation approach 
to parametrize the photocurrent densities as a function of the irradiance. The model is described in detail in 
Supplementary Information S4. The resulting responsivities are plotted as lines in Fig. 2b. We find good agree-
ment between the modeled responsivity and the experimental data, which assumes uniformly illuminated light 
spots. The deviation of the responsivity from the plateau observed at high irradiance levels increases with modu-
lation frequency. The alternating photocurrent induced by a modulated light source can thus be larger at higher 
photon densities even though the total amount of light on the sample stays constant: the solar cell works more 
efficiently at high irradiance. This is the signature of the FIP effect in sDSSC.

Figure 4.  Distance measurement with PbS. (a) Responsivity of a PbS photoconductor for a range of positions 
behind the lens at various LED distances. The device is modeled as a network of infinitesimally small 
photoconductors each showing a linear response to irradiance. The lines represent best fits to the experimental 
data. (b) The quotient of the photoresponse of the PbS device at 40.4 mm and at 45 mm as a function of LED 
distance. (c) detail of the quotient curve with an indication of a corridor of ±0.1% of the distance to illustrate 
the obtained resolution.
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Measuring distances with the FIP technique.  In the following, we demonstrate how the FIP effect can 
be utilized for distance measurements with a setup schematically depicted in Fig. 1. Its components are a mod-
ulated LED (or any light source that either actively emits or reflects light), a consumer grade camera lens (or 
any optical element that captures the light and focuses it), two photodetectors, and a signal processing unit. The 
lens collects and focuses the light of the LED. The semitransparent sensors are placed behind the lens near its 
focal plane. The modulated light of the LED generates an alternating photoresponse, which is then amplified and 
recorded using lock-in or Fourier transform techniques. The spot size on the sensor changes with the distance 
between the light source and the lens as the position of the focused image plane shifts. The active area must there-
fore be large enough to accommodate the maximum spot size within the desired measurement range.

There are two main contributions to the sensor output. The first is due to the FIP effect: when the modulated 
light source is positioned at a certain distance from the lens, the measured photocurrent depends of the irradiance 
on the sensor, i.e. how well the light is focused. The strong focusing of the light can change the size of the light 
spot and thus the irradiance on the sensor for several orders of magnitude, which leads to an appreciable change 
in responsivity of the irradiance-dependent sensor. Secondly, the photocurrent is impacted by the total amount of 
light collected by the lens. When the LED is moved away from the lens, this contribution decreases. If the radiant 
power of the light source is unknown, the photoresponse of a single detector at any given position behind the lens 
does not allow for an unambiguous distance determination. Whether the LED is distant and bright or close and 
dim cannot be distinguished. To solve this problem, we use two detectors in the beam path, see below. By calcu-
lating the ratio of the two photoresponses, the distance dependence as well as fluctuations in the output of the 
light source cancel out. Due to the FIP effect, the quotient changes with the distance, yielding a unique signature 
for each LED position.

Demonstrating the FIP technique with sDSSC.  We have realized such a setup by using two semitrans-
parent sDSSC as sensors and a modulated green LED. The results are summarized in Fig. 3. Figure 3a and b show 
the responsivities of both sDSSC as a function of their position behind the lens. The responsivity was calculated 
by normalizing the short circuit current to the total radiant power incident on the device. The sensor closer to the 
lens is referred to as the first sensor, and the one further from the lens as the second sensor. Due to the FIP effect, 
the maximum photocurrent is recorded when the sensor is positioned in the focused image plane. In this case, the 
LED light is focused on the sensor. A reduction in the current is observed as the light spot widens symmetrically. 
With increasing LED distance, the focused image plane moves towards the focal plane of the lens, leading to a 
shift of the photocurrent peaks. As shown in Fig. 3a and b, we observe that the responsivity curves intersect at the 
focal plane of the lens. In this point, the irradiance in the light spot is independent of the LED distance (for the 
derivation, see Supplementary Information Section S5). This observation is consistent with our assumption that 
the FIP effect is induced by the irradiance-dependent sensor responsivity.

The positions of the sensors in the beam path may be adjusted to the specific measurement problem. In the 
presented case, we measure distances in the range between 20 cm and 1.8 m (Fig. 3c and d). The first sensor is 
positioned 33.3 mm behind the lens, between the lens and its focal plane. The second sensor is placed 37.6 mm 
behind the lens, between the focal plane and the closest responsivity maximum. With increasing LED distance, 
the responsivity of the first sensor decreases, while it increases for the second sensor. Therefore, a large change in 
the ratio of their photocurrents is achieved over the measurement range. The absolute photocurrents of both sen-
sors as well as the incident radiant power are plotted in Fig. 3c. The photocurrents are dominated by the inverse 
dependence of the radiant power on LED distance. The non-equilibrium photocurrents deviate from linearity. 
This behavior is visible as a difference in slopes. The resulting quotient of the photocurrents increases mono-
tonically over the entire measurement range (Fig. 3d), assigning a single value to each object distance. With this 
calibration curve, the LED distance can be directly determined by simply measuring the individual photocurrents 
of both cells and calculating their ratio.

The FIP effect in PbS photoconductors.  As described above, the reduced responsivity observed in DSSC 
at low irradiance and sufficiently large frequencies causes a maximum photoresponse when the device is placed 
in the focused image plane. In this situation, the irradiance and consequently the responsivity of the device are 
maximized. For other thin-film solar cell and photoconductor technologies, a reduced photoresponse has been 
reported when only a small area of the device receives high intensity illumination6–8. Due to the resulting non-
linear photoresponse at high incident power, we expect the photoresponse of these devices to reach a minimum 
when positioned in the focused image plane. PbS photoconductors used as IR sensors are an example of such 
behavior. In contrast to photovoltaic detectors, photoconductors do not generate a photocurrent. Instead, their 
resistance changes upon illumination. Even though the functionality differs fundamentally from DSSC, these 
devices can be used for distance measurements with the FIP technique. However, PbS detectors are opaque and 
cannot therefore be used in sensor stacks like the sDSSC presented above. Instead, a beam splitter may be used to 
position both sensors at appropriate distances from the lens.

Figure 4a shows the responsivity of a PbS detector to modulated 1,550 nm illumination as a function of its 
position behind the lens for various LED distances. The photoresponse is recorded as a voltage using an amplifier 
circuit. We determine the responsivity by normalizing the photoresponse to the radiant power reaching the detec-
tor. A minimum in the responsivity is observed when the light spot is focused on the detector.

To understand this behavior, we have modeled the responsivity of the tested PbS photoconductor to light of var-
ious spot sizes and irradiance levels. The device is simulated as a two-dimensional grid of connected infinitesimally 
small photoconductor elements. By performing a limiting process, we can model the grid with an elliptic partial 
differential equation, i.e. ϕ∇ ⋅ = ∇ ⋅ σ ∇ =ϕ∇( ) ( (x, y) ) 0

R x y( , )
, where ϕ(x, y) is the electric potential, R(x, y) the 

local resistance and σ(x, y) the conductance (more details in Supplementary Information S6). This model can be 
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solved using the Finite Elements Method. The conductance σ of every point of the PbS photoconductor is described 
as σ = σd + Δσ. It is hence composed of the dark conductance σd and a change Δσ due to illumination. Δσ is 
assumed to be directly proportional to the irradiance ∼( )E W

m2 , i.e. Δσ = p · E. The irradiance is calculated using 
paraxial optics and assumes uniformly illuminated light spots (see S2). We have fitted the measured data plotted in 
Fig. 4a using σΔ = . ⋅ E0 298 mm

V2 .
The resulting curves are shown as lines in Fig. 4a. We interpret the good agreement between the measured data 

and our model as a confirmation of the assumed linear dependence of Δσ on irradiance for the tested PbS pho-
toconductor within the studied irradiance regime from 0.3 W/m2 to 5,000 W/m2. Even if a photoconductor reacts 
perfectly linearly to the irradiance, a FIP effect is observed when the active area is only partially illuminated. This 
behavior is consistent with experimental data15 and shown formally in Supplementary Information S6.

The FIP effect in PbS photoconductors is used for distance measurements by calculating a photoresponse quo-
tient for each measured distance (Fig. 4b). The ratio of the photoresponses was determined for sensor positions 
at 45 mm and 40.4 mm behind the lens. The resulting quotient increases over the studied measurement range, 
enabling accurate distance measurements between 45–165 cm. Figure 4c depicts a small range to illustrate the 
resolution of distance measurements with the FIP technique. LED positions as close together as 500 µm can be 
distinguished by the photoresponse quotient at a distance of 52 cm, corresponding to a depth resolution of better 
than 0.1%.

Conclusions and Outlook
We have introduced FIP, a novel distance measurement technique, which utilizes sensors with an 
irradiance-dependent responsivity. Irradiance-dependence is a universal phenomenon in photodetectors, which 
enables the utilization of different types of sensors. In this paper, the functionality of the technique was shown 
with sDSSC using visible light as well as PbS photoconductors using NIR illumination. Additionally, the FIP effect 
has been experimentally demonstrated in various thin-film photovoltaic device technologies such as amorphous 
silicon, CdTe, CIGS, CIS, CZTS, as well as in organic solar cells23. Whereas the physical phenomena causing the 
FIP effect in these devices may differ significantly, all of them can be used for distance measurements with the FIP 
technique. The wavelength of the illumination can thus be flexibly chosen for the needs of the measurement task 
at hand. It is possible to use wavelengths deeper in the IR than the absorption of silicon.

Measurement range and resolution are largely determined by the choice of optics, which makes FIP a very 
versatile technology. In this paper, we demonstrated the measurement principle at distances up to 2 m and showed 
a resolution of below 500 µm at a distance of 50 cm. In the Supplementary Information S7, distance measurements 
up to 70 m can be found.

FIP can be combined with other technologies to create systems with even more functionality. A device sensi-
tive to the x, y and z coordinates of a light spot24 can be created by using commercially available position sensi-
tive devices (PSD) as the sensors. Simultaneous tracking of multiple light spots is possible if they have different 
modulation frequencies. Measuring distances with a FIP detector can be done in two distinct ways, in a tracking 
mode or a scanning mode. In the first, the position of light-emitting markers in space is tracked. This approach is 
called motion tracking or motion capture. Conventional motion capture systems are dominated by stereo camera 
systems. Each marker needs to be visible by at least two cameras simultaneously to determine its coordinates. The 
camera positions require accurate calibration, then the images are read out and analyzed to identify the marker 
positions. The distance is then calculated by triangulation. These processes are expensive in terms of equipment as 
well as computational cost. The read-out of the image sensor slows down the position determination.

FIP circumvents these problems by determining distance information from the analog response of a 
single-pixel detector. It is hence a fast and computationally lean method that requires no image processing. The 
technique is robust to ambient light and requires only low computational power. Distance information is retrieved 
from a single sensor unit without triangulation.

The second way to use FIP is the scanning mode. It utilizes projected light spots instead of actively emitting 
ones. This allows lasers to be used as the light sources instead of the LEDs we have presented here. While this 
can be readily achieved with commercial systems using ToF or triangulation, FIP offers the advantage that the 
position of the laser’s origin does not impact the measurement. The laser can thus be positioned freely, because 
the FIP technique only measures the distance to the light spot. Laser alignment is not critical as the source can be 
moved without affecting the distance measurement.

In order to fully capitalize on the advantages of this fundamentally novel technique, FIP detectors will benefit 
from further performance optimization. With improved understanding of the underlying mechanisms and fur-
ther development, FIP will solve distance measurement challenges that have been intractable with state-of-the-art 
techniques.

Methods
Fabrication of sDSSC.  The FTO substrates (Pilkington glass) were first cleaned with a glass detergent, then 
rinsed with water and cleaned with acetone and isopropanol. Subsequently, the substrates were ozone treated for 
30 min (Novascan PSD Series Digital UV Ozone System). After that, a TiO2 blocking layer was deposited on the 
substrates via spray pyrolysis. 9.72 g titanium diisopropoxide bis(acetylacetonate) was dissolved in 100 ml ethanol. 
25 spray cycles were performed at 350 °C. After the pyrolysis, the samples were annealed at 350 °C for 30 min. 
For the deposition of a mesoporous TiO2 layer, transparent titania paste (Dyesol, average particle size 20 nm) 
was mixed with ethanol in a ratio of 1:3. The solution was spin coated at 3700 RPM for 30 s, and the films were 
sintered subsequently at 450 °C for 30 min. The TiO2 films were immersed in a 5 mM dye (N-Carboxymethyl-
9-(7-(bis(9,9-dimethyl-fluoren-2-yl)amino)-9,9-dihexyl-fluoren-2-yl)perylene-3,4-dicarboximide) solution in 
toluene for 1 h. After that the samples were rinsed with water and dried with nitrogen. 100 mg/ml hole conductor 
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2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-MeOTAD) in chlorobenzene was 
mixed with 20 mM bis(trifluoromethane) sulfonamide lithium salt in cyclohexanone and 2.5 mg/ml vanadium 
pentoxide, and oxidized in air for 1 h. Subsequently, vanadium pentoxide was removed by filtering the solution 
through a 0.2 µm PTFE filter. The solution was spin coated at 2000 RPM for 30 s and the samples were left to dry 
for 30 min. We used PEDOT:PSS (Clevios F HC Solar) as the counter electrode. The dispersion was filtered with 
a 0.45 µm PTFE filter and spin coated at 2000 RPM for 30 s. After that, the samples were dried on a hot plate at 
90 °C. Finally, 200 nm Ag contacts were evaporated on top of the PEDOT:PSS film using a custom-made Creavac 
thermal evaporator. The transmittance of the sensors was 42.3% at 530 nm.

Transient photocurrent.  The sDSSC was illuminated with a 530 nm LED (Thorlabs M530L3). The LED was 
modulated at 375 Hz with square wave pulses and a duty cycle of 50%. The light was focused with an aspheric lens 
(Thorlabs AL2520-A) that was positioned at 35.2 mm from the LED. The sensor was mounted on a translational 
stage that allowed movements along the optical axis. The light power on the sensor was 465 µW, and the size of the 
image on the sensor was changed by moving the sensor on the optical axis. The transient photocurrent was ampli-
fied with a Femto DLPCA transimpedance amplifier (gain 104 V/A) and recorded with a National Instruments 
PXIe-4492 measurement card.

Photocurrent as a function of photon density and modulation frequency.  The measurement 
setup was identical to that of transient photocurrent as described above. The alternating photocurrent was ampli-
fied with a Femto DLPCA transimpedance amplifier (gain 104 V/A) and recorded with a Behringer U-Phoria 
UMC202HD sound card. The LED was modulated at 75, 175, 375, 575, 775, and 975 Hz, and the light power on 
the sensor was 855 µW.

FIP distance measurements with DSSC.  A stack of two semitransparent sDSSC was illuminated with 
a square wave pulsed LED (Thorlabs M530L3) at 530 nm. The LED was modulated with square wave pulses at 
475 Hz. The light was focused with a Nikkor 50 mm f/1.2 lens. The distance between the sensors in the stack was 
4.3 mm. The stack was mounted on a translational stage and the LED on a rail that allowed movements along the 
optical axis. The radiant power on the first sensor at LED distance of 13.5 cm was 790 µW. The photocurrents were 
amplified with two Femto DLPCA-200 transimpedance amplifiers (gain 104 V/A) and recorded with two lock-ins 
(SR 850, Stanford Research Systems).

FIP distance measurements with PbS and the photoconductor model.  A commercial PbS 
photoconductor (HertzstückTM, active area 1 cm × 1 cm) was illuminated with an LED at 1,550 nm (Thorlabs 
M1550L3). The LED was modulated with square wave pulses at 606 Hz and its light was focused with a Nikkor 
50 mm f/1.2 lens. The photoresponse was measured using a voltage divider including a 2 MΩ resistor to match 
the dark resistance of the PbS device of similar resistance. A voltage of 100 V was applied to the photoconductor 
and the 2 MΩ resistor, hence an electric field of 50 V/cm was present across the active area of the photodetector. 
The photoresponse to the modulated LED was then determined with a Behringer U-Phoria UMC202HD sound 
card connected via a unity gain buffer. The experimental data are obtained using an FFT with a bandwith of 1 Hz. 
This can be interpreted as a smoothing process. In order to remove numerical perturbations, the simulated results 
were smoothed by using a moving average filter as well. The PbS photoconductor was mounted on a translational 
stage and the LED on a rail that allowed their movements along the optical axis. The radiant power on the sensor 
at an LED distance of 13.5 cm was 35.1 µW.
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