
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



IFAC PapersOnLine 54-20 (2021) 251–257

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.11.183

10.1016/j.ifacol.2021.11.183 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

     

Estimation of the Basic Reproduction Number for the 
COVID-19 Pandemic in Minnesota 

 
H. Movahedi*, A. Zemouche**, R. Rajamani*** 

 

* University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA 
(e-mail: movah007@umn.edu, PIN: 116365). 

** University of Lorraine, IUT Henri Poincaré de Longwy, CRAN CNRS UMR 7039, 54400                                                 
Cosnes et Romain, France (email: ali.zemouche@univ-lorraine.fr, PIN: 59252) 

*** University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA                                                                                       
(e-mail: rajamani@umn.edu, PIN: 24626), Corresponding author 

Abstract: This paper focuses on the dynamics of the COVID-19 pandemic and estimation of associated 
real-time variables characterizing disease spread. A nonlinear dynamic model is developed which enhances 
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and deaths. A 6-month data set containing Minnesota data on infections, hospital-ICU admissions and 
deaths is used to find least-squares solutions to the parameters of the model.  The model is found to fit the 
measured data accurately.  Subsequently, a cascaded observer is developed to find real-time values of the 
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good real-time estimates that match the least-squares parameters obtained from the complete data set.  The 
importance of the work is that it enables real-time estimation of the basic reproduction number which is a 
key variable for controlling disease spread. 
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1. INTRODUCTION 

The COVID-19 infections were first reported in December 
2019 in Wuhan, China and subsequently spread rapidly around 
the world.  The successful development of vaccines in recent 
months promises an eventual recovery for the world from the 
disease.  However, mutations of the involved SARS-Cov-2 
virus still present an unknown danger.  Furthermore, the world 
has experienced a significant number of other infectious viral 
outbreaks during the last 20 years, including the SARS, 
MERS, and Ebola epidemics (De Wit et al, 2016).  Hence, 
there is significant motivation to understand the dynamics of 
how these diseases spread in populations and to develop 
techniques to control their spread (Chen, & Sun, 2014; De la 
Sen et al, 2017). 

A number of research articles have recently explored 
development of mathematical models to represent the 
dynamics of different agents involved in the spread of the 
COVID-19 disease. The models attempt to describe the 
evolution of infected numbers of the population, as well as 
hospitalized, recovered and susceptible numbers.  Most 
models are compartmental models, also known as SIR models, 
based on an assumption that the population size is constant 
(Zhong et al, 2020).  Members of the population are classified 
into three compartments, namely S-susceptible, I-infected and 
R-removed.  Susceptible people are those lacking immunity 
and therefore susceptible but not yet infected. An individual in 
group S can move to group I by infection possibly caused by 
proximity to an infected individual. Finally, an infected 

individual fully recovered from the disease or deceased will be 
moved from the group I to the group R. The summation of 
these three compartments in the SIR model remains constant 
and equals the total population N.  An improvement on the SIR 
model is the SEIR model (Hethcote, & Van den Driessche, 
1991). In the SEIR model a fourth group denoted as Exposed 
(E) is added as a transition group between the groups S and I. 
The E group is the population that has been infected with the 
virus but is not yet in an infectious stage capable of 
transmitting the virus to others. The addition of the 
compartment E has been shown to improve model accuracy in 
data from a number of epidemics (Lopman et al, 2021; 
Bertozzi et al, 2020). 

Recently, authors from the control systems community have 
proposed the use of feedback control to mitigate the spread of 
the COVID-19 epidemic (Stewart et al, 2020). In that work, 
the authors use the SEIR model to show that a simple feedback 
law can manage the response to the pandemic for maximum 
survival while containing the damage to the economy. One 
approach to mitigate the spread of the disease while also trying 
to reduce economic shutdown is to control the numbers of 
hospitalized people to a desired number based on available 
hospital capacity.  This ensures that the hospital system is not 
overwhelmed while avoiding unnecessary shutdowns (Stewart 
et al, 2020; Pazos, & Felicioni, 2020).  Another approach to 
mitigation is through the recognition of a parameter 𝑅𝑅𝑅𝑅0 called 
the basic reproduction parameter (Dolbeault, & Turinici, 
2020).  It has been shown in multiple papers using the SEIR 
dynamics that a value of 𝑅𝑅𝑅𝑅0 < 1 ensures that the disease 
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decreases in the population and in fact reduces exponentially 
fast (Bertozzi et al, 2020; Pazos, & Felicioni, 2020; Dolbeault, 
& Turinici, 2020).  Recent papers have proposed the control of 
𝑅𝑅𝑅𝑅0 to a value below 1 as the approach to modulate disease 
spread prevention measures (Stewart et al, 2020). 

Our paper develops an observer to estimate the value of 𝑅𝑅𝑅𝑅0 in 
real-time.  Previous papers had assumed that the value of 𝑅𝑅𝑅𝑅0 
was available for feedback (Stewart et al, 2020), while in fact 
the typically available measured variables are only the number 
of diagnosed infections, number of hospitalizations and 
number of deaths. The importance of this work is that an 
ability to estimate the real-time value of the reproduction 
parameter 𝑅𝑅𝑅𝑅0 can assist both the analysis of the disease spread 
numbers as well as the modulation of mitigation measures to 
bring the disease evolution dynamics into a stable reducing 
region. 

The outline of the rest of this paper is as follows. Section 2 
develops a dynamic model for the COVID-19 disease spread 
dynamics. A cascaded observer design to estimate both the 
states and the basic reproduction number is introduced in 
Section 3. The estimated results using the observer for the 
disease spread dynamics in Minnesota are then presented in 
Section 4. Section 5 presents the conclusions. 

2. INFECTIOUS DISEASE DYNAMIC MODEL 

2.1 Proposed Model 

A generalized SEIR model enhanced with additional states is 
used to describe the dynamic system governing the infectious 
disease spread dynamics. The system equations can be 
expressed as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −
𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑)

𝑁𝑁𝑁𝑁
 (1) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑)

𝑁𝑁𝑁𝑁
− 𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) (2) 

𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)
𝜇𝜇𝜇𝜇

− 𝛾𝛾𝛾𝛾𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) − 𝜖𝜖𝜖𝜖𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) (3) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜖𝜖𝜖𝜖𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) − 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (4) 

𝑑𝑑𝑑𝑑𝑍𝑍𝑍𝑍
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) − 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) − 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (5) 

𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) (6) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (7) 

This generalized model includes seven states: Susceptible 
population (S), Exposed population (E), detected Infected 
population (I), number of patients in Hospital but not in ICU 
(H), number of patients in ICU (Z), infected population who 
have recovered (R), and infected population who have passed 

 
1 It is to be noted that after this date the style of the reported 
data changed, and the new style was not compatible with the 
model used in this paper. 

away (D). It is assumed that the summation of these states will 
be equal to the total population (N). 

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝑑𝑑𝑑𝑑 + 𝑍𝑍𝑍𝑍 + 𝑅𝑅𝑅𝑅 + 𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁 (8) 
This generalized model, since it has more states and 
measurements compared to traditional SEIR models, will 
result in a more accurate and reliable estimation of the system 
(Peng et al, 2020). Note that, this model is nonlinear and 
requires more than simple linear observer design schemes for 
estimating its states.  

The model parameters which determine the epidemic 
dynamics include the infection rate (𝛽𝛽𝛽𝛽), inverse of average 
latent time (𝛼𝛼𝛼𝛼), cure rate (𝛾𝛾𝛾𝛾), hospitalization rate (𝜖𝜖𝜖𝜖), recovery 
rate (𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), ICU rate (𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), and mortality rate (𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ). Our 
generalized SEIR model also proposes a new parameter (𝜇𝜇𝜇𝜇) 
which signifies the ratio between the real and detected infected 
population. 

𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 = 𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇 (9) 

This relationship accounts for the difference between the total 
infected and the diagnosed population. 

Assumptions: Though the current model is more sophisticated 
than the traditional SEIR model, some simplifying 
assumptions are still made. These include: 

• The studied population is isolated from neighboring 
populations. 

• The insusceptible population (the patients who have 
recovered from the disease) is considerably smaller 
than the total population.  

• The number of patients in need of hospitalization or 
ICU beds does not exceed the capacity of the 
healthcare system. 

2.2 Minnesota Data 

To train the model and determine its parameters, a six-month 
data set (Minnesota Department of Health, 2020) was 
considered. This data includes numbers of infected, 
hospitalized, ICU admissions, recovered, and deaths. In other 
words, we have five of the seven states as measurements. The 
publicly reported date starts from March 21st of 2020 and ends 
on August 27th of 2020.1 

2.3 Least-Squares Parameter Determination 

To find the model parameters, it is necessary to notice that 
some parameters change over time and we cannot fit constant 
parameters for the whole time period. Specifically, the 
infection rate 𝛽𝛽𝛽𝛽 changes due to social distancing orders and the 
parameters 𝜖𝜖𝜖𝜖 and 𝜇𝜇𝜇𝜇 vary due to increase in testing. Hence, we 
adopted the approach to divide the time domain into piecewise 
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decreases in the population and in fact reduces exponentially 
fast (Bertozzi et al, 2020; Pazos, & Felicioni, 2020; Dolbeault, 
& Turinici, 2020).  Recent papers have proposed the control of 
𝑅𝑅𝑅𝑅0 to a value below 1 as the approach to modulate disease 
spread prevention measures (Stewart et al, 2020). 

Our paper develops an observer to estimate the value of 𝑅𝑅𝑅𝑅0 in 
real-time.  Previous papers had assumed that the value of 𝑅𝑅𝑅𝑅0 
was available for feedback (Stewart et al, 2020), while in fact 
the typically available measured variables are only the number 
of diagnosed infections, number of hospitalizations and 
number of deaths. The importance of this work is that an 
ability to estimate the real-time value of the reproduction 
parameter 𝑅𝑅𝑅𝑅0 can assist both the analysis of the disease spread 
numbers as well as the modulation of mitigation measures to 
bring the disease evolution dynamics into a stable reducing 
region. 

The outline of the rest of this paper is as follows. Section 2 
develops a dynamic model for the COVID-19 disease spread 
dynamics. A cascaded observer design to estimate both the 
states and the basic reproduction number is introduced in 
Section 3. The estimated results using the observer for the 
disease spread dynamics in Minnesota are then presented in 
Section 4. Section 5 presents the conclusions. 

2. INFECTIOUS DISEASE DYNAMIC MODEL 

2.1 Proposed Model 

A generalized SEIR model enhanced with additional states is 
used to describe the dynamic system governing the infectious 
disease spread dynamics. The system equations can be 
expressed as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= −
𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑)

𝑁𝑁𝑁𝑁
 (1) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝛽𝛽𝛽𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑)

𝑁𝑁𝑁𝑁
− 𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) (2) 

𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑)
𝜇𝜇𝜇𝜇

− 𝛾𝛾𝛾𝛾𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) − 𝜖𝜖𝜖𝜖𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) (3) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜖𝜖𝜖𝜖𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) − 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) − 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) + 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (4) 

𝑑𝑑𝑑𝑑𝑍𝑍𝑍𝑍
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) − 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) − 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (5) 

𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑑𝑑𝑑𝑑) + 𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑) (6) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑍𝑍𝑍𝑍(𝑑𝑑𝑑𝑑) (7) 

This generalized model includes seven states: Susceptible 
population (S), Exposed population (E), detected Infected 
population (I), number of patients in Hospital but not in ICU 
(H), number of patients in ICU (Z), infected population who 
have recovered (R), and infected population who have passed 

 
1 It is to be noted that after this date the style of the reported 
data changed, and the new style was not compatible with the 
model used in this paper. 

away (D). It is assumed that the summation of these states will 
be equal to the total population (N). 

𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑 + 𝜇𝜇𝜇𝜇 + 𝑑𝑑𝑑𝑑 + 𝑍𝑍𝑍𝑍 + 𝑅𝑅𝑅𝑅 + 𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑁𝑁 (8) 
This generalized model, since it has more states and 
measurements compared to traditional SEIR models, will 
result in a more accurate and reliable estimation of the system 
(Peng et al, 2020). Note that, this model is nonlinear and 
requires more than simple linear observer design schemes for 
estimating its states.  

The model parameters which determine the epidemic 
dynamics include the infection rate (𝛽𝛽𝛽𝛽), inverse of average 
latent time (𝛼𝛼𝛼𝛼), cure rate (𝛾𝛾𝛾𝛾), hospitalization rate (𝜖𝜖𝜖𝜖), recovery 
rate (𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), ICU rate (𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), and mortality rate (𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ). Our 
generalized SEIR model also proposes a new parameter (𝜇𝜇𝜇𝜇) 
which signifies the ratio between the real and detected infected 
population. 

𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 = 𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇 (9) 

This relationship accounts for the difference between the total 
infected and the diagnosed population. 

Assumptions: Though the current model is more sophisticated 
than the traditional SEIR model, some simplifying 
assumptions are still made. These include: 

• The studied population is isolated from neighboring 
populations. 

• The insusceptible population (the patients who have 
recovered from the disease) is considerably smaller 
than the total population.  

• The number of patients in need of hospitalization or 
ICU beds does not exceed the capacity of the 
healthcare system. 

2.2 Minnesota Data 

To train the model and determine its parameters, a six-month 
data set (Minnesota Department of Health, 2020) was 
considered. This data includes numbers of infected, 
hospitalized, ICU admissions, recovered, and deaths. In other 
words, we have five of the seven states as measurements. The 
publicly reported date starts from March 21st of 2020 and ends 
on August 27th of 2020.1 

2.3 Least-Squares Parameter Determination 

To find the model parameters, it is necessary to notice that 
some parameters change over time and we cannot fit constant 
parameters for the whole time period. Specifically, the 
infection rate 𝛽𝛽𝛽𝛽 changes due to social distancing orders and the 
parameters 𝜖𝜖𝜖𝜖 and 𝜇𝜇𝜇𝜇 vary due to increase in testing. Hence, we 
adopted the approach to divide the time domain into piecewise 

 
 

     

 

periods of time and keep these three parameters constant in 
each piecewise period to achieve an acceptable fitted model. 

To this end, the second derivative of the infected population 
state I was used to split the time domain into piecewise 
intervals. The reasoning behind this strategy is that, as can be 
inferred from (2) and (3), the parameter 𝛽𝛽𝛽𝛽 is related to the 
second derivative of I. Specifically, by combining (2) and (3) 
we have: 

𝜕𝜕𝜕𝜕2𝜇𝜇𝜇𝜇
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2

= 𝛽𝛽𝛽𝛽 𝛽
𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇
𝑁𝑁𝑁𝑁
� + 𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Hence, a considerable change in 𝜕𝜕𝜕𝜕
2𝐼𝐼𝐼𝐼

𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2
 can be equivalent to a 

significant change in 𝛽𝛽𝛽𝛽. Accordingly, to find the numerical 
value of 𝜕𝜕𝜕𝜕

2𝐼𝐼𝐼𝐼
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2

 , a second order forward finite difference scheme 
was used:  

𝑓𝑓𝑓𝑓′′(𝑥𝑥𝑥𝑥) =
𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 + 2ℎ) − 2𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥 + ℎ) + 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)

ℎ2
 

(10) 

The result is shown in Fig. 1. As can be seen in this figure, the 
time domain is roughly divided into regions with positive and 
negative signs (as a measure for classifying large changes) of 
𝜕𝜕𝜕𝜕2𝐼𝐼𝐼𝐼
𝜕𝜕𝜕𝜕𝑑𝑑𝑑𝑑2

. The piecewise time periods with constant parameters, 
hence, were chosen as [0-35], [35-70], [70-105], and [105-
160] days after March 21st.  

 
Fig. 1. The time domain is divided based on the sign of the 
second derivative of infected population. 

To fit the model using all of the existing data set, a least- 
squares method was utilized (D’Errico, 2012). To improve the 
fitting, different weights were used for the different variables. 
Since the values of 𝑑𝑑𝑑𝑑 and 𝑍𝑍𝑍𝑍 are much smaller than the other 
states, a higher weight was given to them (𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 = 10). 
Additionally, since  𝑅𝑅𝑅𝑅 is not going to be utilized in the observer 
design, a smaller weight was chosen for it (𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 = 0.01).  

Furthermore, since the incubation period has been reported to 
be between 2 to 14 days (Yang et al, 2020), it was assumed 
that the average latent time is within the interval of 𝛼𝛼𝛼𝛼−1 ∈
[0.1,0.2]. The resulting model along with the actual data is 
presented in Figs. 2-5. As can be seen, the generalized SEIR 
model accurately reconstructs the data. The susceptible state is 

also presented in Fig.6. As can be seen in the figure, as more 
of the population gets infected, the susceptible population 
decreases.  

 
Fig. 2. The fitted model of the infected population and 
infected numbers from the data   

 
Fig. 3. The fitted model of the hospital patients and actual 
hospitalization numbers 

 
Fig. 4. The fitted model of ICU patients and actual 
patients admitted to ICU 

The resulting parameters of the model are presented in Table. 
1. As was stated, all the parameters are kept constant for the 
whole time except for parameters 𝛽𝛽𝛽𝛽, 𝜖𝜖𝜖𝜖, and, 𝜇𝜇𝜇𝜇 which were 
constant in each piecewise interval. As can be seen, the 
infection rate 𝛽𝛽𝛽𝛽 decreases after the first time period due to the 
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Minnesota’s stay-at-home order on March 27th. The effect of 
increase in prevalence of COVID testing also can be seen in 
reduction of 𝜇𝜇𝜇𝜇 after the first 35 days. 

 
Fig. 5. The fitted model of dead population and actual 
number of deaths 

 
Fig. 6. Susceptible population according to the model 

3. CASCADED OBSERVER DESIGN 

The design of the overall estimation system is motivated by 
the following aspects of the dynamic system: 

i) Since H, Z, and D are measured, equations (4), (5), and (7) 
can be used to estimate 𝜇𝜇𝜇𝜇.  

ii) Once 𝜇𝜇𝜇𝜇 is known, with a known 𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 , the infection rate 
𝛽𝛽𝛽𝛽 can be estimated using (1) and (2). 

In consequence, a cascaded observer is used to estimate the 
infection rate and eventually 𝑅𝑅𝑅𝑅0. The first observer uses the 
measurements of 𝑑𝑑𝑑𝑑,𝑍𝑍𝑍𝑍,and 𝑑𝑑𝑑𝑑 as states and 𝜇𝜇𝜇𝜇 as input to create 
an estimate for 𝜇𝜇𝜇𝜇. Then by utilizing 𝜇𝜇𝜇𝜇, the true infected 
population number is calculated, and the infection rate 𝛽𝛽𝛽𝛽 is 
estimated. A schematic of the cascaded observer is presented 
in Fig. 7. 

 
Fig. 7. Schematic of cascaded observer  

Table 1. System parameters 

Parameters 0-35 
days 

35-70  
days 

70-105 
days 

105-160 
days 

𝛾𝛾𝛾𝛾 0.2388 same same same 

𝛽𝛽𝛽𝛽 0.4534 0.2619 0.2378 0.2846 

𝜖𝜖𝜖𝜖 0.0125 0.0166 0.0100 0.0139 

𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0.8409 same same same 

𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0.1666 same same same 

𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.1116 same same same 

𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0.0925 same  same same 

𝛼𝛼𝛼𝛼 0.1969 same same same 

𝜇𝜇𝜇𝜇 7.2959 2.3050 3.3045 1.3081 

3.1 Bilinear Observer 

To estimate the ratio 𝜇𝜇𝜇𝜇 between actual and detected infected 
population, we consider it to be a state and assume its 
derivative to be zero.  
𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0 
(11) 

Using (4), (5), (7), and (11), the system for observer #1 is in 
the following bilinear form (Elliott, 2009): 

�̇�𝑥𝑥𝑥 = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥𝐵𝐵𝐵𝐵 
𝑦𝑦𝑦𝑦 = 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 (12) 

where the states are 𝑥𝑥𝑥𝑥 = [𝑑𝑑𝑑𝑑,𝑍𝑍𝑍𝑍,𝑑𝑑𝑑𝑑, 𝜇𝜇𝜇𝜇]𝑇𝑇𝑇𝑇, the input 𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇,   

𝐴𝐴𝐴𝐴 = �

−𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 0
𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 −𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0 0

0 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0 0
0 0 0 0

�,                       

𝐵𝐵𝐵𝐵 = �

0 0 0 𝜖𝜖𝜖𝜖
0 0 0 0
0 0 0 0
0 0 0 0

�, and 𝐶𝐶𝐶𝐶 = �
1 0 0 0
0 1 0 0
0 0 1 0

�. 

Let the state observer be given by: 

𝑥𝑥𝑥𝑥�̇ = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥� + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵 + 𝐿𝐿𝐿𝐿(𝑦𝑦𝑦𝑦 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥�) (13) 
Let the estimation error be 𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥�. The estimation error 
dynamics then can be found by subtracting (13) from (12): 

𝑥𝑥𝑥𝑥�̇� = (𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑥𝑥𝑥𝑥𝑥 (14) 
Note that due to the bilinear nature of the system, the closed-
loop matrix in (14) is a function of the known input 𝐵𝐵𝐵𝐵. 

Theorem 1. If the Linear Matrix Inequalities (15) have a 
feasible solution, the resulting observer gain L guarantees that 
the observer (13) is globally exponentially stable. Here 𝑃𝑃𝑃𝑃 > 0 
is a positive definite matrix and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚 are the lower 
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Minnesota’s stay-at-home order on March 27th. The effect of 
increase in prevalence of COVID testing also can be seen in 
reduction of 𝜇𝜇𝜇𝜇 after the first 35 days. 

 
Fig. 5. The fitted model of dead population and actual 
number of deaths 

 
Fig. 6. Susceptible population according to the model 

3. CASCADED OBSERVER DESIGN 

The design of the overall estimation system is motivated by 
the following aspects of the dynamic system: 

i) Since H, Z, and D are measured, equations (4), (5), and (7) 
can be used to estimate 𝜇𝜇𝜇𝜇.  

ii) Once 𝜇𝜇𝜇𝜇 is known, with a known 𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 , the infection rate 
𝛽𝛽𝛽𝛽 can be estimated using (1) and (2). 

In consequence, a cascaded observer is used to estimate the 
infection rate and eventually 𝑅𝑅𝑅𝑅0. The first observer uses the 
measurements of 𝑑𝑑𝑑𝑑,𝑍𝑍𝑍𝑍,and 𝑑𝑑𝑑𝑑 as states and 𝜇𝜇𝜇𝜇 as input to create 
an estimate for 𝜇𝜇𝜇𝜇. Then by utilizing 𝜇𝜇𝜇𝜇, the true infected 
population number is calculated, and the infection rate 𝛽𝛽𝛽𝛽 is 
estimated. A schematic of the cascaded observer is presented 
in Fig. 7. 

 
Fig. 7. Schematic of cascaded observer  

Table 1. System parameters 

Parameters 0-35 
days 

35-70  
days 

70-105 
days 

105-160 
days 

𝛾𝛾𝛾𝛾 0.2388 same same same 

𝛽𝛽𝛽𝛽 0.4534 0.2619 0.2378 0.2846 

𝜖𝜖𝜖𝜖 0.0125 0.0166 0.0100 0.0139 

𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0.8409 same same same 

𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0.1666 same same same 

𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.1116 same same same 

𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0.0925 same  same same 

𝛼𝛼𝛼𝛼 0.1969 same same same 

𝜇𝜇𝜇𝜇 7.2959 2.3050 3.3045 1.3081 

3.1 Bilinear Observer 

To estimate the ratio 𝜇𝜇𝜇𝜇 between actual and detected infected 
population, we consider it to be a state and assume its 
derivative to be zero.  
𝑑𝑑𝑑𝑑𝜇𝜇𝜇𝜇
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 0 
(11) 

Using (4), (5), (7), and (11), the system for observer #1 is in 
the following bilinear form (Elliott, 2009): 

�̇�𝑥𝑥𝑥 = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥𝐵𝐵𝐵𝐵 
𝑦𝑦𝑦𝑦 = 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 (12) 

where the states are 𝑥𝑥𝑥𝑥 = [𝑑𝑑𝑑𝑑,𝑍𝑍𝑍𝑍,𝑑𝑑𝑑𝑑, 𝜇𝜇𝜇𝜇]𝑇𝑇𝑇𝑇, the input 𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇,   

𝐴𝐴𝐴𝐴 = �

−𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0 0
𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 −𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0 0

0 𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ 0 0
0 0 0 0

�,                       

𝐵𝐵𝐵𝐵 = �

0 0 0 𝜖𝜖𝜖𝜖
0 0 0 0
0 0 0 0
0 0 0 0

�, and 𝐶𝐶𝐶𝐶 = �
1 0 0 0
0 1 0 0
0 0 1 0

�. 

Let the state observer be given by: 

𝑥𝑥𝑥𝑥�̇ = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥� + 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥�𝐵𝐵𝐵𝐵 + 𝐿𝐿𝐿𝐿(𝑦𝑦𝑦𝑦 − 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥�) (13) 
Let the estimation error be 𝑥𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥�. The estimation error 
dynamics then can be found by subtracting (13) from (12): 

𝑥𝑥𝑥𝑥�̇� = (𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑥𝑥𝑥𝑥𝑥 (14) 
Note that due to the bilinear nature of the system, the closed-
loop matrix in (14) is a function of the known input 𝐵𝐵𝐵𝐵. 

Theorem 1. If the Linear Matrix Inequalities (15) have a 
feasible solution, the resulting observer gain L guarantees that 
the observer (13) is globally exponentially stable. Here 𝑃𝑃𝑃𝑃 > 0 
is a positive definite matrix and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚 are the lower 

 
 

     

 

and upper bound on the input (𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 < 𝐵𝐵𝐵𝐵 < 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚), and 𝜎𝜎𝜎𝜎 is a 
diagonal matrix that determines the convergence rate. 

(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)
+ 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎 ≤ 0 
(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)
+ 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎 ≤ 0 

 
(15) 

Proof. Consider 𝑉𝑉𝑉𝑉 = 1
2
𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥 as the candidate for the 

Lyapunov function, with 𝑃𝑃𝑃𝑃 > 0. By utilizing (14) the 
derivative of Lyapunov function will be: 

�̇�𝑉𝑉𝑉 = 𝑥𝑥𝑥𝑥�̇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥�𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥�̇ 
    = 𝑥𝑥𝑥𝑥�𝑇𝑇𝑇𝑇(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥� + 𝑥𝑥𝑥𝑥�𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑥𝑥𝑥𝑥� 

To guarantee stability, �̇�𝑉𝑉𝑉 ≤ 0 could be ensured. To achieve 
exponential stability �̇�𝑉𝑉𝑉 + 𝑥𝑥𝑥𝑥�𝑇𝑇𝑇𝑇𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎𝑥𝑥𝑥𝑥� ≤ 0 can be used instead, 
where 𝜎𝜎𝜎𝜎 > 0 and is defined as:  

𝜎𝜎𝜎𝜎 = �

𝜎𝜎𝜎𝜎1 0 0 0
0 𝜎𝜎𝜎𝜎2 0 0
0 0 𝜎𝜎𝜎𝜎3 0
0 0 0 𝜎𝜎𝜎𝜎4

� 

 
 
(16) 

The convergence rate in this case will be at least equal to 
min�𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖

2�𝜆𝜆𝜆𝜆𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(𝑃𝑃𝑃𝑃)  
2

 where 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚(. ) denotes the minimum 
eigenvalue of the matrix. 

Hence, the LMI to be satisfied will be: 

(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶) + 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎
≤ 0 

(17) 

Any control input 𝐵𝐵𝐵𝐵(𝑑𝑑𝑑𝑑) , 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ≤ 𝐵𝐵𝐵𝐵(𝑑𝑑𝑑𝑑) ≤ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 , can be 
expressed as 

𝐵𝐵𝐵𝐵(𝑑𝑑𝑑𝑑) = 𝛿𝛿𝛿𝛿𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 + (1 − 𝛿𝛿𝛿𝛿)𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚,       0 ≤ 𝛿𝛿𝛿𝛿 ≤ 1 (18) 

with time-varying 𝛿𝛿𝛿𝛿. 

Using (18), LMI (17) can be written as: 

𝛿𝛿𝛿𝛿[(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶) + 𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎] +
(1 − 𝛿𝛿𝛿𝛿)[(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶)𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶) +
𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝜎𝜎𝜎𝜎] ≤ 0 

Hence, if both LMIs in (15) are satisfied, the constant solution 
P and the resulting gain L will ensure that the observer (13) is 
globally exponentially stable. 

3.2 Unknown Input Observer for a Linear Parameter Varying 
system 

To estimate the infection rate, we start with (2) and (3). If it is 
assumed that 𝑑𝑑𝑑𝑑 ≈ 𝑁𝑁𝑁𝑁 (the susceptible population is very large 
compared to the other states), then using (9) the system will 
be:  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 − 𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 

 𝑑𝑑𝑑𝑑 𝐼𝐼𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 − 𝛾𝛾𝛾𝛾𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 − 𝜖𝜖𝜖𝜖𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 

 

(19) 

The system, therefore, can be expressed as: 

�̇�𝑥𝑥𝑥 = 𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥 + 𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 
𝑦𝑦𝑦𝑦 = 𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 

(20) 

where 𝑥𝑥𝑥𝑥 = [ 𝑑𝑑𝑑𝑑 𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟]𝑇𝑇𝑇𝑇 ,𝐴𝐴𝐴𝐴 = �0 −𝛼𝛼𝛼𝛼
𝛼𝛼𝛼𝛼 𝛾𝛾𝛾𝛾 + 𝜖𝜖𝜖𝜖� ,𝐶𝐶𝐶𝐶 = [0 1],   𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌 =

�𝑦𝑦𝑦𝑦0�, and 𝑑𝑑𝑑𝑑 = 𝛽𝛽𝛽𝛽 is an unknown input. 

Theorem 2. The observer in the form of  

𝑥𝑥𝑥𝑥�̇ = �𝐴𝐴𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 − 𝑄𝑄𝑄𝑄𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌�𝑥𝑥𝑥𝑥� + 𝑄𝑄𝑄𝑄𝜌𝜌𝜌𝜌𝑦𝑦𝑦𝑦(𝑑𝑑𝑑𝑑) + 𝐿𝐿𝐿𝐿𝑦𝑦𝑦𝑦 (21) 

is asymptotically stable and the estimate of the unknown input  

�̂�𝑑𝑑𝑑 = �𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑−1𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌�
−1(𝑦𝑦𝑦𝑦(𝑑𝑑𝑑𝑑) −𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌𝑥𝑥𝑥𝑥�) (22) 

converges toward the true value if the eigenvalues of the 
matrix (𝐴𝐴𝐴𝐴 − 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 − 𝑄𝑄𝑄𝑄𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌) are all negative. Where r is the 
relative degree of the system, 𝑦𝑦𝑦𝑦(𝑚𝑚𝑚𝑚)is the nth derivative of the 
output, 𝑄𝑄𝑄𝑄𝜌𝜌𝜌𝜌 = 𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌�𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑−1𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌�

−1
, and 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝜌𝜌𝜌𝜌can be calculated from 

𝑦𝑦𝑦𝑦(𝑖𝑖𝑖𝑖) = 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝜌𝜌𝜌𝜌𝑥𝑥𝑥𝑥,                            1 ≤ 𝑖𝑖𝑖𝑖 < 𝑒𝑒𝑒𝑒 
𝑦𝑦𝑦𝑦(𝑑𝑑𝑑𝑑) = 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌𝑥𝑥𝑥𝑥 + 𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑−1𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑 ,        𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒 

(23) 

Proof. (Ichalal, & Mammar, 2015; Vijayaraghavan et al, 2006) 

4. ESTIMATION RESULTS 

To use the first observer for the bilinear system and find 𝜇𝜇𝜇𝜇, the 
convergence rate in (16) is chosen as 𝜎𝜎𝜎𝜎2 =

10−3 �

5 0 0 0
0 1000 0 0
0 0 100 0
0 0 0 10

�. By solving the LMIs (15) 

numerically using the YALMIP toolbox (Lofberg, 2004) the 
observer gain is found to be                                                    

 𝐿𝐿𝐿𝐿 = �

20.26 35.11 49.34
1.38 1.93 2.85
1.51 2.54 3.49

0.046 0.076 0.11

�. 

It is to be mentioned that the matrix 𝐵𝐵𝐵𝐵 is dependent on 𝜖𝜖𝜖𝜖, but 𝜖𝜖𝜖𝜖 
changes in each piecewise interval. To deal with this problem, 
the gain is designed for one interval and is checked for other 
intervals to satisfy the feasibility of LMIs (15). The estimated 
value of the ratio between the actual and detected infected 
population along with its previous constant values from the 
least-squares method is presented in Fig. 8. 

Resulting from (22), the estimate of infection rate can be 
calculated from: 

�̂�𝛽𝛽𝛽 = �𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 �𝜇𝜇𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟0 ��
−1

(𝜇𝜇𝜇𝜇�̈�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟 − 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴2𝑥𝑥𝑥𝑥�) 
(25) 

where 𝜇𝜇𝜇𝜇�̈�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟is calculated numerically using (10). The gain 𝐿𝐿𝐿𝐿 =
�1.5

1 � satisfies the Theorem 1 for all the piecewise time 
intervals. The estimated infection rate 𝛽𝛽𝛽𝛽 along with its constant 
values from the least-squares method is presented in Fig. 9. 

In general, as can be seen in Fig. 9 and Fig. 10, the estimated 
real-time values 𝜇𝜇𝜇𝜇 and 𝛽𝛽𝛽𝛽 match well with the least-squares 
values obtained from the complete data set. However, the 
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observer estimates do vary more with time than the least-
squares results. To find the basic production number, the 
following equation is used. 

𝑅𝑅𝑅𝑅0 =
𝛽𝛽𝛽𝛽

𝜖𝜖𝜖𝜖 + 𝛾𝛾𝛾𝛾 
 

(26) 

The resulting estimate of 𝑅𝑅𝑅𝑅0 is presented in Fig. 10. As can be 
seen in Fig. 10, not only the result of social distancing order 
from March 27th is visible2, but also the increase of 𝑅𝑅𝑅𝑅0 as a 
result of loosening of the restrictions on May 18th (day 58 in 
the figure)3 by “Safely Reopening Minnesota’s Economy” is 
also detectable. The mass demonstrations during the summer 
of 2020 could also have had an effect in increase of 𝑅𝑅𝑅𝑅0 between 
May 26th and June 7th (days 66-78 of Fig. 10). The decline in 
𝑅𝑅𝑅𝑅0 around the day 90 could be a result of decrease in the 
protests (Ran et al, 2021; Valentine et al, 2020). It needs to be 
mentioned that the correlation between the social protests and 
the rise in COVID-19 spread is questioned in multiple works 
(Gonsalves, & Yamey, 2020; Lazer et al, 2021) and is not a 
specific claim that this work makes. 

 
Fig. 8. Ratio between the actual and detected infected 
population. 

 
Fig. 9. Infection rate parameter 𝛽𝛽𝛽𝛽 

 

 
2 State of Minnesota Executive Department. (2020, March 
25). Emergency executive order 20–20. 

5. CONCLUSIONS 

This paper considered the dynamics of the COVID-19 
pandemic and real-time estimation of the basic reproduction 
number as a key variable for controlling the spread of the 
disease. By adding variables on hospitalizations, ICU 
admissions, and number of deaths, a nonlinear generalized 
SEIR model was developed. A least-squares method was 
utilized to find the parameters of the system based on the 
complete data set of 6-month statistics published by the 
Minnesota Department of Health. 

A cascaded observer system, consisting of a bilinear observer 
and an unknown input observer, was used to estimate the real-
time values of the true infected population, the infection rate, 
and the basic reproduction number.  

The resulting real-time estimates matched well with the least-
squares values obtained from the whole data set. The real-time 
estimates provide timely information and could be utilized to 
control the spread of the disease. For instance, the reproduction 
number could be controlled to a value below 1 by fine-tuning 
social distancing measures and lock-downs, so that economic 
pain is minimized while the disease dynamics are still 
maintained to be in a stable region. 

 
Fig. 10. Basic reproduction number 
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